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Abstract
Mobile robots are increasingly required to navigate and interact
within unknown and unstructured environments to meet human de-
mands. Demand-driven navigation (DDN) enables robots to identify
and locate objects based on implicit human intent, even when ob-
ject locations are unknown. However, traditional data-driven DDN
methods rely on pre-collected data for model training and decision-
making, limiting their generalization capability in unseen scenarios.
In this paper, we propose CogDDN, a VLM-based framework that
emulates the human cognitive and learning mechanisms by inte-
grating fast and slow thinking systems and selectively identifying
key objects essential to fulfilling user demands. CogDDN identifies
appropriate target objects by semantically aligning detected objects
with the given instructions. Furthermore, it incorporates a dual-
process decision-making module, comprising a Heuristic Process
for rapid, efficient decisions and an Analytic Process that analyzes
past errors, accumulates them in a knowledge base, and continu-
ously improves performance. Chain of Thought (CoT) reasoning
strengthens the decision-making process. Extensive closed-loop
evaluations on the AI2Thor simulator with the ProcThor dataset
show that CogDDN outperforms single-view camera-only meth-
ods by 15%, demonstrating significant improvements in naviga-
tion accuracy and adaptability. The project page is available at
https://yuehaohuang.github.io/CogDDN/.
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1 Introduction
Mobile robots are becoming indispensable in dynamic and unstruc-
tured environments such as households, hospitals, and warehouses.
To operate effectively and naturally within these human-centric
spaces, they must move beyond simple command execution to in-
terpret and respond to implicit human demands. This capability
is particularly critical when target objects are uncertain or not
explicitly specified. For instance, a hungry person instinctively
seeks food based on internal cues, rather than following a direct
instruction like "find the apple on the kitchen counter". Similarly,
demand-driven navigation (DDN) [32, 33] enables robots to locate
objects that fulfill such implicit needs without relying on predefined
object lists or known locations. However, as illustrated in Figure 1
(a), conventional data-driven DDN methods [32, 33] are fundamen-
tally constrained by their heavy reliance on extensive, pre-collected
datasets for training and decision-making. This dependence cur-
tails their adaptability and generalization when encountering novel
scenarios or vaguely phrased instructions.

Recent breakthroughs in Large Language Models (LLMs) and
Vision-LanguageModels (VLMs) have catalyzed a new era in robotic
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Figure 1: Comparison between cognition-driven and data-
driven methods. (a) illustrates the process of the data-
driven method, (b) shows the process of the cognition-driven
method, and (c) compares the generalization capabilities of
both methods using NSR, SPL and SSR metrics, with relative
decrease rates marked between seen and unseen conditions.

intelligence, as these models possess remarkable reasoning capa-
bilities and extensive world knowledge that are exceptionally well-
suited for complex navigation tasks. Leveraging these advance-
ments, cognition-driven approaches [27, 30, 35, 43, 47] employ
these models to help agents interpret high-level instructions and
strategically locate targets. The DDN task, which inherently fuses
natural language with real-time visual perception, demands that an
agent infer and act upon subtle user intent. As depicted in Figure 1
(b), our proposed framework synergistically integrates LLMs and
VLMs for DDN, enabling sophisticated and nuanced reasoning over
ambiguous instructions. The embedded VLMs enhance navigation
by jointly processing visual and linguistic inputs, effectively bridg-
ing the semantic gap between high-level intent and spatial context.
This cognition-driven, multi-agent approach significantly improves
the agent’s spatial and contextual understanding, yielding more ac-
curate, robust, and adaptable navigation. Figure 1 (c) shows that the
cognition-driven method generalizes better than traditional data-
driven approaches, exhibiting a substantially smaller performance
drop when transitioning from seen to unseen scenarios.

This paper introduces CogDDN, a novel VLM-based framework
for DDN that is inspired by the human dual-process cognitive frame-
work and designed for robust, closed-loop decision-making. A key
differentiator of our approach is its emulation of human cognitive
and learning mechanisms to solve complex search tasks. Unlike
many contemporary VLM-based navigation systems [3, 20] that
rely on supplementary data such as multiple camera views, depth
information, or pre-built maps, our system uses only egocentric,
front-facing visual input. This design choice intentionally aligns
our agent’s perception with natural human search behavior and
adheres to the practical constraints of real-world robotic hardware.

Figure 2: CogDDN Framework for Demand-Driven Naviga-
tion Tasks. Upon receiving the instruction "I want decoration
for my home", the agent continuously processes real-time
observation perspectives and object information inputs. The
agent continues this process until it identifies a match to the
instruction. At this point, it transitions to the exploitation
phase and moves towards the target object.

Consequently, our system addresses a more realistic and challeng-
ing navigation task by mirroring the perceptual limitations and
sequential decision-making inherent in human object search.

Analogous to human cognitive processes, CogDDN incorporates
a demand-matching module that leverages the semantic reasoning
power of LLMs. This module translates ambiguous natural language
instructions into a set of relevant, potential target objects, enabling
the agent to identify and prioritize items that satisfy the user’s un-
derlying needs. Furthermore, we introduce a core decision-making
system founded on dual-process theory [8, 13, 38], which simulates
human cognition via two distinct yet complementary components:
a Heuristic Process (System-I) and an Analytic Process (System-
II) [23, 24]. The Heuristic Process, akin to human intuition, facil-
itates rapid and efficient decisions based on prior knowledge. In
contrast, the Analytic Process employs deliberate, step-by-step rea-
soning to refine these decisions, particularly in novel or challenging
situations, and updates the knowledge base accordingly. Prior to
navigation, we construct a knowledge base of high-quality, gen-
eralizable strategies. The Heuristic Process, continuously refined
through supervised fine-tuning (SFT), draws upon this accumulated
knowledge to guide initial actions. Meanwhile, the Analytic Process
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is invoked to update this knowledge base upon encountering obsta-
cles or failures, creating a virtuous cycle of continuous learning and
performance improvement. In contrast to direct end-to-end meth-
ods, our system integrates Chain of Thought (CoT) [40] reasoning,
enhancing the agent’s ability to logically reason through complex
scenarios and make transparent, informed decisions, rather than
merely outputting final actions.

The main contributions of this paper are summarized as follows:

• We propose CogDDN, a novel VLM-based framework for
DDN tasks that simulates human-like cognitive mechanisms
and learning processes to navigate based on implicit de-
mands.

• We introduce a dual-process decision-makingmodulewherein
the empirical Heuristic Process learns from the rational An-
alytic Process via a self-supervised mechanism, eliminating
the need for human intervention.

• CogDDN uses the Analytic Process and a knowledge accu-
mulation mechanism to progressively enrich a transferable
knowledge base, enabling continual learning and effective
generalization to novel navigation environments.

• Extensive experiments on AI2Thor simulator [16] with the
ProcThor dataset [7] demonstrate that CogDDN outperforms
existing single-view camera-only methods by 15%.

2 Related Works
2.1 Demand-driven Navigation
Demand-driven Navigation (DDN) [32, 33] represents an advanced
navigation paradigm where an agent must interpret and act upon
high-level human demands expressed in natural language. This
task diverges significantly from traditional visual navigation frame-
works such as Visual Object Navigation (VON) [5, 9, 15, 28, 29, 50],
which typically requires finding a specific object category (e.g.,
"find a chair"), and Visual Language Navigation (VLN) [3, 10, 12,
41, 44, 46, 51, 52], which relies on explicit, step-by-step instructions
(e.g., "walk past the table and turn left"). In contrast, DDN centers
on fulfilling an underlying user need (e.g., "I’m thirsty"), compelling
the agent to infer which objects in the environment are relevant
to satisfying the stated demand. This formulation makes DDN a
more flexible and dynamic, shifting the focus from locating specific
objects to addressing abstract human demands. The agent is thus
required to perform a higher level of semantic interpretation and
contextual inference based on the current visual scene, fostering
a more generalized and human-aligned approach to navigation.
Therefore, the primary challenge in DDN lies in this sophisticated
process of interpreting abstract human needs and grounding them
within a rich, dynamic visual context to guide action.

2.2 Transitioning from Data-Driven to
Cognition-Driven Navigation

Early approaches to robotic navigation were predominantly data-
driven, relying heavily on imitation learning [14, 26] and reinforce-
ment learning [6, 37] to train reactive policies. These methods
learn to map sensory inputs directly to actions by training on large-
scale, often manually labeled, datasets. While such approaches have
demonstrated promising results within their training distributions,

they frequently exhibit brittleness and fail to generalize to out-
of-distribution scenarios [4, 45]. This limitation arises primarily
from a lack of deep semantic reasoning and contextual awareness,
as the models often learn spurious correlations in the data rather
than robust, causal relationships. Furthermore, these data-intensive
methods typically incur high computational costs during extensive
training and deployment [39, 42, 49].

Motivated by the success of pre-trained vision-language models
in a wide array of multi-modal reasoning tasks [18, 19, 21, 22, 36],
recent navigation research has shifted towards cognition-driven
paradigms. This new wave of research adopts large-scale models as
powerful cognitive priors, aiming to instill more robust and human-
like navigation strategies [27, 43, 47]. Inspired by human reasoning,
these systems unify perception, action, and language to support
flexible, language-driven goal specification [25] and a deeper se-
mantic understanding of the world [2]. Unlike traditional methods
that depend on structured instructions or explicit spatial maps,
VLM-based approaches empower agents to interpret open-ended
natural language commands and navigate effectively in complex,
unfamiliar environments [31, 48]. These modern systems empha-
size multi-modal grounding, context-aware planning, and continual
learning. To enhance transparency and robustness, they often in-
corporate explicit reasoning techniques, such as Chain-of-Thought
(CoT) prompting, which encourages the model to generate a se-
quence of logical steps, thereby supporting more interpretable and
generalizable navigation behavior.

3 Method
In this section, we describe the design of CogDDN, a closed-loop,
anthropomorphic indoor navigation system. As shown in Figure 3,
the system consists of five key components: 3D Robot Perception
for identifying objects, an LLM for Demand Matching (Section 3.2),
a Knowledge Base for storing experiences (Section 3.3), and a dual-
process decision-making module with the Heuristic Process (Sec-
tion 3.4) and the Analytic Process (Section 3.5). We begin by for-
mally defining the DDN task in Section 3.1, followed by detailed
descriptions of each component.

3.1 Task Definition
CogDDN tasks require agents to locate the relevant objects in a
given environment based on human demands and perceptual inputs.
These tasks can be formally described as a Partially Observable
Markov Decision Process (POMDP), defined as

M = (S,O,A, E) (1)

where S represents the state space (the agent’s current state), O is
the observation space (including human demands and images), A
is the action space (e.g., MoveAhead, RotateLeft, LookDown, etc.),
and E is the action execution function. For instance, a user may
state, "I am thirsty". In response, the agent must identify an object
capable of quenching thirst based on the current visual observation
and then execute the actions to locate the object. After each action,
the agent receives updated observations and generates new actions
based on the updated information to continue searching for the
object. The task is considered complete when the distance between
the agent and the target object is reduced to within 1.5 meters.
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Demand Matching
Reasoning

Knowledge Base

Target Objects InformationImages

DecisionReasoningScene Description

Analytic Process

Reasoning

Previous Frame

Accumulate

Closed-loop 
Navigation

Memory 
Accumulating

Fine-tuning

Dual-Process Decision-making

Success Failure

vase(3.0, -0.4, 1.1) Raw images

Heuristic Process

Exploit
One of actions

or          or       

Explore [   ,     ,    ...]
A series of actions

...

Monocular 3D detection raw images 3D
sensor

3D Robot Perception

Simulator

Obstacle DetectedHuman Demand

Figure 3: The detailed architecture of our proposed CogDDN. The 3D Robot Perception module identifies objects based on the
robot’s perception of the environment. The robot then uses the detected objects and the human demand as input prompts for
the demand matching module, which identifies the matched objects. This information enters the dual-process decision module,
which drives scene description, reasoning, and decision-making. If no object matches the instruction, the Heuristic Process
triggers the explore module to output a series of decisions for exploring unknown areas. Conversely, suppose the system finds
a matching object. In that case, it activates the exploit module, refined through the knowledge base, to approach the target
object. The Analytic Process analyzes the situation using a VLM whenever the system encounters obstacles, and it stores the
corrected information as experience in the knowledge base.

3.2 Demand Matching
A foundational principle of demand-driven navigation is that ob-
jects capable of fulfilling the same high-level human demand often
share a set of key, underlying properties. For instance, paintings,
houseplants, and statues are all suitable candidates for decorating a
space. Although physically distinct, they all enhance visual appeal
and complement the ambient environment. This intrinsic relation-
ship between abstract human demands and object properties is
grounded in commonsense or universal knowledge.

While LLMs are proficient at general reasoning based on instruc-
tions and properties, they can encounter difficulties when a perfect
match for a given request is unavailable in the immediate envi-
ronment. In such cases, standard LLMs may suggest suboptimal
or functionally adjacent objects. For example, if a user requests, "I
need something to hold my flowers", and no vase is present, the
model might suggest a mug. Although a mug can technically hold
water and flowers, it is a less-than-ideal choice domestically. This
tendency to over-generalize based on basic affordances can signifi-
cantly reduce the model’s accuracy in selecting the most suitable

object that aligns with user expectations. To mitigate this issue,
we employ supervised fine-tuning (SFT) to further train the LLM,
allowing it to better align object affordances with nuanced user
requirements and contextual appropriateness. The fine-tuning en-
hances the model’s capacity to identify and recommend the most
fitting objects, ensuring it avoids suggesting less optimal options,
even when an exact match is not readily apparent.

Formally, the Demand Matching module implements a target
objects generation function F : O → P,T , where O represents
the space of observation space including the human demands and
visual information from images, P is the latent space of inferred
demand properties, and T is the resulting space of candidate target
objects. By leveraging a fine-tuned LLM for demand matching, the
system benefits from an enhanced ability to reason over complex
instructions and subtle object properties. This specialized capability
prevents it from forcing matches between human demands and
available objects when a direct correspondence is absent, ensuring
more appropriate suggestions even in ambiguous scenarios.
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[   ,     ,    ...]
Action Sequences

Description Reasoning 
Prompt

Reasoning

Scene Description

Raw Image

Target Objects

Robot Perception

Human Demand Target Object

A*

Knowledge Base

Target Objects InformationImages

DecisionReasoningScene Description

Action Generation

Reasoning Prompt Generation

Figure 4: The Construction of the Knowledge Base. A ran-
dom instruction is selected, and the target object is directly
obtained from the simulator. The A* algorithm generates a
trajectory consisting of actions based on the existing grid
map and the target object’s position. During the execution
of these actions, the target object’s position is determined
using the current viewpoint image. When a matching object
is detected, the VLMs generate a scene description and rea-
soning, which is added to the knowledge base.

3.3 Knowledge Base
In indoor navigation scenarios, humans typically prioritize the
approximate location of the target object and the scene descrip-
tion, focusing on navigable areas. This approach helps mitigate
information overload, enhances reaction times, and reduces cog-
nitive load. Consequently, we use scene descriptions to delineate
passable areas, providing a sufficient contextual understanding of
the environment. Additionally, Chain of Thought (CoT) reasoning
enhances the model’s inference process by leveraging the visual
model’s language-based reasoning capabilities. This approach con-
trasts with direct end-to-end methods by explicitly incorporating
reasoning steps before generating final action decisions.

Inspired by LeapVAD [23], we generate additional data with out-
puts divided into three components: 1) Scene Description: This
component outlines the environment based on the current view-
point image, highlighting passable areas and task-related objects
that may affect mobility. 2) Reasoning: This component leverages
the visual-language model’s spatial awareness and commonsense
reasoning capabilities based on the target’s location and the scene
description to guide the agent’s navigation. 3) Decision: Drawing
from the output of the reasoning component, the model generates
the optimal decision for the current navigation task, ensuring the
most effective action. This process incorporates knowledge transfer
mechanisms to enhance navigation performance.

Building on this foundational approach of leveraging scene de-
scriptions and reasoning for navigation optimization, we construct
a knowledge base that integrates environmental data with dynamic
decision-making processes. As illustrated in Figure 4, during the

Heuristic Process

Exploit
One of actions

or          or       

Explore [   ,     ,    ...]
A series of actions

...

Knowledge Base

Target Objects InformationImages

DecisionReasoningScene DescriptionTarget Objects

Raw Image

Exploit Prompt

Explore Prompt

Obstacle Mark

Raw Image

Historical Info

Fine-Tuning

Figure 5: Detailed procedure of the Heuristic Process. When
no target object is present, the Explore module directly uti-
lizes the VLMs and the current viewpoint image, historical
information, and obstacle mark to generate a series of ac-
tions for exploring unknown areas. In contrast, the Exploit
module leverages a VLM fine-tuned with knowledge base in-
formation to output a single action that progressively moves
towards the target object.

execution of the trajectory generated by the A* algorithm [11], once
the target object is detected, the current viewpoint image 𝐼 , target
object 𝑂𝑚 , and final action S are input into the VLMs to generate
scene descriptions D and reasoning R, which are then recorded
as an experience in the knowledge base. This accumulated experi-
ence can be progressively transferred to the Heuristic Process. As
detailed in Section 3.4, we utilize the collected data {𝑂𝑚, 𝐼 ,D,R, S}
to train the Heuristic Process’s ability to follow instructions and
adhere to formatting standards.

3.4 Heuristic Process
While the VLMs can effectively generate reasoning that aligns with
decisions from path planning algorithms like A* algorithm [11],
they often struggle to directly infer the causal relationship between
reasoning and decisions. Moreover, their relatively slow process-
ing speed can lead to redundancy and repetition, limiting their
practical application in real-time indoor navigation. To address
these challenges, we introduce the Heuristic Process in CogDDN.
This process is inspired by human navigation, where efficiency is
gained through repeated practice and environmental familiarity,
eventually allowing individuals to navigate with minimal cognitive
effort. Formally, the Heuristic Process module implements an ac-
tion execution function E : T × S × A → S, where T represents
the space of target objects, S depicts the state space, and A is the
action space, as presented in Table 1. As demonstrated in Figure 5,
it consists of two modules: Explore and Exploit, both leveraging
Chain-of-Thought (CoT) reasoning to adapt to new environments
and optimize learned navigation execution. The Heuristic Process
is expressed as:

D,R, S =

{
Explore(𝐼 , 𝑆′, 𝑋 ) if len(𝑂𝑚) = 0
Exploit(𝐼 ,𝑂𝑚) else

(2)
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Table 1: CogDDN Action Space

Action Definition

MoveAhead Move forward by 0.25 meters.

RotateLeft Rotate the agent 30◦ to the left.

RotateRight Rotate the agent 30◦ to the right.

LookUp Tilt the agent’s camera upward by 30◦.

LookDown Tilt the agent’s camera downward by 30◦.

Done Indicate that the goal has been found.

Explore. The Explore module is activated when the Demand
Matching module fails to identify a suitable target object within the
agent’s current field of view. In this mode, the system defaults to a
broad, information-seeking search of the environment. It generates
exploratory actions by leveraging the VLM to interpret its visual
perspective and reason about promising, unvisited areas. The objec-
tive is to efficiently survey the surroundings to uncover previously
overlooked objects or navigational paths. As illustrated in Figure 2,
this process begins with the system generating a concise Scene
Description D from the current viewpoint image 𝐼 . Subsequently,
it engages in explicit Reasoning R to formulate a strategy for ex-
ploration. Based on this reasoning, the system makes a Decision
S, which comprises a sequence of actions designed to navigate
toward unvisited regions. To prevent inefficient behavior, the mod-
ule incorporates a short-term memory of prior actions and recent
rotations 𝑆 ′ to minimize redundant movements. Furthermore, if
an obstacle impedes progress, a flag 𝑋 is set to true, prompting
the system to dynamically replan and generate new exploratory
actions, which ensures continuous progress without getting stuck
in loops or depleting resources.

Exploit. Once the Demand Matching module successfully iden-
tifies a target object, the system transitions from exploration to
exploitation. The Exploit module shifts the agent’s strategy from
a broad, open-ended search to precise, goal-directed action. This
phase leverages a version of the VLM that has been fine-tuned on
prior successful experiences stored in the knowledge base, optimiz-
ing it for goal achievement. This fine-tuning enhances the model’s
ability to make accurate predictions and decisions based on subtle
environmental cues, enabling the system to execute complex naviga-
tion tasks with high precision. Guided by a Chain-of-Thought(CoT)
process, the system first generates a Scene Description D based on
the current viewpoint image 𝐼 and the information about the target
objects𝑂𝑚 . It then performs focused Reasoning R to infer the most
direct course of action toward the target, given D and 𝑂𝑚 . Finally,
it produces the most optimal Decision S, a single, high-confidence
action focused on progressing toward the target. By concentrating
on a single, decisive action rather than a sequence of potential
actions, the system improves its decisiveness and computational
efficiency, ensuring rapid and effective goal attainment.

3.5 Analytic Process
The Analytic Process serves as the deliberative reasoning compo-
nent of our framework, designed to reflect upon and learn from

Knowledge Base

Target Objects InformationImages

DecisionReasoningScene Description

Analytic Process

Reasoning
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Target Objects
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chair and table may obstruct forward movement.
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and table in front block a direct MoveAhead path and 
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appropriate to re - orient and find a passable route 
towards the target objects.
<Decision> RotateLeft
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3D
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Figure 6: Detailed procedure of the Analytic Process. When
theHeuristic Process encounters an obstruction, the Analytic
Process intervenes by analyzing the previous frame to iden-
tify errors and generate corrected samples. These corrected
samples are subsequently integrated into the knowledge base,
supporting continuous learning.

navigation failures, as illustrated in Figure 6. Through comprehen-
sive pre-training on diverse, large-scale datasets, VLMs naturally
accumulate a vast repository of world knowledge. This enables
them to address complex challenges with sophisticated reasoning
and insight, which is a capability that aligns perfectly with the
objectives of the Analytic Process. This process moves beyond the
rapid, intuitive responses of the Heuristic Process and instead re-
lies on detailed causal analysis and deep contextual understanding
to draw sound, generalizable inferences from navigational errors
encountered in indoor environments.

Specifically, within the closed-loop operation of our system, any
obstruction or failure encountered during the execution of the
Heuristic Process triggers this reflective mechanism. When trig-
gered, the Analytic Process utilizes the extensive world knowledge
embedded within the VLMs to diagnose the situation. To do this,
it ingests a snapshot of the state preceding the failure, including
the target object’s location, the scene description, and the specific
reasoning and decision that led to the error. The system then care-
fully analyzes the root cause of the event, identifies the flaw in
the previous logic, and generates a corrected chain of reasoning
along with a revised decision. The valuable insights gained from
this reflective process, a successful pairing of a problem state with
a corrected solution, are subsequently integrated into the knowl-
edge base. This integration establishes an iterative learning loop,
enabling the system to learn from its failures continuously and pro-
gressively enhance its decision-making capabilities. This virtuous
cycle ultimately leads to more informed and accurate navigation
strategies for future tasks and directly improves the performance
of the Heuristic Process over time.
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Table 2: Performance comparison with single-view camera-only methods on DDN tasks. Seen Scene: Train scene from ProcThor,
Unseen Scene: Test scene from ProcThor, Seen Ins: Instructions used for training, Unseen Ins: Instructions used for testing,
NSR: Navigation success rate, SPL: Navigation success rate weighted by the path length, SSR: Selection success rate.

Method
Seen Scene Unseen Scene

Seen Ins Unseen Ins Seen Ins Unseen Ins

NSR SPL SSR NSR SPL SSR NSR SPL SSR NSR SPL SSR

Random [32] 5.2 2.6 3.0 3.7 2.6 2.3 4.8 3.3 2.8 3.5 1.9 1.4
VTN-demand [32] 6.3 4.2 3.2 5.2 3.1 2.8 5.0 3.2 2.8 6.6 4.0 3.3
VTN-CLIP-demand [32] 12.0 5.1 5.7 10.7 3.5 5.0 10.0 3.6 4.0 9.3 3.9 4.0
VTN-GPT* [32] 1.6 0.5 0 1.4 0.4 0.5 1.3 0.2 0.3 0.9 0.4 0.5
ZSON-demand [32] 4.2 2.7 1.9 4.6 3.1 2.0 4.1 2.9 1.2 3.5 2.4 1.1
ZSON-GPT [32] 4.0 1.1 0.3 3.6 1.9 0.3 2.5 0.7 0.2 3.2 0.9 0.2
CLIP-Nav-MiniGPT-4 [32] 4.0 4.0 2.0 3.0 3.0 2.0 4.0 3.7 2.0 5.0 5.0 3.0
CLIP-Nav-GPT* [32] 5.0 5.0 4.0 6.0 5.5 5.0 5.5 5.3 4.0 4.0 3.0 2.0
FBE-MiniGPT-4 [32] 3.5 3.0 2.2 3.5 3.2 2.0 3.5 3.5 2.0 4.0 4.0 3.5
FBE-GPT* [32] 5.0 4.3 4.3 5.5 5.0 5.5 4.5 4.3 4.5 5.5 5.0 5.5
GPT-3-Prompt* [32] 0.3 0.01 0 0.3 0.01 0 0.3 0.01 0 0.3 0.01 0
MiniGPT-4 [32] 2.9 2.0 2.5 2.9 2.0 2.5 2.9 2.0 2.5 2.9 2.0 2.5
DDN [32] 21.5 9.8 7.5 19.3 9.4 4.5 14.2 6.4 5.7 16.1 8.4 6.0

CogDDN(ours) 38.3 17.2 29.8 37.5 18.0 28.6 33.3 16.4 27.1 34.5 17.1 27.5

4 Experiments
4.1 Data preparation
Our experiments are conducted in the AI2Thor [16] simulator using
the ProcThor dataset [7]. Following the setup of DDN [32], we
evaluate our model on 600 scenes (200 from each of ProcThor’s
train, validation, and test splits), containing 109 object categories.
We use the instruction sets provided by DDN [32], comprising 1692
training, 241 validation, and 485 test instructions.

Data for 3D Robot Perception. For the 3D Robot Perception
Module, we collected 55K frames from AI2THOR, split into 70%
training, 10% validation, and 20% testing sets. Each frame includes
annotations for object category, 2D bounding box, and 3D box
attributes. The 3D box information was obtained by extracting the
minimal bounding box from the object’s point cloud, which was
generated using the simulator’s depth and segmentation maps.

Data for Demand Matching. For the Demand Matching Mod-
ule, we created a dataset of 10.7K instruction-attribute pairs. The
construction process involved using LLMs to generate common
attributes for objects associated with a given instruction. This was
structured into a QA format, where the question (Q) was an in-
struction and a set of candidate objects, and the answer (A) was the
shared attributes and a list of correct objects. The dataset was split
into 7.2K training, 1.4K validation, and 2.1K test samples.

Data for Heuristic Process. For the Heuristic Process, we gen-
erated a dataset of 72K expert trajectories in AI2THOR. An optimal
path was computed for each instruction using the A* algorithm [11].
Once the target object was detected in the agent’s field of view, we
used a VLM to generate a rationale for the path taken. This data
was formatted into a VQA structure, where the question (Q) was
the target’s location and the answer (A) was the scene description,
reasoning, and decision sequence. This dataset, used to populate

our Knowledge Base, was split into 80% for training and 20% for
validation.

4.2 Implementation Details
For the 3D Robot Perception module, we utilize UniMODE [17].
The model is trained for 30,000 iterations with a batch size of 64 on
four RTX6000 GPUs, a process that takes approximately 10 hours.
Input images are resized from 448 × 448 to 640 × 512 pixels. We
use the AdamW optimizer with a learning rate of 1.2 × 10−3, and a
weight decay of 1.0 × 10−2. A CosineAnnealing scheduler is used,
with a warm-up factor of 0.3333 for the first 2000 iterations. To
ensure stability, gradient clipping is applied at a threshold of 35.0.

For theDemandMatching, we conduct SFT onQwen2-VL-7B [34]
with LoRA, training with a batch size of 1 for 5 epochs on 4 RTX6000
GPUs in 1 hour. Key hyperparameters include a learning rate of
1 × 10−5, gradient accumulation of 8, and a cosine scheduler. LoRA
is applied with a rank of 64 and alpha of 128, while freezing the
ViT layers.

For the Heuristic Process, we conduct SFT on Qwen2-VL-7B for 5
epochs using knowledge base samples, which takes about 14 hours,
with consistent hyperparameters from the Demand Matching.

4.3 Evaluation in Closed-Loop Navigation
We conduct closed-loop experiments in AI2Thor, a widely-used
open-source simulator, to evaluate the performance of CogDDN
on 400 scenes using three metrics: Navigation Success Rate (NSR),
Navigation Success Rate weighted by the path length (SPL) [1],
and Selection Success Rate (SSR). Table 2 compares our method
with competitive methods offered by DDN [32] on the ProcThor
benchmark.

As shown in Table 2, CogDDNoutperforms all single-view camera-
only methods. With the LLM’s reasoning capabilities, the Demand
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Table 3: Performance comparison with SOTA methods on
DDN tasks. I: RGB image, D: Depth map.

Method Modality Reflection NSR SPL

InstructNav [20] D+I × 30.0 14.2

DDN [32] I × 16.1 8.4
CogDDN(ours) I ✓ 34.5 17.1

Table 4: Ablation study of Exploit and CoT.

Method Single Action NSR SPL SSR

CogDDN(w/o Exploit) ✓ 24.2 13.9 19.2
CogDDN(w/o Exploit) × 29.1 12.4 20.2
CogDDN(w/o CoT) ✓ 27.3 11.5 21.1
CogDDN ✓ 34.5 17.1 27.5

Matching module exhibits high generalization, with minimal per-
formance gaps between seen and unseen instructions. The main
gap between seen and unseen scenes stems from the 3D Robot
Perception. Additionally, as shown in Figure 1 (c), CogDDN demon-
strates a smaller relative drop between seen and unseen conditions,
proving its strong generalization ability. Furthermore, as shown in
Table 3, we compare CogDDNwith SOTAmethods InstructNav [20]
on unseen scenes and instructions. Remarkably, CogDDN achieves
comparable performance, even though InstructNav leverages depth
maps as additional input.

4.4 Ablation Study
We conduct ablation studies on Exploit CoT, and Reflection in a
closed-loop navigation system. The experiments were carried out
on both unseen scenes and unseen instructions, demonstrating the
generalization and continuous learning capabilities of our CogDDN.

Ablation Study of Exploit. The Exploit module uses a fine-
tuned VLM to generate precise, deliberate single-step actions critical
for approaching the target. To assess the impact of fine-tuning,
we replace the Exploit module with a vanilla GPT-4 model not
adapted for navigation and evaluate performance in two settings:
(i) generating one action per step and (ii) generating a full action
sequence. As shown in Table 4, this substitution causes a significant
performance drop, underscoring the importance of task-specific
fine-tuning for accurate, step-wise decisions in the Exploit phase.

Ablation study of CoT. In both the Heuristic and Analytic
Processes, we use CoT to guide the VLM in generating high-quality
decisions. To evaluate its effect, we remove CoT and generate de-
cisions directly. As shown in Table 4, this results in a significant
performance drop, underscoring its importance within the dual-
process framework. In the Heuristic Process, CoT helps leverage
environmental information for decision-making. In the Analytic
Process, CoT enables the VLM to analyze obstacles and uncover
root causes, resulting in more accurate and informed decisions.

Ablation study of Reflection. Reflection is crucial for enhanc-
ing the continuous learning capabilities of our proposed CogDDN.
This mechanism promotes self-improvement by analyzing naviga-
tional failures and integrating corrected experiences into the knowl-
edge base, allowing the agent to proactively accumulate knowledge
in unseen environments. We conducted a closed-loop experiment

Figure 7: Ablation of Reflection. Four rounds of experiments
were conducted, each consisting of 500 epochs. In each round,
the experiences generated by the reflection mechanism were
integrated into the knowledge base, and the VLM was fine-
tuned accordingly.

over four iterative rounds of 500 epochs each to evaluate this ca-
pability. In each round, experiences generated by the reflection
mechanism were used to augment the knowledge base and fine-
tune the VLM. As shown in Figure 7, after four rounds of iterative
learning, both SSR and NSR showed only marginal gains, which is
an expected outcome as the reflection mechanism primarily enables
the agent to recover from obstacles after they are encountered, lead-
ing to only modest improvements in these goal-completion metrics.
In contrast, the SPL exhibited a significant increase. This substantial
improvement in SPL demonstrates that as the agent accumulates
experience, it learns to anticipate potential obstacles and take proac-
tive detours, resulting in more efficient paths. This outcome under-
scores the effective continuous learning capability of CogDDN, as
its performance demonstrably improves with experience.

5 Conclusion
In this paper, we introduced CogDDN, a novel dual-process closed-
loop navigation system designed to emulate human attentional
mechanisms. Central to our approach is a dual-process decision-
making module that simulates human cognition, where a deliber-
ative process is enhanced by Chain of Thought (CoT) reasoning
to navigate complex scenarios. Furthermore, we integrated a cu-
mulative knowledge base that enables the agent to continuously
learn and self-improve from its experiences. Our comprehensive
evaluations demonstrate that CogDDN achieves state-of-the-art per-
formance in closed-loop navigation tasks while requiring minimal
training data, underscoring its efficiency and practical potential.

Limitations and Broader Impacts. The current CogDDN sys-
tem incorporates only short-term memory in the Explore module,
lacking long-term memory to identify previously explored areas.
Additionally, employing GPT-4 as a decision-making module in the
Explore phase is computationally expensive and impractical for
real-world deployment. Moreover, updating the Heuristic Process
requires SFT whenever new experiences are added to the Knowl-
edge Base, leading to inefficiency. In the future, we will design a new
system focusing on long-term memory and end-to-end navigation.
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