Address

Room 101, Institute of Cyber-Systems and Control, Yuquan Campus, Zhejiang University, Hangzhou, Zhejiang, China

Contact Information

Email: zhenz@zju.edu.cn

Zhen Zhang

PhD Student

Institute of Cyber-Systems and Control, Zhejiang University, China

Biography

I received my B.S. degree from Zhejiang University of Technology in 2018. I am currently pursuing the Ph.D. degree with the institute of Cyber Systems and Control, Zhejiang University, Hangzhou, China, working with Prof. Y. Liu. My research area includes autonomous navigation of mobile robots, motion planning of quadruped robots, exploration planning, active-SLAM, multi-agent collaboration and so on.

Research and Interests

  • Autonomous Navigation
  • Motion Planning
  • Exploration planning
  • Active-SLAM

Publications

  • Zhen Zhang, Jiaqing Yan, Xin Kong, Guangyao Zhai, and Yong Liu. Efficient Motion Planning based on Kinodynamic Model for Quadruped Robots Following Persons in Confined Spaces. IEEE/ASME Transactions on Mechatronics, 2021.
    [BibTeX] [Abstract] [DOI] [PDF]
    Quadruped robots have superior terrain adaptability and flexible movement capabilities than traditional robots. In this paper, we innovatively apply it in person-following tasks, and propose an efficient motion planning scheme for quadruped robots to generate a flexible and effective trajectory in confined spaces. The method builds a real-time local costmap via onboard sensors, which involves both static and dynamic obstacles. And we exploit a simplified kinodynamic model and formulate the friction pyramids formed by Ground Reaction Forces (GRFs) inequality constraints to ensure the executable of the optimized trajectory. In addition, we obtain the optimal following trajectory in the costmap completely based on the robots rectangular footprint description, which ensures that it can walk through the narrow spaces avoiding collision. Finally, a receding horizon control strategy is employed to improve the robustness of motion in complex environments. The proposed motion planning framework is integrated on the quadruped robot JueYing and tested in simulation as well as real scenarios. It shows that the execution success rates in various scenes are all over 90\%.
    @article{zhang2021emp,
    title = {Efficient Motion Planning based on Kinodynamic Model for Quadruped Robots Following Persons in Confined Spaces},
    author = {Zhen Zhang and Jiaqing Yan and Xin Kong and Guangyao Zhai and Yong Liu},
    year = 2021,
    journal = {IEEE/ASME Transactions on Mechatronics},
    doi = {10.1109/TMECH.2021.3083594},
    abstract = {Quadruped robots have superior terrain adaptability and flexible movement capabilities than traditional robots. In this paper, we innovatively apply it in person-following tasks, and propose an efficient motion planning scheme for quadruped robots to generate a flexible and effective trajectory in confined spaces. The method builds a real-time local costmap via onboard sensors, which involves both static and dynamic obstacles. And we exploit a simplified kinodynamic model and formulate the friction pyramids formed by Ground Reaction Forces (GRFs) inequality constraints to ensure the executable of the optimized trajectory. In addition, we obtain the optimal following trajectory in the costmap completely based on the robots rectangular footprint description, which ensures that it can walk through the narrow spaces avoiding collision. Finally, a receding horizon control strategy is employed to improve the robustness of motion in complex environments. The proposed motion planning framework is integrated on the quadruped robot JueYing and tested in simulation as well as real scenarios. It shows that the execution success rates in various scenes are all over 90\%.}
    }
  • Guangyao Zhai, Zhen Zhang, Xin Kong, and Yong Liu. Efficient Pedestrian Following by Quadruped Robots. In 2021 IEEE International Conference on Robotics and Automation Workshop, 2021.
    [BibTeX] [Abstract] [PDF]
    Legged robots have superior terrain adaptability and flexible movement capabilities than traditional wheeled robots. In this work, we use a quadruped robot as an example of legged robots to complete a pedestrian-following task in challenging scenarios. The whole system consists of two modules: the perception and planning module, relying on the various onboard sensors.
    @inproceedings{zhai2021epf,
    title = {Efficient Pedestrian Following by Quadruped Robots},
    author = {Guangyao Zhai and Zhen Zhang and Xin Kong and Yong Liu},
    year = 2021,
    booktitle = {2021 IEEE International Conference on Robotics and Automation Workshop},
    abstract = {Legged robots have superior terrain adaptability and flexible movement capabilities than traditional wheeled robots. In this work, we use a quadruped robot as an example of legged robots to complete a pedestrian-following task in challenging scenarios. The whole system consists of two modules: the perception and planning module, relying on the various onboard sensors.}
    }