Yuang Liu
MS Student
Institute of Cyber-Systems and Control, Zhejiang University, China
Biography
I am pursuing my M.S. degree in College of Control Science and Engineering, Zhejiang University, Hangzhou, China. My major research interests include Network Compression and other neural network related fields. At present, I am committed to completing the undergraduate graduation project in the direction of Network Compression, welcome to exchange and give advice or comments.
Research and Interests
- Network Compression
Publications
- Yuang Liu, Jun Chen, and Yong Liu. DCCD: Reducing Neural Network Redundancy via Distillation. IEEE Transactions on Neural Networks and Learning Systems, 35:10006-10017, 2024.
[BibTeX] [Abstract] [DOI] [PDF]Deep neural models have achieved remarkable performance on various supervised and unsupervised learning tasks, but it is a challenge to deploy these large-size networks on resource-limited devices. As a representative type of model compression and acceleration methods, knowledge distillation (KD) solves this problem by transferring knowledge from heavy teachers to lightweight students. However, most distillation methods focus on imitating the responses of teacher networks but ignore the information redundancy of student networks. In this article, we propose a novel distillation framework difference-based channel contrastive distillation (DCCD), which introduces channel contrastive knowledge and dynamic difference knowledge into student networks for redundancy reduction. At the feature level, we construct an efficient contrastive objective that broadens student networks’ feature expression space and preserves richer information in the feature extraction stage. At the final output level, more detailed knowledge is extracted from teacher networks by making a difference between multiview augmented responses of the same instance. We enhance student networks to be more sensitive to minor dynamic changes. With the improvement of two aspects of DCCD, the student network gains contrastive and difference knowledge and reduces its overfitting and redundancy. Finally, we achieve surprising results that the student approaches and even outperforms the teacher in test accuracy on CIFAR-100. We reduce the top-1 error to 28.16% on ImageNet classification and 24.15% for cross-model transfer with ResNet-18. Empirical experiments and ablation studies on popular datasets show that our proposed method can achieve state-of-the-art accuracy compared with other distillation methods.
@article{liu2024dccd, title = {DCCD: Reducing Neural Network Redundancy via Distillation}, author = {Yuang Liu and Jun Chen and Yong Liu}, year = 2024, journal = {IEEE Transactions on Neural Networks and Learning Systems}, volume = 35, pages = {10006-10017}, doi = {10.1109/TNNLS.2023.3238337}, abstract = {Deep neural models have achieved remarkable performance on various supervised and unsupervised learning tasks, but it is a challenge to deploy these large-size networks on resource-limited devices. As a representative type of model compression and acceleration methods, knowledge distillation (KD) solves this problem by transferring knowledge from heavy teachers to lightweight students. However, most distillation methods focus on imitating the responses of teacher networks but ignore the information redundancy of student networks. In this article, we propose a novel distillation framework difference-based channel contrastive distillation (DCCD), which introduces channel contrastive knowledge and dynamic difference knowledge into student networks for redundancy reduction. At the feature level, we construct an efficient contrastive objective that broadens student networks' feature expression space and preserves richer information in the feature extraction stage. At the final output level, more detailed knowledge is extracted from teacher networks by making a difference between multiview augmented responses of the same instance. We enhance student networks to be more sensitive to minor dynamic changes. With the improvement of two aspects of DCCD, the student network gains contrastive and difference knowledge and reduces its overfitting and redundancy. Finally, we achieve surprising results that the student approaches and even outperforms the teacher in test accuracy on CIFAR-100. We reduce the top-1 error to 28.16% on ImageNet classification and 24.15% for cross-model transfer with ResNet-18. Empirical experiments and ablation studies on popular datasets show that our proposed method can achieve state-of-the-art accuracy compared with other distillation methods.} }
- Guanzhong Tian, Yiran Sun, Yuang Liu, Xianfang Zeng, Mengmeng Wang, Yong Liu, Jiangning Zhang, and Jun Chen. Adding before Pruning: Sparse Filter Fusion for Deep Convolutional Neural Networks via Auxiliary Attention. IEEE Transactions on Neural Networks and Learning Systems, 2021.
[BibTeX] [Abstract] [DOI] [PDF]Filter pruning is a significant feature selection technique to shrink the existing feature fusion schemes (especially on convolution calculation and model size), which helps to develop more efficient feature fusion models while maintaining state-of-the-art performance. In addition, it reduces the storage and computation requirements of deep neural networks (DNNs) and accelerates the inference process dramatically. Existing methods mainly rely on manual constraints such as normalization to select the filters. A typical pipeline comprises two stages: first pruning the original neural network and then fine-tuning the pruned model. However, choosing a manual criterion can be somehow tricky and stochastic. Moreover, directly regularizing and modifying filters in the pipeline suffer from being sensitive to the choice of hyperparameters, thus making the pruning procedure less robust. To address these challenges, we propose to handle the filter pruning issue through one stage: using an attention-based architecture that adaptively fuses the filter selection with filter learning in a unified network. Specifically, we present a pruning method named adding before pruning (ABP) to make the model focus on the filters of higher significance by training instead of man-made criteria such as norm, rank, etc. First, we add an auxiliary attention layer into the original model and set the significance scores in this layer to be binary. Furthermore, to propagate the gradients in the auxiliary attention layer, we design a specific gradient estimator and prove its effectiveness for convergence in the graph flow through mathematical derivation. In the end, to relieve the dependence on the complicated prior knowledge for designing the thresholding criterion, we simultaneously prune and train the filters to automatically eliminate network redundancy with recoverability. Extensive experimental results on the two typical image classification benchmarks, CIFAR-10 and ILSVRC-2012, illustrate that the proposed approach performs favorably against previous state-of-the-art filter pruning algorithms.
@article{tian2021abp, title = {Adding before Pruning: Sparse Filter Fusion for Deep Convolutional Neural Networks via Auxiliary Attention}, author = {Guanzhong Tian and Yiran Sun and Yuang Liu and Xianfang Zeng and Mengmeng Wang and Yong Liu and Jiangning Zhang and Jun Chen}, year = 2021, journal = {IEEE Transactions on Neural Networks and Learning Systems}, doi = {10.1109/TNNLS.2021.3106917}, abstract = {Filter pruning is a significant feature selection technique to shrink the existing feature fusion schemes (especially on convolution calculation and model size), which helps to develop more efficient feature fusion models while maintaining state-of-the-art performance. In addition, it reduces the storage and computation requirements of deep neural networks (DNNs) and accelerates the inference process dramatically. Existing methods mainly rely on manual constraints such as normalization to select the filters. A typical pipeline comprises two stages: first pruning the original neural network and then fine-tuning the pruned model. However, choosing a manual criterion can be somehow tricky and stochastic. Moreover, directly regularizing and modifying filters in the pipeline suffer from being sensitive to the choice of hyperparameters, thus making the pruning procedure less robust. To address these challenges, we propose to handle the filter pruning issue through one stage: using an attention-based architecture that adaptively fuses the filter selection with filter learning in a unified network. Specifically, we present a pruning method named adding before pruning (ABP) to make the model focus on the filters of higher significance by training instead of man-made criteria such as norm, rank, etc. First, we add an auxiliary attention layer into the original model and set the significance scores in this layer to be binary. Furthermore, to propagate the gradients in the auxiliary attention layer, we design a specific gradient estimator and prove its effectiveness for convergence in the graph flow through mathematical derivation. In the end, to relieve the dependence on the complicated prior knowledge for designing the thresholding criterion, we simultaneously prune and train the filters to automatically eliminate network redundancy with recoverability. Extensive experimental results on the two typical image classification benchmarks, CIFAR-10 and ILSVRC-2012, illustrate that the proposed approach performs favorably against previous state-of-the-art filter pruning algorithms.} }