Xintian Shen
MS Student
Institute of Cyber-Systems and Control, Zhejiang University, China
Biography
I am pursuing my M.S. degree in College of Control Science and Engineering, Zhejiang University, Hangzhou, China. My major research interests include video generation and object detection.
Research and Interests
- Generative adversarial networks (GAN)
- Object detection
Publications
- Xintian Shen, Jiangning Zhang, Jun Chen, Shipeng Bai, Yue Han, Yabiao Wang, Chengjie Wang, and Yong Liu. Learning Global-Aware Kernel for Image Harmonization. In 19th IEEE/CVF International Conference on Computer Vision (ICCV), pages 7501-7510, 2023.
[BibTeX] [Abstract] [DOI] [PDF]Image harmonization aims to solve the visual inconsistency problem in composited images by adaptively adjusting the foreground pixels with the background as references. Existing methods employ local color transformation or region matching between foreground and background, which neglects powerful proximity prior and independently distinguishes fore-/back-ground as a whole part for harmonization. As a result, they still show a limited performance across varied foreground objects and scenes. To address this issue, we propose a novel Global-aware Kernel Net-work (GKNet) to harmonize local regions with comprehensive consideration of long-distance background references. Specifically, GKNet includes two parts, i.e., harmony kernel prediction and harmony kernel modulation branches. The former includes a Long-distance Reference Extractor (LRE) to obtain long-distance context and Kernel Prediction Blocks (KPB) to predict multi-level harmony kernels by fusing global information with local features. To achieve this goal, a novel Selective Correlation Fusion (SCF) module is proposed to better select relevant long-distance background references for local harmonization. The latter employs the predicted kernels to harmonize foreground regions with local and global awareness. Abundant experiments demonstrate the superiority of our method for image harmonization over state-of-the-art methods, e.g., achieving 39.53dB PSNR that surpasses the best counterpart by +0.78dB ↑; decreasing fMSE/MSE by 11.5%↓/6.7%↓ compared with the SoTA method. Code will be available at here.
@inproceedings{shen2023lga, title = {Learning Global-Aware Kernel for Image Harmonization}, author = {Xintian Shen and Jiangning Zhang and Jun Chen and Shipeng Bai and Yue Han and Yabiao Wang and Chengjie Wang and Yong Liu}, year = 2023, booktitle = {19th IEEE/CVF International Conference on Computer Vision (ICCV)}, pages = {7501-7510}, doi = {10.1109/ICCV51070.2023.00693}, abstract = {Image harmonization aims to solve the visual inconsistency problem in composited images by adaptively adjusting the foreground pixels with the background as references. Existing methods employ local color transformation or region matching between foreground and background, which neglects powerful proximity prior and independently distinguishes fore-/back-ground as a whole part for harmonization. As a result, they still show a limited performance across varied foreground objects and scenes. To address this issue, we propose a novel Global-aware Kernel Net-work (GKNet) to harmonize local regions with comprehensive consideration of long-distance background references. Specifically, GKNet includes two parts, i.e., harmony kernel prediction and harmony kernel modulation branches. The former includes a Long-distance Reference Extractor (LRE) to obtain long-distance context and Kernel Prediction Blocks (KPB) to predict multi-level harmony kernels by fusing global information with local features. To achieve this goal, a novel Selective Correlation Fusion (SCF) module is proposed to better select relevant long-distance background references for local harmonization. The latter employs the predicted kernels to harmonize foreground regions with local and global awareness. Abundant experiments demonstrate the superiority of our method for image harmonization over state-of-the-art methods, e.g., achieving 39.53dB PSNR that surpasses the best counterpart by +0.78dB ↑; decreasing fMSE/MSE by 11.5%↓/6.7%↓ compared with the SoTA method. Code will be available at here.} }
- Shipeng Bai, Jun Chen, Xintian Shen, Yixuan Qian, and Yong liu. Unified Data-Free Compression: Pruning and Quantization without Fine-Tuning. In 19th IEEE/CVF International Conference on Computer Vision (ICCV), pages 5853-5862, 2023.
[BibTeX] [Abstract] [DOI] [PDF]Structured pruning and quantization are promising approaches for reducing the inference time and memory footprint of neural networks. However, most existing methods require the original training dataset to fine-tune the model. This not only brings heavy resource consumption but also is not possible for applications with sensitive or proprietary data due to privacy and security concerns. Therefore, a few data-free methods are proposed to address this problem, but they perform data-free pruning and quantization separately, which does not explore the complementarity of pruning and quantization. In this paper, we propose a novel framework named Unified Data-Free Compression(UDFC), which performs pruning and quantization simultaneously without any data and fine-tuning process. Specifically, UDFC starts with the assumption that the partial information of a damaged(e.g., pruned or quantized) channel can be preserved by a linear combination of other channels, and then derives the reconstruction form from the assumption to restore the information loss due to compression. Finally, we formulate the reconstruction error between the original network and its compressed network, and theoretically deduce the closed-form solution. We evaluate the UDFC on the large-scale image classification task and obtain significant improvements over various network architectures and compression methods. For example, we achieve a 20.54% accuracy improvement on ImageNet dataset compared to SOTA method with 30% pruning ratio and 6-bit quantization on ResNet-34. Code will be available at here.
@inproceedings{bai2023udf, title = {Unified Data-Free Compression: Pruning and Quantization without Fine-Tuning}, author = {Shipeng Bai and Jun Chen and Xintian Shen and Yixuan Qian and Yong liu}, year = 2023, booktitle = {19th IEEE/CVF International Conference on Computer Vision (ICCV)}, pages = {5853-5862}, doi = {10.1109/ICCV51070.2023.00540}, abstract = {Structured pruning and quantization are promising approaches for reducing the inference time and memory footprint of neural networks. However, most existing methods require the original training dataset to fine-tune the model. This not only brings heavy resource consumption but also is not possible for applications with sensitive or proprietary data due to privacy and security concerns. Therefore, a few data-free methods are proposed to address this problem, but they perform data-free pruning and quantization separately, which does not explore the complementarity of pruning and quantization. In this paper, we propose a novel framework named Unified Data-Free Compression(UDFC), which performs pruning and quantization simultaneously without any data and fine-tuning process. Specifically, UDFC starts with the assumption that the partial information of a damaged(e.g., pruned or quantized) channel can be preserved by a linear combination of other channels, and then derives the reconstruction form from the assumption to restore the information loss due to compression. Finally, we formulate the reconstruction error between the original network and its compressed network, and theoretically deduce the closed-form solution. We evaluate the UDFC on the large-scale image classification task and obtain significant improvements over various network architectures and compression methods. For example, we achieve a 20.54% accuracy improvement on ImageNet dataset compared to SOTA method with 30% pruning ratio and 6-bit quantization on ResNet-34. Code will be available at here.} }