Pengxiang Zhao
MS Student
Institute of Cyber-Systems and Control, Zhejiang University, China
Biography
I am pursuing my M.S. degree in College of Control Science and Engineering, Zhejiang University, Hangzhou, China. My major research interests include Multimodal Large Language Model.
Research and Interests
- LLM and MLLM
- Deep Learning
Publications
- Yuehao Huang, Liang Liu, Shuangming Lei, Yukai Ma, Hao Su, Jianbiao Mei, Pengxiang Zhao, Yaqing Gu, Yong Liu, and Jiajun Lv. CogDDN: A Cognitive Demand-Driven Navigation with Decision Optimization and Dual-Process Thinking. In Proceedings of the 33rd ACM International Conference on Multimedia (MM), page 5237–5246, 2025.
[BibTeX] [Abstract] [DOI] [PDF]Mobile robots are increasingly required to navigate and interact within unknown and unstructured environments to meet human demands. Demand-driven navigation (DDN) enables robots to identify and locate objects based on implicit human intent, even when object locations are unknown. However, traditional data-driven DDN methods rely on pre-collected data for model training and decision-making, limiting their generalization capability in unseen scenarios. In this paper, we propose CogDDN, a VLM-based framework that emulates the human cognitive and learning mechanisms by integrating fast and slow thinking systems and selectively identifying key objects essential to fulfilling user demands. CogDDN identifies appropriate target objects by semantically aligning detected objects with the given instructions. Furthermore, it incorporates a dual-process decision-making module, comprising a Heuristic Process for rapid, efficient decisions and an Analytic Process that analyzes past errors, accumulates them in a knowledge base, and continuously improves performance. Chain of Thought (CoT) reasoning strengthens the decision-making process. Extensive closed-loop evaluations on the AI2Thor simulator with the ProcThor dataset show that CogDDN outperforms single-view camera-only methods by 15%, demonstrating significant improvements in navigation accuracy and adaptability. The project page is available at https://yuehaohuang.github.io/CogDDN/.
@inproceedings{huang2025cog, title = {CogDDN: A Cognitive Demand-Driven Navigation with Decision Optimization and Dual-Process Thinking}, author = {Yuehao Huang and Liang Liu and Shuangming Lei and Yukai Ma and Hao Su and Jianbiao Mei and Pengxiang Zhao and Yaqing Gu and Yong Liu and Jiajun Lv}, year = 2025, booktitle = {Proceedings of the 33rd ACM International Conference on Multimedia (MM)}, pages = {5237--5246}, doi = {10.1145/3746027.3755832}, abstract = {Mobile robots are increasingly required to navigate and interact within unknown and unstructured environments to meet human demands. Demand-driven navigation (DDN) enables robots to identify and locate objects based on implicit human intent, even when object locations are unknown. However, traditional data-driven DDN methods rely on pre-collected data for model training and decision-making, limiting their generalization capability in unseen scenarios. In this paper, we propose CogDDN, a VLM-based framework that emulates the human cognitive and learning mechanisms by integrating fast and slow thinking systems and selectively identifying key objects essential to fulfilling user demands. CogDDN identifies appropriate target objects by semantically aligning detected objects with the given instructions. Furthermore, it incorporates a dual-process decision-making module, comprising a Heuristic Process for rapid, efficient decisions and an Analytic Process that analyzes past errors, accumulates them in a knowledge base, and continuously improves performance. Chain of Thought (CoT) reasoning strengthens the decision-making process. Extensive closed-loop evaluations on the AI2Thor simulator with the ProcThor dataset show that CogDDN outperforms single-view camera-only methods by 15%, demonstrating significant improvements in navigation accuracy and adaptability. The project page is available at https://yuehaohuang.github.io/CogDDN/.} }
