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Abstract—Quadruped robots have superior terrain adaptabil-
ity and flexible movement capabilities than traditional robots.
In this paper, we innovatively apply it in person-following
tasks, and propose an efficient motion planning scheme for
quadruped robots to generate a flexible and effective trajectory
in confined spaces. The method builds a real-time local costmap
via onboard sensors, which involves both static and dynamic
obstacles. And we exploit a simplified kinodynamic model and
formulate the friction pyramids formed by Ground Reaction
Forces (GRFs)’ inequality constraints to ensure the executable
of the optimized trajectory. In addition, we obtain the optimal
following trajectory in the costmap completely based on the
robot’s rectangular footprint description, which ensures that it
can walk through the narrow spaces avoiding collision. Finally,
a receding horizon control strategy is employed to improve the
robustness of motion in complex environments. The proposed
motion planning framework is integrated on the quadruped robot
JueYing and tested in simulation as well as real scenarios. It
shows that the execution success rates in various scenes are all
over 90%.

I. INTRODUCTION

OLLOWING person arises when a human and a robot
Fcooperate on a task [1]. It is widely used in agriculture,
industry, miliraty and other diverse domains. There have been
some researches, while most of them concentrate on wheeled
or crawler robots [2]-[5]. Sometimes robots are required to
assist humans in complicated environments, including narrow
indoor and rugged unstructured outdoor scenes. Under these
circumstances, space is always confined and narrow, where the
limited mobility of the wheeled robot restricts its performance.
Quadruped robots possess high mobility and dynamic motion
capability compared with traditional robots. Furthermore, their
remarkable adaptability to terrain enables them superior per-
formance. Hence, it’s promising and significant for quadruped
robots to perform person-following tasks in confined terrains.

Like an omnidirectional wheeled mobile robot, quadruped
robots have approximate omnidirectional mobility and can
translate and rotate simultaneously at a location. There are
some research works on the motion planning of omnidirec-
tional robots in confined space [6]-[8]. But when considering
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Fig. 1. Glimpse of field tests. The quadruped robot follows the walking person
in the confined space.

actuator limits, the quadruped robot’s kinodynamics model is
more complicated [9] and the motion planning is therefore
more challenging. Some works [10] for quadruped body
planning neglect this constraint, thus, the generated trajectories
may exceed the limit of the actuators and cause performance
degradation. Besides, due to the lack of a prior map, the
robot needs to update the surrounding information online by
onboard sensors. Both the non-stationary goal and the dynamic
environment require real-time state feedback and trajectory
generation. It brings greater challenges for person-following
task.

We propose an efficient online motion planning approach
for quadruped robots to perform person-following tasks in
confined environments. The quadruped robot runs in trot gait
to meet speed and flexibility requirements. In order to reduce
the complexity, we apply simplifications for the map and the
model. Besides, we consider the dynamic constraints of the
actuators and propose a simplified kinodynamic model. The
model imposes constraints on the Ground Reaction Forces
(GRFs) to ensure the feasibility.

Furthermore, we decompose the motion planning problem
into two steps: a search-based path finder and an optimization-
based trajectory generation. The front-end planner takes the
traversability cost into account and plans out a safe path.
The back-end uses this path as the initial condition, which
is constrained by GRFs and solved by a non-linear optimizer.
For safety, we approximate the robot’s footprint as a rectangle
and regard the robot as a rigid body, which guarantees no
collision between the trunk and environment. To improve
robustness, we employ a receding horizon strategy, which
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means only the optimal control inputs within the prediction
range are executed. We validate our method efficiency in both
simulation and physical environments, including the narrow
indoor corridor and rough outdoor terrain.

The main contributions of the present work are:

o Propose a novel two-step, optimization-based, receding
horizon method for quadruped robots to follow the person
in confined environments.

o Present an effective kinodynamics model for quadruped
robots, whose constraints ensure the safety and feasibility.

o Perform experiments both in simulation and the real envi-
ronments to verify our method’s efficiency and accuracy.

II. RELATED WORK

With the development of robotics, the cooperation between
robot and human gains more attention. Among them, the task
of the robot following person is particularly critical due to
its wide applications [1]. There have been some researches,
and most of them focus on wheeled robots in agriculture and
industry [2]-[5]. Sampling-based methods [11] and heuris-
tic methods [12] are widely used and perform well in the
relatively empty scenes. And there are two critical issues
and limitations with wheeled robots. On the one hand, few
researchers consider unstructured and complex environments,
which pose greater challenges. On the other hand, wheeled
robots have limited movement capabilities. Hence, they hardly
handle confined spaces. Recently, omnidirectional robots gain
more attention due to the holonomic characteristic. They can
freely adjust the steering in all directions independently [6],
[7]. However, its limited terrain adaptability determines its
bounded application. Quadruped robots possess approximate
omnidirectional mobility and adaptability to the terrain. Hence,
it is necessary and promising for quadruped robots to solve the
trajectory generation for the person-following problem.

Several key characteristics of quadruped robots make tra-
jectory generation methods generally different from wheeled
robots, including the complex model, specific map represen-
tations, and hierarchical planners. First of all, different from
omnidirectional robots, quadruped robots possess a rather than
complete omnidirectional mobility. For the omnidirectional
robots, Christoph et al. [6] present an optimization-based
method in R? and validate their method in the flat and spacious
indoor environment [7]. Differently, the configuration of the
quadruped robot is SE (2) = R? x S'. Kennedy et al. [8]
consider navigation in SE (2) in confined space, which is sim-
ilar to our problem. Nevertheless, when considering execution
constraints, the quadruped robot model is more complicated
[9]. Carlo et al. [13] introduce a simplified dynamics model
and indicate that GRF is a crucial factor for quadruped robots
in smaintaining motion stability. Furthermore, the sensitivity of
terrain determines the need for a more accurate representation
of the environments and safer collision-checking [14]. Chilian
et al. [15] use the stereo camera and Wooden et al. [16]
use LiDAR to estimate terrain’s traversability. They both
approximate the robot as a point and apply searching-based
methods considering the traversability for planning. Different
from them, we think it is critical to consider differences in
mobility in different directions.
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Fig. 2. The overview of our scheme for efficient navigation of quadruped
robots. The dashed line mark the separation between perception and planning.
The streamlines and arrows indicates the data flow. The feedback loop
enhances the robustness of trajecoty generation.

Moreover, due to the problem’s complexity, some works
[17]-[20] divide the planning for quadruped robots into a
high-level COM (Center Of Mass) planner in the state space
and a low-level footstep planner which generates appropriate
footholds. However, they rely on external systems for local-
ization and traversability evaluation. Fankhauser et al. [21],
[22] build a 2.5D elevation map online, the cell of which
stores a height value. Winkler et al. [23] and Wermelinger et
al. [10] extend the above architectures by combining onboard
perception to replan actions online. To reduce complexity, they
employ a hierarchical structure that simplifies the footprint’s
representation. But this simplification may prevent the robot
through locally narrow passages. Zhao et al. [24] use the
two circles to simplify the hexagonal body, resulting in not
safe or efficient enough paths. Based on the issues mentioned
above, we accurately represent the footprint as a rectangle and
consider its traversability based on the elevation map. We also
incorporate the dynamics model to the planning problem to
achieve motion stability. To the best of our knowledge, we first
present a methodology for trajectory planning of quadruped
robots in the following person.

III. SYSTEM OVERVIEW

As shown in Fig. 2, our person-following scheme includes
a perception module (see Section IV) and a motion planning
module (see Section V). All the data required by the percep-
tion module are collected by sensors mounted on the robot
body. The pose of the followed person is obtained by point
cloud segmentation algorithm with the LiDAR data. Also, the
LiDAR, depth camera, imu, and leg odometry data are fused
to estimate the robot’s pose and construct an elevation map of
the surrounding environment.

The motion planning module receives the pose of the
followed person as a local goal then employs a geometric
path planner to find a coarse path. After initialization, an
optimization procedure iteratively refines the CoM (Center of
Mass) trajectory of the robot. Afterwards, a receding horizon
controller is used to produce control commands for quadruped
robots. The commands are passed to the executor of quadruped
robots to achieve the required movement. The whole system
forms a closed loop of perception - mapping - planning -
controlling, and updates at 10Hz.
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IV. PERCEPTION MODULE

Since we have no prior knowledge of the environment, it
is significant to generate maps for navigation and estimate
poses online. First of all, for a frame of point cloud captured
from LiDAR, we apply the min-cut segmentation algorithm
[25] to extract the points of the target object. The points will
be filtered out from the raw point cloud to avoid troubles for
subsequent mapping functions. Meanwhile, the object’s pose
is served as the local goal for planning module and updates
as the person moves. Then, the filtered point cloud is fed
to the laser odometer of FLOAM! to estimate the pose of
the current frame. As an advanced version of LOAM [26],
FLOAM reduces the computational cost by three times and is
more suitable for real-time applications.

We merge point clouds from LiDAR and depth cameras
to deal with the unexpected obstacles in the environment.
Specifically, the point clouds from sensors are transformed to
a fixed coordinate system and summed. The single-frame point
cloud only contains the current environmental information but
does not store the past obstacles. Therefore, we use several
frames to keep a memory of obstacles around. To improve ef-
ficiency, the mapping module is set up as a rolling window that
always keeps a queue of detected obstacles around the robot.
Different from [16] using the time-based rolling window, we
present a method based on the robot’s moving distance. Given
a collection O of the detected obstacles in the current and
historical frames, we compute a parametrized subset of O:

Qd):={qe0 |

where distance(rpast, Tnow) is the distance between the past
position of the robot and the current position. Only the
obstacles included in Q)(d) are retained. Which is, as the
robot moves away from a certain distance d, the farthest
obstacles pop out, and the newly detected obstacles update.
The distance parameter is flexibly adjusted according to the
size and complexity of the environmental space. The local
point cloud map not only deals with the area in the sensor’s
field of view, but also stores the past obstacles or those behind
the robot. Therefore, the robot can avoid moving in the wrong
way during the path planning process.

Then, we create a discrete 2.5D elevation map upon fused
point cloud map, and it is based on the universal grid map
library [27]. According to the elevation map, we estimate
each grid’s terrain traversability by three characteristics: the
roughness r, the slope s, and the step height h, similar to
[10]. The traversability cost C; of each cell can be formulated
as follows:

distance(rpast, Tnow) < d} (1)

r S

+ w3 i 2

Sthre hthre

where wi, wy, ws are the weights for them respectively,
whose sum is 1. The thresholds 7i5,r¢, Sthre, and hypre are the
allowed maximum values. When one of the features exceeds its
threshold, its corresponding cost value is set to 1. An example
of the visualization of a generated traversability costmap is
shown in Fig. 3. If the cell is closer to the wall or the slope

Ihttps://github.com/wh20072004 1/floam

Fig. 3. Visualization of a generated traversability costmap. The left is the
local point cloud map after fusion with multiple historical poses, and the
right is the created elevation map with traversability cost.

is larger, it is assigned a higher cost. The traversability cost

ranges from O to 1, and the corresponding color is transited
from red to purple.

V. MOTION PLANNING MODULE

We present a simplification scheme for quadruped robots
that allows fast computation of optimal movement commands
and entails reacting timely in complex environments. This
scheme is decoupled into three steps: Firstly, we approximate
the robot as a point and plan a rough path via a path-
guided planner with the local traversability costmap. Then,
we consider the robot as a rigid body and project it onto the
2D plane as a rectangular footprint. The precise trajectory is
generated by the optimization-based motion planner. Finally,
we apply the receding horizon control strategy, which means
only the first velocity control command in the trajectory
is send to the robots in each control cycle. The planning
mentioned above and the optimization process is repeated
once the costmap updates, which significantly improves the
robustness of robot movement.

A. Path-Guided Planner

Similar to general wheeled robots, we adopt a variant A*
algorithm [28] to search for a rough path guiding to the local
goal in the 2D costmap because of its optimality and search
efficiency. Due to rapid environmental changes and the target’s
randomness movement, the map producer generates a new
costmap at each planning iteration.

The traversability information of the terrain is stored as
the cost value of cells in the costmap. We consider the
traversability cost in the path search phase, and the cost
value is integrated into the cost function. Then the planner
is inclined to find a path towards low traversability cost areas.
This guided path provids initial waypoints for the back-end
trajectory optimization funciton.

If the new path deviates too much from the previous one,
the robot will change its directions back and forth. This means
that the path is required to be as stable as possible over each
planning iteration. Therefore, the path-guided planner keeps a
small history of planned paths. Based on the previous path,
cells’ costs where the robot planned to go decrease in the new
iteration.
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Fig. 4. World frame W and base frame B denote the world and body
coordinates system, respectively. The left subscript shows the reference frame.
The nomenclature about the quadruped robot is: right front (RF’), left front
(LF), left hind (L H) and right hind (RH). The xcom represents the location
of the CoM(center of the mass), and the vector pcom,,; points the displacement
from the CoM to the position of the i* foot in the world frame W.

B. Simplified Dynamics Model

It’s critical for quadruped robots to maintain stability and
balance in challenging spaces. Due to its under-actuation
during the trot gait, the control of a highly dynamic body is
more complicated. Generally, in order to avoid slipping at the
stance feet, the ground reaction forces (GRFs) must remain in
the friction pyramids [29].

Similar to [30] [31], we assume that the GRFs are the only
external forces acting on the robot and ignore Coriolis forces.
Different from [30], we do not think centrifugal forces are
negligible because turning at a relatively high speed is a typical
slippery scene. Based on the above conditions, we formulate
the linear velocity and acceleration of the CoM Zcom Zcom,
and the angular ones of the base wy w; as functions of GRF
fe, where c is the number of stance feet:

I I ] h _[ma} 3)
[pcom,ix] [pcom,ix} fc Igu}b
a= -;I}com + m.com X wp + g (4)

where m € R is the robot’s mass, g € R? is the gravity
acceleration vector, I, € R3*3 is the centroidal rotational
inertia, peom,; € R3*3 is the vector from the CoM to the
position of the i, foot (see Fig. 4).

C. Footprint Representaion

Different representations are applied to approximate the
quadruped robot’s footprints, including a point, a circle, and
a rectangle. The roughest and straightforward representation
is a point whose pose is (x,y) without the heading angle.
This method does not take the robot’s kinodynamic charac-
teristics into account. Thus, the generated trajectory may not
be feasible. It is efficient to use either the inscribed circle or
the circumcircle, and the heading angle is tangential to the
generated path. The former guarantees safety and feasibility,
but it is too conservative to pass through narrow passages (see
Fig. 5(B)). The latter can handle these terrains but requires
further safety verification (see Fig. 5(C)). If the robot does
not adjust its heading angle, its actual body will be stuck.
Only planning with the rectangle footprint yields reliable and
valid paths in more complicated situations. This method fully
considers the quadruped robot’s dynamic motion capability so
that the robot can flexibly adjust its orientation. Therefore, we
employ an accurate rectangle for trajectory optimization.

\/l__"; N

Fig. 5. The quadruped robot represented by the rectangle can pass through
narrow spaces. (A) The rectangle footprint considers the orientation and the
robot can rotate in open spaces. (B) It can avoid conservative solutions by
circumcircle and select the exact angle to move forward. (C) The collision
check guarantees the safety and therefore the robot is able to deal with several
consecutive turns.

D. Trajectory Generation

We define the trajectory generation as an optimization
problem taking the kinodynamic constraints into account and
solve it using nonlinear programming. We describe the dis-
cretized trajectory consisting of a sequence of n robot poses
x; = (z4,y:,0;)7 € R? x St and (n — 1) time intervals
AT; € RY. Where (z;,;) € R? denotes the robot’s position
and 6; € S! denotes its orientation. The time interval AT}
represents the time for the robot to move from pose x; to
subsequent pose X;4+;1. The set of parameters describing the
trajectory is defined by:

B:= {X17AT1,X2,AT27...7Xn,1,ATn,1,Xn} (5)

1) Objective Function: The robot is expected to follow the
target quickly and flexibly, which requires the time intervals of
trajectory as short as possible. Thus we formulate this issue as
an optimization problem that minimizes the sum of the square

of each time interval:
n—1
e . 2
minimize ; (AT;) (6)
As the time intervals of the trajectory is used as the
optimization object, the robot tends to act aggressively. It
directly causes the robot’s velocity to change sharply and steps
in accelerations, which not only consumes a lot of energy but
also produces discontinuous torques causing damage to the
hardware and affecting stability. In order for the robot to walk
as stable as possible, it needs smooth acceleration during the
execution period. We consider the sum of accelerations on the
trajectory as the optimization object, formulated as follows:

n
miniénize Z |la; H2 @)
i=1

Moreover, the generated trajectory should be executed di-
rectly by robots. Thus some kinodynamic constraints, includ-
ing translational velocity and acceleration, should be consid-
ered. Besides, the distance between the boundary of the robot
footprint and the obstacle points should be limited to ensure
safety.

2) Kinematic Constraints: The quadruped robot has ex-
cellent mobility and dynamic motion capability, including
walking forward, laterally, and rotating simultaneously, which
means that the robot can walk flexibly in any direction. The
translational velocity v; and rotational velocity w; in pose Xx;

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:37:15 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3083594, IEEE/ASME

Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS

w_iz

/

(@
1

f

—

n_e—]

(©

Fig. 6. (a) The variant A* algorithm finds a rough path from the start state to
the target state. (b) The heading angle is always tangential to the path without
optimization, and therefore the generated trajectory will collide with the wall
when the space is too narrow. (c¢) Our method will optimize the orientation
and smooth the trajectory. (d) The generated trajectory using our method is
further away from the obstacles.

of discrete trajectory are calculated according to the euclidean
distance or angular difference with subsequent pose x;; and
the time interval AT} between both poses:

Vi,x _ L [¢0)] Hi sin 92 % Ti+1 — T4 (8)
Ui,y AE —sin 91 COS 91 Yi+1 — Yi
Oiv1—0;
= 9
w AT, ©))

where translational velocity v is decomposed into the forward
velocity v, along the heading direction of robots, and the
lateral velocity v, perpendicular to the heading. Then the
velocity constraints are expressed as follows:

(10)

Umin S Vg S Umax

(1)

where v, and v,,q, are the lower and upper boundaries of
the longitudinal translational velocity v,,, due to the difference
in the forward and backward mobility of quadruped robots.

3) GRFs Constraints: The equation (3) (4) establishes a
relationship between the robot’s centroid kinematics and GRFs
of the foot. Additionally, the linear acceleration a; and angular
acceleration «; of the robot CoM in pose x; can be approx-
imately calculated separately by the following equations: the
linear acceleration a; and angular acceleration «; of the robot
CoM in pose x; can be approximately calculated separately
by the following equations:

o — 2(vig1 — v;) o 2(wit1 — wy)
AT+ AT AT 4+ ATy
Then the above kinematic parameters v;, w;, a;, and a; at
the trajectory are brought into the equation (3) (4) to obtain
GRFs of the quadruped robot. We decompose the GRF f
into three components along the dimensions z, y, and z. To
keep stability, the component forces need to satisfy the friction
formula as follows:

|fz| < fmaxa

|vy| < |Ubound|7 |w| < |wbound|

12)

|fal < plfzl, 13)

where p is the friction factor. This constraints used as the
optimization’s constraints, enssure the motion stability and
avoid slippery.

4) Obstacles Constraints: In the costmap, the cells that
obstacles occupy are assigned a very high lethal cost. The
euclidean distance between obstacle points and the polygonal
boundary of the robot footprint can be calculated and denoted
as dr, (k=1,2,..., P and P is the number of obstacle points).
The obstacle points around the robot are considered as a
constraint of the optimization function:

To this end, we have set up a threshold parameter d,,;n,
adjusted according to the actual environment.

5) Nonlinear Programming: As we know, solving nonlinear
programs with hard constraints is computationally expensive.
In order to improve the efficiency of fast online solvers, the
constraints are generally added to the objective function as ad-
ditional quadratic penalty terms. Then the nonlinear programs
are converted to an unconstrained nonlinear least-squares
optimization problem. The above-mentioned constraints can
be divided into single boundary constraints and dual boundary
ones. The penalty functions used to approximate them are
defined as a single boundary funciton(for obstacle constraints):

0 if u > Upin + €

Fl(U) B ’Y(exp(|u - (umin + 5)') - 1)

if 4 < Upmin + €
(15)
and a dual boundary function(for kinodynamic constraints):

Fo(u) 0 if Upnin + € < U < Uppge — €
u) =
? y(exp(ju — (X" F€)|) — 1)  if others
(16)

where Uy, Umin are upper and lower bounds of variable w,
and v, e are factors that affect the accuracy of the approxima-
tion.

The whole trajectory optimization can be formulated as a
nonlinear programming problem, in which there are multiple
objective functions, and each item is given a weight:

n—1
B* = mBin{iz:;(aTW1a +b"W3b+c"Wsc)}  (17)
where,
a =[AT}, [lag|]"
b =31, Fy(di)]" (18)
¢ =[Fy(v;), Fa(wi), Fa(f:)]"

where B* denotes the optimal solution vector, a is the the
associated term for optimizing the time and acceleration of the
trajectory, b and c represent the penalty functions of obstacles
constraints and kinodynamic constraints. W1,W, and W3 are
symmetric and positive definite matrix to weight and balance
these factors.

For this problem, the efficiency and extensibility of the
solver are the key considerations. The g2o [32] is a open-
source graph optimization framework widely used in SLAM
problems. The overall optimization problem is described as a
hypergraph in the g2o0 framework, where the nodes represent
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Fig. 7. The left is the route of the person (orange) and the trajectory generation by our method(green). This figure shows the experimental results in three
different scenarios. The right is the close-up of details about several narrow spaces and the corresponding traversability costmap. The cyan circles represent
the actor’s position. The blue rectangle represents a set of footprints of the robot on the predicted trajectory, and the triangle head indicates the orientation.

the parameter variables to be optimized, and the hyperedges
make connections between multiple nodes to represent objec-
tive functions. With this framework, it is easy to set numerous
objective functions and constraints as we needed. Setting
reasonable objective weights and optimizer parameters allows
the functions to converge efficiently. The weight factors in the
objective function are crucial, and we have to adjust the ratio
of each weight properly in our experiments. For example, we
make a trade-off between movement speed and safety (the
distance to obstacles in the environment).

A good initial guess is significant for solving nonlinear
programs, and a poor one can cause the solver to get “stuck”
on a wrong solution or fail to converge entirely. Our initial
solution is sampled from a set of collision-free path points
generated by the path-guided planner. The initial trajectory
is composed of robot poses x; located on the coarse path
equidistant in space and time. The initial sampling distance
between two points and time interval is configured manually.

E. Receding Horizon Control

Considering the external disturbances, the uncertainty of the
local map and dynamics model, we take a receding horizon
strategy for commands control. The costmap describing the
environment is updated as a new frame of sensors is received.
The optimization procedure is executed and we get an optimal
trajectory B*. Again, equations (8) (9) and (12) are applied to
obtain the desired velocities and accelerations of the robot
body, including forward ones vy, a,, lateral ones vy, a,, and
rotational ones w, .

Only the first group of desired values on the trajectory
is delivered to the gait controller as a control command,
indicating the real-time control of the robot at the current
position. However, there is an unavoidable time delay from
sensor data acquisition to control command execution in
realistic applications. Therefore, we set a time parameter ¢4
for correcting the control inaccuracy caused by the delay. The
desired values of the group K in the trajectory are chosen as
the eventual control command, where:

K
Y AT >ty (19)
i=1

VI. EXPERIMENTS AND RESULTS

The Person-Following system described in this paper is eval-
uated and verified in both simulated and physical environments
with a quadruped robot JueYing Mini. It has an approximate
rectangular shape of 0.7mx0.4m and a mass of 22 kg. The
sensors equipped on the robot are a Robosense RS-LiDAR-
16 and a forward-facing (with a 20-degree downward pitch)
Intel RealSense D435 Depth camera. Both the perceptive
and planning methods are performed online on an onboard
PC (i7-8665UE Processor at 1.7GHz and 16GB DRAM).
To execute the planned trajectory, the robot JueYing uses a
reactive trotting gait, in which the translation velocity is up to
1.5 m/s.

A. Simulation Experiments in Gazebo

1) Environments Setting: We construct three scenarios of
different congestion levels in the Gazebo simulator to evaluate
our planning scheme. A walking actor is the target to be
followed and walks at a constant speed along the defined
route. Boxes, bookcases, and bricks of different sizes are
placed randomly and compactly within this space. The first
and easiest scene has a 4mx9m task area, which starts with a
relatively open space and follows by a corridor. The coridor’s
minimum gap distance is 1 m, while the width of the robot
is 0.4 m. The robot is required to follow the actor at a safe
distance from the upper-left corner to the lower-right corner.
The next scene contains lots of messy obstacles, where the
area is 4.5mx 13m. Narrow passages occupy 80% of the route,
the minimum gap distance of which is only 0.7 m. The robot
follows the actor through seven turns, from the lower-right
corner to the upper-left corner. The last scene is full of multiple
narrow and continuous passages, which has the same size as
the second scene.

2) Simulation Results: The key of our proposed method is
to consider the kinodynamic model of the quadruped robot in
the optimization to generate an flexible and robust motion. The
application of GRFs constraints is critical, which guarantees
the effectiveness and stability of the trajectory. We set up a
basic planner that neglects kinodynamic model in trajectory
optimization to compare with our improved method. It has the
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Fig. 8. A comparison about the linear velocities includes forward speed vy
and lateral vy, between the basic method and our improved method. (a-c) are
the plotted curves for moving in different scenes respectively, (d) shows the
statistical information, where the colored box indicates the high quartiles of
the velocity values.
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Fig. 9. A comparison about the closest distance from obstacles between
the basic method and our improved method. (a-c) are the plotted curves for
moving in different scenes respectively, where the horizontal axis represents
the relative distance that the robot moves forward along the route from the
starting position. (d) is interpreted in the same way as Fig. 8(d).

(c) Scenario 3

same objective functions (6) (7) and obstacles constraints as
the proposed method. Then we count three indicators of two
methods: the success rate, the linear velocity, and the closest
distance to the surrounding obstacles.

In the simulator, the actor move along the path recorded
in advance, as shown in the left panel of Fig. 7. Initially, the
actor walks at a constant velocity of 1 m/s. It demonstrates
that the improved method makes the robot follow the actor
successfully. But it fails to keep up with the actor with the
basic planner, because of the poor flexibility of the trajectory,
and the robot is easy to get stuck in obstacles. We have
to reduce the walking speed until 0.5 m/s so that the robot
can catch up at a slower speed. The Fig. 8(d) indicates that
the average linear velocity of basic planner is almost half of
improved, and the lateral velocity is almost zero. It can be
seen from Fig. 8(a)(b)(c) that the forward speed of the robot
changes between positive and negative value, and it’s because

Fig. 10. The layout of sonar sensors. Eight probes (A-G) are mounted around
the body of the JueYing.

that the robot usually gets stuck and has to back up. The
relatively smoother speed satisfies the dynamic characteristics
of the robot. It clearly shows that our proposed method
achieves far flexible results than the basic. The detailed results
are available at https://youtu.be/0qgz1RORgM;j8. The detailed
traversability costmap and generated trajectories are presented
in Fig. 7 (right).

The Fig. 9(a)(b)(c) draws the curves of the distance of the
robot to the surrounding obstacles, where the distance value is
the closest euclidean distance between the polygonal boundary
of the footprint and obstacles. The Fig. 9(d) indicates that the
average and minimum distance values of the improved method
are higher, where the distance value is the closest euclidean
distance between the polygonal boundary of the footprint and
obstacles. Especially in the much crowded scenario 2 and 3,
the improved method has obvious superiority. And the robot
is able to maintain a fast moving speed while still ensures
safety. But the robot with base planner tends to lose control
and crash into the obstacle.

Moreover, we apply our improved method and the basic
method to repeat experiments 20 times in each scenario.
The success rate of the improved planner is above 90%,
significantly higher than the basic, as shown in Table. I. There
are two main reasons: Firstly, the basic planner cannot match
the movement characteristics of the robot and has poor ability
to regulate the body, then the robot sometimes gets stuck
completely. What’s more, without the consideration of GRFs
constraints, the generated trajectory is terrible to execute.

TABLE I
SUCCESS RATE OF THE EXPERIMENT IN DIFFERENT SCENARIOS
Scenariol ~ Scenario2  Scenario3
Basic Planner 18 / 20 11720 14/ 20
Improved Motion Planner 20/ 20 18720 19710

B. Field Experiment

The scheme has also been experimentally validated in two
different real environments: a narrow corridor with cluttered
obstacles and outdoor wooded areas undulating terrain. We
also place messy cardboard boxes that have to be bypassed and
planks that the robot can walk over. A person walks randomly
as a moving object, and the robot JueYing is commanded
to follow through some confined spaces. Pose estimation,
mapping, and motion planning algorithms are all performed
online without prior knowledge about the environments.

1) Indoor Corridor Scenes: The Fig. 11 (top) shows the
whole process of the robot JueYing in the confined corri-
dor, and the Fig. 11 (bottom) represents the corresponding
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Fig. 11. Image flows of following a walking person in the confined corridor and the corresponding traversability costmaps. The planned local trajectory is

shown as a sequence of blue polygon boxes on the bottom.

Fig. 12. Image flows of experimental trials on a lawn with undulating terrain and messy obstacles. From top to bottom: through multiple narrow passages

with the closest distance gap 0.58 m and the maximun terrain slope 16°.

traversability costmap. The image flow clearly shows that it
successfully follows a moving person and adjusts its body to
avoid collisions. The total length is 7.65 m with the closest
distance to the obstacle d,,;,, is 0.12 m. For obstacles with
a smaller height (such as planks), the traversability cost is
not very high. Therefore the robot can walk over them if
necessary (see lst and 2nd snapshots in Fig. 11). While for
larger obstacles, it adjusts its steering and bypasses them (see
3rd and 4th snapshots in Fig. 11).

In order to obtain the distance from obstacles in real
environments effectively, we mount sonar sensors around the
body of the robot as shown in Fig. 10. It is a reliable distance
measuring equipment with an accuracy of lcm. The beam
angle of each probe is 120 degrees, and we calculate the
closest distance between the robot body and the surrounding
objects by receiving data from multiple probes. The quan-
titative results are shown in Table. II. There is only 0.1 m
clearance on both sides of the robot at the narrowest part of the
passage, and the robot aligns to maximize the distance from
the obstacles. This reflects the superiority of moving flexibility.

TABLE 11
STATISTICAL DATA OF THE EXPERIMENT AT INDOOR SCENES
Minimum  Maximum  Average
Linear Velocity (m/s) / 0.85 0.48
Closest Distance (m) 0.12 / 0.23

In addition, the elapsed time of all perception and planning
algorithms is shown in Table. III. Each of these submodules is
assigned a separate thread and satisfied to execute at 10 Hz on

TABLE III
ELAPSED TIME OF ALGORITHMS AS RUN ON ONBOARD PC IN FIELD
EXPERIMENTS
Best Average Worst
PointCloud Segmentation'  10.003 21.085 60.924
Lidar Odometry' 10.713 25.720 76.026
Local Mapping! 30.228  68.150 141.094
Guided-Path Planner! 3.575 7.356 26.559
Trajectory Optimization! ~ 0.148 44.474 94.375
Execution Delay!? 61278  92.157  134.964

L All times are given in milliseconds, the duration of the
recorded data is 69.498 seconds.

2 Execution Delay is the duration from receipt of sensor data
to the execution of control commands by the robot.

the on-board computer. The time dalay of executing control

commands is at worst no more than 150 ms, which ensures
the effectiveness of the motion planning algorithm.

2) Outdoor Grove Scenes: To verify our method is effective
and robust in different terrains, we conduct several tests in
an outdoor wooded area. The area is with boulders, trees,
and undulating ground (lawn ground with slope up to 16°).
The detailed image flows are presented in Fig. 12. A person
walks through the grove at a constant speed and goes up and
downhill. The cardboard boxes are also placed in the scene
as uncrossable obstacles. The robot tends to generate an easy-
to-pass trajectory considering the traversability cost of ground
and interval between obstacles, and follows closely behind the
moving person with an adaptive gait. It always keeps a distance
of 1.5 m from the object. It indicates that our method is also
effective and robust for quadruped robots in complex terrain.
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VII. CONCLUSION

In this paper, we propose a novel optimization-based motion
planning scheme for quadruped robots to follow moving ob-
jects in confined spaces. It integrates environment perception
(including object segmentation and local terrain description)
and local trajectory generation methods. It only relies on the
robot’s onboard sensors and embedded computers to execute
all algorithms. The motion planning efficiency ensures the
robustness of following a moving person in a crowded envi-
ronment, without any prior environmental information, which
is suitable for field applications.

For efficiency, We present a simplified kinodynamic model
to optimize the trajectory without losing the flexibility of
quadruped motion while ensuring the executable and effective.
We planned the optimal trajectory based on the robot’s rectan-
gular footprint in the traversability costmap. This guarantees
the trajectory’s safety to a great extent and prevents the
robot body from colliding with the environment. We conduct
simulations and real experiments to demonstrate the proposed
method. It shows that the success rates in diverse scenes are
all over 90%.

For further research, we will focus on extending the
planning of quadruped robots to three-dimensional confined
spaces. This will greatly expand the application scenarios of
quadruped robots.
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