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DCCD: Reducing Neural Network
Redundancy via Distillation
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Abstract—Deep neural models have achieved remarkable
performance on various supervised and unsupervised learning
tasks, but it is a challenge to deploy these large-size net-
works on resource-limited devices. As a representative type
of model compression and acceleration methods, knowledge
distillation (KD) solves this problem by transferring knowledge
from heavy teachers to lightweight students. However, most
distillation methods focus on imitating the responses of teacher
networks but ignore the information redundancy of student net-
works. In this article, we propose a novel distillation framework
difference-based channel contrastive distillation (DCCD), which
introduces channel contrastive knowledge and dynamic difference
knowledge into student networks for redundancy reduction.
At the feature level, we construct an efficient contrastive objective
that broadens student networks’ feature expression space and
preserves richer information in the feature extraction stage.
At the final output level, more detailed knowledge is extracted
from teacher networks by making a difference between multiview
augmented responses of the same instance. We enhance student
networks to be more sensitive to minor dynamic changes. With
the improvement of two aspects of DCCD, the student network
gains contrastive and difference knowledge and reduces its
overfitting and redundancy. Finally, we achieve surprising results
that the student approaches and even outperforms the teacher
in test accuracy on CIFAR-100. We reduce the top-1 error to
28.16% on ImageNet classification and 24.15% for cross-model
transfer with ResNet-18. Empirical experiments and ablation
studies on popular datasets show that our proposed method can
achieve state-of-the-art accuracy compared with other distillation
methods.

Index Terms— Contrastive learning, deep compression, deep
learning, knowledge distillation (KD).

I. INTRODUCTION

OWADAYS, powerful neural networks have become
the main driver of development in many fields. In a
neural network, more parameters usually result in better
performance. With the help of many remarkable techniques,

Manuscript received 14 April 2022; revised 1 November 2022;
accepted 16 January 2023. Date of publication 30 January 2023; date of
current version 9 July 2024. This work was supported by the Key Research
and Development Project of Zhejiang Province under Grant 2022C03126 and
Grant 2021C01035. (Yuang Liu and Jun Chen contributed equally to this
work.) (Corresponding author: Yong Liu.)

Yuang Liu and Jun Chen are with the State Key Laboratory of Indus-
trial Control Technology and the Institute of Cyber-Systems and Control,
Zhejiang University, Hangzhou 310027, China (e-mail: yuangliu@zju.edu.cn;
junc@zju.edu.cn).

Yong Liu is with the State Key Laboratory of Industrial Control Tech-
nology and the Institute of Cyber-systems and Control, Zhejiang University,
Hangzhou 310027, China, and also with the Huzhou Institute, Zhejiang
University, Huzhou 313000, China (e-mail: yongliu@iipc.zju.edu.cn).

Digital Object Identifier 10.1109/TNNLS.2023.3238337

including residual connections and batch normalization, neu-
ral networks with thousands of layers can be effectively
trained. However, it’s difficult to deploy these large-scale
deep models on resource-limited embedded systems. Several
techniques have been proposed to address this issue, such as
low-rank factorization [1], [2], parameter and filters pruning
[3], [4], model quantization [5], [6], [7] and knowledge
distillation (KD).

Hinton et al. [8] first defined KD and set up a distillation
framework with a teacher-student pair as its primary struc-
ture. They used softmax operation and high temperature to
effectively extract “dark knowledge” of the high-performance
teacher network. After that, many methods [9], [10] focused
on improving the response-based distillation from different
aspects. Other methods [11], [12] learned richer knowledge
from the teacher’s intermediate layers. They proposed various
knowledge transfers between the hint layers and the guided
layers. Besides, relation-based distillation methods [13], [14]
further explored the relationships between different layers and
image instances. Information flow, correlation congruence, and
other deep-seated information were introduced into distilla-
tion training. Recently, Tian et al. [15], Xu et al. [16], and
Chen et al. [17] combined KD with contrastive learning. They
maximize the lower bound of mutual information between the
teacher and student representations by contrastive objectives
for better performance.

Although previous studies have obtained many excellent
results, few methods focus on the redundancy of the stu-
dent network itself. The student network can gain helpful
knowledge from the teacher network, but this may exacerbate
its overfitting and parameter redundancy. Some works [18],
[19], [20], [21], [22] address this problem by combining
distillation and network pruning. Network adjustment [19]
uses dropout to measure redundancy and shows that KD
assists the performance of the pruned network. InDistill [18]
leverages channel pruning properties to reduce the capacity
gap between the models and retain the architectural alignment.
These pruning with distillation methods reduce the redundancy
of the network, but the student network structure needs to be
changed.

Therefore, we propose our novel distillation method
difference-based channel contrastive distillation (DCCD),
which reduces the redundancy of the student network on two
levels: At the feature level, we propose channel contrastive dis-
tillation (CCD), which constrains the student network channels
to imitate the teacher network’s corresponding channels and
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Fig. 1. Heatmaps of cosine similarities between the penultimate layer’s out-
puts in one minibatch data. Cooler color represents a weaker correlation. Our
method makes more significant differences between the network responses of
different instances. (a) Baseline. (b) KD. (¢) Ours.

keep the response distance between non-corresponding chan-
nels. The student network obtains a broader expression space
and accommodates more knowledge than the baseline model.
The representation redundancy between the student network
channels is reduced. At the final output level, we supplement
the original KD with difference KD (DKD), which extracts
the dynamic dark knowledge from the response difference
between multiview augmented instances. We add the student
network’s attention to minor changes in all categories during
distillation. Softer distribution loss leads to better regulariza-
tion for parameter redundancy reduction. With the combination
of CCD and DKD, our whole method successfully reduces
both representation and parameter redundancy of student net-
works as Fig. 1 shows. In summary, we make three main
contributions as follows.

1) We propose a novel contrastive distillation method
channel contrastive distillation, which constructs
contrastive objectives between corresponding and
non-corresponding channels. We reduce the overlap
of feature responses in the student network’s channel
expression space. Compared with other contrastive-
based distillation methods (CCDs), we do not have to
maintain a memory buffer for negative samples and use
fewer computing resources.

2) We supplement the traditional KD with a difference
KD. By focusing on the difference between responses
of multiview augmented instances, we extract difference
knowledge from the randomness of data augmentation.
Minor dynamic changes in all categories are well high-
lighted, and the student network’s expression sensitivity
is promoted during difference distillation training.

3) We conduct targeted experiments to investigate the
performance of our method in terms of redundancy
reduction, data augmentation, hyper-parameter sensitiv-
ity, and so on. Extensive empirical experiments and
ablation studies show the effectiveness of DCCD on
various datasets (CIFAR-100, ImageNet-1K, STL10) for
improving the student network’s performance.

II. RELATED WORK

Because our framework contains a supplement (DKD) to
the original KD and a novel channel-level CCD, we dis-
cuss related works in KD and contrastive learning in this
section.
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A. Knowledge Distillation

After Hinton et al. [8] put forward the concept of KD,
many studies have enriched its meaning and methodology.
To bridge the gap between the student and the teacher,
Mirzadeh et al. [23] proposed teacher assistants and multi-
step KD. Malinin et al. [24] distilled the distribution of the
predictions from an ensemble of teachers rather than only
one teacher. Many researchers have introduced the interme-
diate representations of teacher networks. Fitnet [11] directly
matched the feature activation of the teacher and the student
and formed a feature-based distillation method for the first
time. Inspired by this, many papers [12], [25], [26] proposed
their methods to extract and match the intermediate layers for
information transfer. Heo et al. [27] provided a very detailed
summary of feature-based distillation methods and proposed
their well-designed scheme. Besides, FSP [13] calculated and
distilled the information flow of teacher networks based on
the Gramian matrices. CCKD [14] focused on the corre-
lation between instances in a minibatch. There are some
other approaches [28], [29], [30] that study the deep-level
relationships in the network.

Lots of methods [9], [10], [31] have improved the original
KD from different aspects. Our method DKD focuses on the
response differences caused by the data augmentation random-
ness. We make a difference between the multiview responses
of the same instance and achieve a softer distribution to learn
about dark knowledge in all output categories effectively.

B. Contrastive Learning

Instead of learning a signal from individual data samples
one at a time, contrastive learning learns by comparing among
different samples. Nowadays, contrastive learning methods
[32], [33], [34], [35] have become one of the most popular self-
supervised approaches. MoCo [36] built a dynamic dictionary
with a queue and a moving-averaged encoder for large batches
of negative samples. SIimCLR [37] set augmented views of
other items in a minibatch as negative samples and intro-
duced stronger data augmentation for accuracy improvement.
Zbontar et al. [38] allowed the use of very high-dimensional
output vectors and didn’t require large batches nor asym-
metry between the network twins such as a predictor net-
work, gradient stopping, or a moving average on the weight
updates.

Some methods have made excellent progress in combining
KD and contrastive learning. CRD [15] introduces NCE-based
algorithms and a memory buffer for storing negative sam-
ples in distillation. Self-supervised for knowledge distilla-
tion (SSKD) [16] transfers the hidden information from the
teacher to the student by exploiting the similarity between
self-supervision signals as an auxiliary task. WCoRD [17]
utilizes the dual and primal forms of the Wasserstein distance
for global contrastive learning and local feature distribu-
tion matching. A novel channel-level contrastive distillation
method CCD is proposed in our method. We reduce the
response redundancy of the student network channels through
the CCD loss, which measures the cross correlation matrix
between the student’s and teacher’s channel features and
makes it as close to the identity matrix as possible.
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Fig. 2.

Overall framework of our proposed method. We introduce CCD loss and DKD loss into the teacher-student distillation structure and take advantage

of the randomness of data augmentation. The abbreviations identified in the figure are meticulously described in the proposed method section.

III. PROPOSED METHOD

In this section, we introduce the principle of channel con-
trastive distillation and difference KD. The whole framework
of DCCD is shown in Fig. 2.

A. Notations

Our distillation framework consists of a well-performed
teacher network T and a lightweight student network S like
the traditional KD, and we use {x}, and {x}, to express
the feature maps, outputs, modules, and so on corresponding
to the teacher and student network. We note one minibatch
(included b pictures) as raw input x, and the corresponding
ground truth is noted as y. The penultimate layer’s outputs are
extracted for contrastive learning, and we represent them as f,
and f,. The logit representations (before the softmax layer)
of teacher and student note as y, and y,. In particular, we use
data augmentation to get twice augmented inputs ¥ and X.
They are similar in general but different in detail because
of the randomness of data augmentation. We add the same
mark symbol to the corresponding penultimate layer outputs
(f:, fsand f., f) and final logit representations (y;, y, and
¥:» ¥s)- It should be noted that our method remains consistent
with the traditional distillation method on data augmentation
settings, which ensures that all improvements come from our
well-designed optimization loss rather than additional data
processing.

B. Channel Contrastive Distillation

Single imitation of the features of the teacher network has
been proven effective in many previous feature-based methods
[12], [27]. To match the feature dimension, module M, and
M;, respectively are used to transform the feature f, and f,.
A distance function ¥ measures the distance between the
transformed feature, and the feature-based distillation loss
function is generalized as follows:

Lieature = W(Ms (fs)s M, (fz)) (1)
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Fig. 3. Graphical illustration of different distillation methods (X: input
instances; S: student network; T: teacher network; ¢;: the ith channel of
the teacher or student network). (a) Feature-based distillation. (b) Contrastive
response distillation. (c) Channel contrastive distillation.

As shown in Fig. 3(a), traditional feature-based distillation
sets channels as basic units and uses only the imitation loss
term to reduce the distance between the teacher and the
student. However, contrastive response distillation [15] maxi-
mizes the mutual information between the student responses
and the teacher responses by noise contrastive estimation
(NCE). They use a neural network G as critic to estimate
whether a pair comes from the joint distribution (n = 1) or
the marginals (n = 0). The distribution r conditioned on 7
that captures whether the pair is congruent (r((n = 1))) or
incongruent (r((n = 0))). The parameters of student network S
and critic G can be optimized jointly by maximizing by the
following equation:

Lerp =By, 1=y [10g(G(f5. f1))]
+KE, (s, s im0y [log(1 = G(f,, £1))]. @

For the stability of the training process, multiple incongruent
pairs (larger negative samples number k) are chosen, and a
large memory buffer for storing negative samples needs to be
maintained and kept up to date during distillation training.
As Fig. 3(b) shows, CRD constructs the contrastive loss using
instances as the basic units, which shortens the response
distance between the teacher-student pair for the corresponding
instances and increases it for non-corresponding instances.

Authorized licensed use limited to: Zhejiang University. Downloaded on August 06,2024 at 07:10:55 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: DCCD: REDUCING NEURAL NETWORK REDUNDANCY VIA DISTILLATION

Traditional channel distillation

% %

° [} ® @ oA A ©®

Channel-level contrastive-based disitllation
A A
X [} [}
° ® ®.
[ (] A @
(a) (b) (©)

A studentchannel @ teacher channel <—> pullin push away

Fig. 4. Effect comparison between traditional channel distillation methods
and our channel-level contrastive-based method. (a) Before training. (b) After
training. (c) Overall view.

Motivated by both feature-based distillation and CRD,
we construct a novel contrastive loss at the channel level as
shown in Fig. 3(c). channel contrastive distillation constrains
the student network channels (1) mimic the response of
the corresponding channels of the teacher network (imitation
term) and (2) contrast with other non-corresponding teacher
channels to reduce the redundancy information between chan-
nel representations (contrastive term). The specific implemen-
tation process is as follows.

To match the feature dimension, we also use M; to trans-
form the student feature f; to ¢y, but simply normalize f,
to ¢, to maintain the effectiveness and stability of the teacher
network’s channel features. ¢; and ¢; have the same shape
b x d (b represents the number of instances in one minibatch;
d represents the number of dimensions for teacher feature
expression)

x — mean(x)

Norm(x) =
std(x)
¢; = Norm (M, (f,))
¢ = Norm(f,). 3)

We introduce L.y into training as shown in (4), which
makes the similarity matrix of the student and teacher channel
expressions ¢, and ¢, as close to the identity matrix as possible
[(:)" represents the transpose operation for input matrix].
As shown in Fig. 4, the imitation loss term shortens the
distance between the student channels and the corresponding
teacher channels. It makes the feature response of the student
network effective enough for the basic target. The contrastive
loss term pulls apart the feature expression between the student
channels and the other non-corresponding teacher channels,
which reduces the overlap of feature meanings between student
channels. The student network can contain less redundant
information about instances and form a broader feature expres-
sion space. The parameter 6 controls the learning ratio between
the imitation term and the contrastive term

Leye(Cs, €1, 6)
= lZ(l — ()" x cﬁ)z—i—da%l,Z;((ci)t X c,j)z. 4)

imitation term

contrastive term
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Fig. 5. Diagram of channel contrastive distillation. We process b row image x
into two groups augmented data X and ¥, and calculate the relationship matrix
R(d) by the transform module My, eventually form our Ley. compared with
the identity matrix I (d). For clarity, only half of the content of CCD is drawn:
Leye (Es s é\t ,0).

Through the adoption of L. on the student network
S alone: Ley(cs, ¢s, 0), each student network channel may
obtain more unique feature by the contrastive term, this
will cause the collapse problem at the same time, which is
extensively studied in contrastive learning. To address this
issue, most contrastive learning methods use larger batch size
and richer data augmentation during self-supervised learning.
However, our method uses the teacher network T with fixed
parameters as the contrastive template to ensure the stability of
contrastive distillation training. Besides, augmented input pair
X and X are used as parallel contrastive inputs, representing
two views of the same instances. We compose contrastive loss
with augmented channel expression (¢; and ¢;, ¢; and ¢;).
The student network can obtain a more stable and efficient
training process by taking advantage of the randomness of
data augmentation. Fig. 5 shows half of the CCD’s general
process, and the final CCD loss is shown in the following
equation:

Lcep = ﬁeye(é\ss ¢, '9) + Eeye(és, é,, 9) &)

Previous works such as CRD [15] and WCoRD [17] build
contrastive loss at the instance level and have achieved excel-
lent results in exploring instance relationships. SSKD [16]
also uses multiple data augmentations on the same image to
mine richer teacher network knowledge, but it still aligns the
expression relationships of different rotation angles between
teacher and student networks at the instance level. Compared
with these methods, CCD uses channels rather than instances
as contrastive objective units. Our method reduces information
redundancy inside network channels by distinguishing the
feature meanings expressed by different channels. The teacher
network provides effective both imitation and contrastive chan-
nel targets for the student’s channels, so CCD does not need
to maintain a large memory buffer for sampling negatives
from other batches’ responses. Our method optimizes the
student network through only one minibatch instance, as same
as the traditional KD algorithm. Therefore, it consumes
fewer computing resources and enables a simpler training
process.

C. Difference KD

Traditional KD loss as shown in (6) introduces temperature
T to form a softer probability distribution p; and p, on
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both the student network outputs y, and the teacher network
outputs y,, and lets the student mimic the teacher’s behavior
by adding a strong congruent constraint on predictions using
KL divergence

Lxp (6)

I
S| =
M-

A

=
=

According to the article [8], temperature T is used to
balance the learning attention ratio between the correct cat-
egory and other categories. Higher temperature means paying
more balanced attention to all categories, which may bring
more benefits from “dark knowledge.” We propose a new
approach to extract more detailed “dark knowledge” from the
teacher network T by making the differences between mul-
tiview outputs of the same instance with data augmentation:
d=y—yandd=y-—y.

Our difference KD shortens the difference distributions
distance between the teacher and the student, which represents
their responses to detailed changes caused by the randomness
of data augmentation

i exp(z?i/r)
> exp(ﬁj/r)

i = exp(z?i/r)
> exp(tij/r)

Lokp = > Z(KL(qé, ) +KL(@. ;) @

Because the teacher network and the student network have
the essential ability for the target classification task, output y;
and y, both have a sharp distribution (nearly one for the correct
category and zero for other categories) after operation softmax
at the end of distillation training, as Fig. 6(a) and (b) shows.
Therefore, the negative categories occupy only a tiny propor-
tion, and their value fluctuations near the small magnitude
response have little effect on the distillation loss. Lxp naturally
ignore the relatively minor changes in negative categories’
output. At the same time, the network outputs y and y (for
augmented inputs ¥ and ¥ from the same raw instances x)
roughly keep the overall similarity and the detailed differences.
The difference y — y and y — y fully represent the response
change between the student network and the teacher network
in all categories. Their distributions are smoother and easier
to display response changes caused by the randomness of data
augmentation even after softmax as Fig. 6(c) shows.
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Fig. 6. Output and Distribution of all categories in CIFAR-10 classification
for traditional KD versus DKD. (a) Teacher output, student output, teacher
distribution, and student distribution in original KD for y. (b) Same meaning
as (a) for y. (c) DKD calculates the difference output y — y for the teacher
and the student, softer difference distribution is shown.

For traditional KD, Hinton et al. [8] proved that it matches
the logits between the teacher model and the student model

dLkp _ l(pi _ pi)
ayl T
exp(y/7) B exp(yi /) @®
> GXP(yi / r) > eXp(y{ / r)
If the temperature t is much higher than the magnitude of
logits, (8) can be approximated according to its Taylor series
8£KD_1( 1+yi/7: 1+y§/r ) ©)
dy,  T\n+X0yi/r n+ 30yl
If it is further assumed that the logits of each instance are

zero-mean (i.e., z:’ y( = Z’; ytj = 0), (9) can be simplified
as follows:

Q| o=

ko 1, .
dyi =2l —»).

(10)

Therefore, the traditional KD loss is equal to matching
the logits between the student and the teacher under two
conditions: (a) High temperature. (b) Zero-mean logits.

For our difference KD loss, it is natural to know that d=
—d, so we can write the corresponding function as follows:

e (GRONURF)

((@-) - (@-a))
[/ el /)

exp(d; /7
2 z;exp(&j/r) z"ex( )
exp(d, /7) exp(d; /7)
Sew(d /1) Tjew(d /7)

an
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TABLE I

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART DISTILLATION METHODS ON CIFAR-100. WE EXPERIMENT WITH THE TEACHER-STUDENT
PAIRS USING THE SAME AND DIFFERENT NETWORK ARCHITECTURES. WE USE AUTHOR-PROVIDED OR AUTHOR-VERIFIED CODE AND RESULTS
FrROM CRD, SSKD AND WCORD REPOSITORIES FOR ALL OTHER METHODS. * INDICATES THAT OUR METHOD USE THE SAME
ADDITIONAL ROTATION AUGMENTATION AS SSKD. OUR REPORTED RESULTS ARE AVERAGED OVER FIVE RUNS

Teacher ~ WRN-40-2 resnet56 resnet32x4 vggl3 vggl3 ResNet50 resnet32x4
Student  WRN-16-2  resnet20 resnet8x4 vgg8  MobileNetV2 vgg8 ShuffleNetV2
Teacher 75.61 72.34 79.42 74.64 74.64 79.34 79.42
Student 73.26 69.06 72.50 70.36 64.60 70.36 71.82
KD 74.92 70.66 73.33 72.98 67.37 73.81 74.45
FitNet 75.12 69.21 74.66 73.22 66.90 73.24 75.15
AT 75.32 70.55 74.53 73.48 65.13 74.01 75.39
SP 74.98 69.67 74.02 73.49 68.41 73.52 74.88
CCKD 75.09 69.63 74.21 73.04 68.02 73.48 74.71
VID 75.14 70.38 74.56 73.19 68.27 73.46 74.85
RKD 74.89 69.61 73.79 72.97 67.87 73.51 74.55
PKT 75.33 70.34 74.23 73.25 68.13 73.61 74.66
AB 70.27 69.47 74.40 73.35 68.23 73.65 74.99
FT 75.15 69.84 74.62 73.44 66.99 72.98 75.06
NST 74.67 69.60 74.28 73.33 63.77 71.74 75.24
CRD 75.64 71.63 75.46 74.29 69.94 74.58 76.05
WCoRD 76.11 71.92 76.15 74.72 70.02 74.68 76.48
SSKD 76.04 71.49 76.20 75.33 71.53 75.76 78.61
DCCD 76.56 72.35 76.57 74.90 70.01 75.71 77.41
DCCD* 76.60 71.72 76.65 75.67 71.44 75.88 79.29

Because the logit responses of augmented instances are
similar on the whole and different in the details mentioned
above, the magnitudes of the response differences are close
to zero, and their distributions are approximately zero-mean.
Equation (11) can be easy to meet the above two conditions
even without high temperature

(@, —d)).

(0 8) 7)) -
12)

8dAIS T 2nt?

In the same way as the above proof, we can obtain by the
following equation:

o _ L (3 -a).
od, nt

Therefore, difference KD can effectively shorten the dis-
tances between the response differences of the student network
and the teacher network. We can transfer the dynamic differ-
ence knowledge of the teacher network to the student network,
which is reflected in the response changes for the randomness
of data augmentation. By supplementing traditional Lxp with
Lpkp, we strengthen the sensitivity of the student network and
reduce its parameter overfitting.

In the end, the student network is then trained by optimizing
the following loss function:

Litudent = Lcg + @ (Lxp + Lokp) + BLcep.

1
nt?

(13)

(14)

IV. EXPERIMENT

We evaluate the proposed DCCD framework on various
KD tasks: model compression on classification tasks and

cross-model transfer. Extensive experiments and analyses are
conducted to delve into our proposed method.

A. Model Compression

1) Experiments on CIFAR-100: CIFAR-100 [39] is the
dataset that most KD methods use to validate their per-
formance. CIFAR-100 contains 50000 training images and
10000 test images. We select many excellent KD methods
(similarity-preserving knowledge distillation (SP) [40]; varia-
tional information distillation (VID) [41]; residual knowledge
distillation (RKD) [9]; probabilistic knowledge transfer (PKT)
[42]) to evaluate the performances of our method, and consider
two scenarios: 1) the student and the teacher share the same
network architecture and 2) different network architectures are
used.

ResNet [43], visual geometry group (VGG) [44], MobileNet
[45], and ShuffleNet [46] are chosen as teacher and student
architectures. We run a total of 240 epochs for all methods.
Temperature 7 is set as 4. For our method, we set o as
1.0 for Lxp and Lpkp. We keep the Lccp roughly equal in
value and similar in proportion to other losses in different
experiments. The number of teacher network’s channels may
be 64, 128, 256, and so on, accordingly, we set 8 as 0.4, 0.2,
and 0.1. As for other hyper-parameters of baselines, we follow
the setting of CRD [15]. Besides, for a fair comparison of
the effectiveness of our method and SSKD, we introduce
the same rotation data augmentation as SSKD and mark the
corresponding experimental results with *.

Table I compares the top-1 accuracy of different distillation
methods on CIFAR-100 dataset. Because the final response
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TABLE I

Top-1 AND TOP-5 ERROR RATES (%) OF DISTILLATION METHODS ON IMAGENET. RESULTS ARE AVERAGED OVER FIVE RUNS WITH TEACHER
RESNET-34 AND STUDENT RESNET-18. * INDICATES THAT OUR METHOD USE THE SAME ADDITIONAL ROTATION AUGMENTATION AS SSKD

Teacher  Student ‘ KD AT SP CCKD CRD (+KD) WCoRD (+KD)  SSKD ‘ CCD CCD+KD DKD+KD DCCD DCCD*
Top-1 26.69 30.25 2934 2930 29.38 30.04 28.83 (28.62) 28.51 (28.44) 28.38 | 28.44 28.37 28.60 28.16 28.05
Top-5 8.58 10.93 10.12  10.00 10.20 10.83 9.87 (9.51) 9.84 (9.45) 9.33 9.70 9.47 9.81 9.44 9.12
78 KD - CRD mmm DCCD TABLE IIT
77 021 PERFORMANCE FOR RESNET110 — RESNET32 DISTILLATION WITH
76 0.14 0.35 DIFFERENT LOSS CONFIGURATIONS ON CIFAR-100
75 0.12 0.19 =l
=
74 0.19 E= CCD
~73 ol B= Student KD DKD  Accl(%)
=X 0.15% imitation  contrastive
=72 0.28 =
371 0.24
S 20 0.39 == resnet32 71.14
69 ml= resnet32 v 73.08
68 0:-[32 resnet32 v 73.63
67 resnet32 v 73.45
66
65 resnet32 v v 73.85
resnet50 resnet56 vggl3 resnet32x4 resnet32 v v v 73.98
mobilenetv2  resnet20 vgg8 shufflenetvl
resnet32 v v 73.82
Fig. 7. Performance for KD, CRD, and our DCCD to transfer across various resnet32 v v v v 74.21

teacher and student networks on CIFAR-100. The standard deviations of the
different random seed results are marked in the figure.

knowledge to an instance can be simply and effectively
transferred through the original KD, all methods are combined
with the original KD to obtain better results. In both scenarios
(student and teacher are in the same or different network
architecture style), contrastive-based methods (CRD, WCoRD,
SSKD, and DCCD) outperform other distillation frameworks.
For comparison between CCDs, our method DCCD achieved
better performance than CRD and WCoRD, but slightly worse
than SSKD in some teacher-student pairs. SSKD transfers
richer instance contrastive information on the one hand, more
importantly, applies random rotation data augmentation on the
other hand. Under the same data augmentation setting, our
method DCCD* can achieve higher accuracy on CIFAR-100.

2) Experiments on ImageNet: We also conduct experiments
on the challenging ImageNet [47] dataset. We use ResNet-34
as the teacher and ResNet-18 as the student, and start with a
learning rate of 0.1, divide it by 10 at 30, 60, and 90 epochs,
and terminate training at 100 epochs. The results are shown
in Table II. CCD alone achieves the same level of results
as CRD,SSKD and WCoRD, and CCD + KD gets further
improvement. DKD + KD improves the original KD with
more detailed knowledge and reduces its error rate signifi-
cantly. Finally, our whole method DCCD achieves 28.16% of
top-1 error with ResNet-18. With rotational data augmentation,
DCCD* further improves accuracy by 0.11%.

3) Ablation Study: We report results using different loss
configurations for resnetl 10 — resnet32 on CIFAR-100 in
Table III. It can be seen that the imitation term and the
contrastive term of Lccp both improve the performance of
the student network, and the student network achieves bet-
ter performance while combining them. DKD facilitates this
0.72% improvement for traditional KD by increasing the

final response sensitivity of the student network. Our whole
framework DCCD combines the advantages of CCD and DKD
and achieves 74.21% top-1 test accuracy. The same effect can
also be verified on ImageNet as shown in Table II.

In addition, we experiment with four network sets of
teacher-student pairs on CIFAR-100 under different random
seeds. The averages and the standard deviations of test top-1
accuracy with different distillation methods (original KD,
CRD, and our method DCCD) are labeled in Fig. 7. Our
method is proven more effective than traditional KD and CRD
on average. It has about the same or even smaller standard
deviation compared to the other two methods.

B. Cross-Model Transfer

1) Tiny-ImageNet — STLI10: Tiny-ImageNet dataset is a
miniature of ImageNet classification challenge. STL10 dataset
[48] is an image recognition dataset for developing unsuper-
vised feature learning, deep learning, and self-taught learning
algorithms. In particular, each class has fewer labeled training
examples than in CIFAR-100, but a very large set of unlabeled
examples is provided to learn image models prior to super-
vised training. Transferring knowledge from Tiny-ImageNet
to STL10 should help improve the performance of the model
trained on STL10. Following WCoRD, we first map images
in the RGB space to the Lab color space (L: Luminance,
ab: Chrominance), then train teacher L-Net ResNet-18 on
the Luminance dimension of Labeled Tiny-ImageNet. The
student ab-Net ResNet-18 is distilled on the Chrominance
dimension of the unlabeled STL-10 dataset with different
objective functions. Finally, we train a linear classification
module on top of features extracted from different layers in
the student network for ten-category classification.
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TABLE IV

PERFORMANCE FOR AB-NET RESNET-18 DISTILLED FROM SAME
ARCHITECTURE L-NET TEACHER, WHICH IS TRAINED
WITH THE LUMINANCE VIEW OF TINY-IMAGENET

Layer 1 2 3 4

CRD 55.00 63.64 73776 T74.75

WCoRD | 54.60 63.70 7423 7543

CCD 5482 6354 7455 7585
TABLE V

PERFORMANCE FOR DIFFERENT TEACHER AND STUDENT TRANSFORM
STRUCTURES, WE USE TEACHER RESNET56 AND STUDENT
RESNET20 ON DATASET CIFAR-100

Teacher transform Student transform Ace (%)
Identity Single linear layer 72.06
Identity Multiple linear layers 72.35
Multiple linear layers ~ Single linear layer 71.56
Multiple linear layers ~ Multiple linear layers 71.85

TABLE VI

PERFORMANCE FOR VGG13 — VGG8 DISTILLATION ON CIFAR-100 WITH
DIFFERENT DATA AUGMENTATION SETTINGS

Acc (%) teacher student KD  DCCD
norm 74.64 70.36 72.98 74.90
mixup 76.04 7091 73.98 75.75
randaugment 75.46 71.68 74.24 75.58
randerasing 75.89 71.37 73.85 75.51

In experiments, we compare test accuracy between three
contrastive-based methods CRD, WCoRD, and CCD. Table IV
shows the results on features extracted from different layers.
Our method outperforms CRD and WCoRD when training
linear classification on third and fourth residual blocks. Deeper
neural networks can accommodate richer feature expression,
and CCD loss can reduce its feature redundancy for better
performance.

C. Further Analysis

1) Visualization Results: To show the improvement of our
method for reducing feature redundancy, we performed a
visual analysis of channel features. As shown in Fig. 8(a),
we perform a uniform T-SNE (t-distributed stochastic neighbor
embedding) dimensionality reduction visualization of chan-
nel features obtained from different networks. The baseline
student network’s channels are more aggregated and over-
lapping than the teacher network. With the original KD,
the student network mimics the teacher network to obtain
a similar distribution of channel feature meanings, but some
channels still express overlapping meanings, as shown in the
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Fig. 8. (a) T-SNE visualization of teacher and student networks’ features.
We experiment with resnet20 — resnetl4 on CIFAR-100 classification, the
distribution of network’s features after dimensionality reduction is shown in
the figure. (b) Top-1 accuracy (%) for CIFAR-100 classification and Mean
distance between network channels’ feature responses during res32 x 4 —
resnet8 x 4 distillation training.

bottom left part. In contrast, our method combines imitation
and contrastive terms, so the student network can obtain a
more decentralized and meaningful representation of channel
features.

To further demonstrate the usefulness of our method for
reducing the redundancy of channel features, we compute the
geometric median of the network channels during distilla-
tion training and record the average distance of all channels
from the geometric median as Fig. 8(b) shows. Our method
maintains a larger average distance during distillation training
and keeps less information redundancy between the student
network channels.

Finally, the relationship matrix between the responses in one
minibatch is painted in different degrees of color according to
cosine similarity in Fig. 1. Because the responses are presented
after ReLU layer, they are non-negative, and the range of
cosine similarity € [0, 1]. Cooler color means that the feature
expression distance between two instances is farther away.
Our method DCCD broadens the channel feature expression
space and increases the response sensitivity of the student
network. Therefore the entire relationship matrix is bluer
than the baseline and the original KD models. This shows
that our method enables the student network to reduce its
own channel feature overlap and obtain more differential
expressions between instances.

2) Transform Module Structure: In our method, student
transform module M; is used as knowledge transfer between
the teacher and the student. We explore the influence of
transform module structure on accuracy like overhaul [27] do.
Results are shown in Table V. We note that the uniqueness of
feature expression in teacher network channels will disappear
while using multiple linear layers transform. So we do not add
extra processing for teacher features. For the student transform,
multiple linear layers bring enough hidden expression space
to represent student features and are more suitable for our
framework.

3) Data Augmentation: Both of our proposed methods
greatly profit from the randomness of data augmentation. It’s

Authorized licensed use limited to: Zhejiang University. Downloaded on August 06,2024 at 07:10:55 UTC from IEEE Xplore. Restrictions apply.



10014

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 7, JULY 2024

TABLE VII

SUPPLEMENTARY EXPERIMENTS FOR TABLE I. OUR RE

PORTED RESULTS ARE AVERAGED OVER FIVE RUNS

Teacher = WRN-40-2 resnetl10 resnetl110 ResNet50 res32x4 WRN-40-2
Student  WRN-40-1 resnet20 resnet32 MobileNetV2  ShuffleNetV1l  ShuffleNetV1
Teacher 75.61 74.31 74.31 79.34 79.42 79.34
Student 71.98 69.06 71.14 64.60 70.50 70.36
KD 73.59 70.92 73.08 67.35 74.07 74.83
FitNet 73.71 70.95 73.21 68.54 74.82 75.55
AT 73.92 71.03 73.29 69.28 74.76 75.61
SP 73.85 71.15 73.12 68.99 73.80 75.56
CCKD 73.69 70.96 73.06 68.95 73.63 75.63
VID 73.95 70.93 73.19 68.88 74.28 75.36
RKD 73.76 70.98 73.25 68.46 74.20 75.45
PKT 73.89 71.08 73.32 68.44 74.06 75.51
AB 73.76 70.95 73.16 69.32 76.24 76.58
FT 74.02 71.03 73.21 69.01 74.31 75.18
NST 73.62 71.14 73.21 68.92 74.51 75.02
CRD 74.38 71.56 73.75 69.54 75.12 76.27
WCoRD 74.72 71.88 74.20 70.12 75.77 76.68
SSKD 76.13 71.48 73.64 72.57 78.44 77.40
DCCD 75.25 71.90 74.21 71.20 76.64 76.81
DCCD* 75.94 72.17 75.03 72.36 79.01 78.49
TABLE VIII

ABLATION EXPERIMENTS FOR DKD ON CIFAR-100. OUR

REPORTED RESULTS ARE AVERAGED OVER FIVE RUNS

Teacher WRN-40-2 resnetS6 resnet32x4 vggl3 vggl3d ResNet50 resnet32x4
Student ‘WRN-16-2 resnet2(0 resnet8x4 vgg8 MobileNetV2 vgg8 ShuffleNetV2
Teacher 75.61 72.34 79.42 74.64 74.64 79.34 79.42
Student 73.26 69.06 72.50 70.36 64.60 70.36 71.82
KD 74.92 70.66 73.33 72.98 67.37 73.81 74.45
CRD 75.64 71.63 75.46 74.29 69.94 74.58 76.05
KD+DKD 76.01 (11.09) 7179 (11.13) 7459 (11.26) 7420 (11.22)  68.40 (11.03)  74.14 (10.33)  75.88 (11.34)
DCCD (KD+DKD+CCD) ~ 76.56 (11.64)  72.35 (11.69) 76,57 (13.24) 7490 (11.92)  70.01 (12.64) 7571 (11.90)  77.41 (12.87)
. . . 77.0 76.0 oo LT
worth studying the effectiveness of our method under different o
data augmentation settings. In Table VI, we experimented 76.5 o remds
on four different data augmentation settings: 1) nmorm: the 2 /\/\/\ ™
most common augmentation on CIFAR-100, including crop, ™" . g
Sflip and normalize; 2) mixup [49]: convex combinations of 75 0
pairs of examples and their labels; 3) randaugment [50]:
practical automated data augmentation with a reduced search L R S N
space; 4) randerasing [51]: randomly select a rectangle region "y‘”""?:)'m"’"e Wnl6:2 ® ShuffleNetV1

in an image and erase its pixels with random values. More
sophisticated data augmentation brings improvements in nor-
mal training and original KD. However, our method shows
a bigger improvement when used in more complex data
processing, this proves that our method can effectively utilize
the randomness of data augmentation and work with different
types of data augmentation settings. Finally, our methods
achieved sufficiently excellent results that the student network

Fig. 9.  Sensitivity analysis experiments for our method and both use
WRN-40-2 as the teacher. (a) Performance for student WRN-16-2 with dif-
ferent 6 in Lccp. (b) Performance for students WRN-16-2 and ShuffleNetV1
with different settings in Lpkp.

is abreast of the teacher network on Accuracy with different
data augmentation.
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4) Sensitivity Analysis: In contrastive learning, the balance
of positive and negative samples learning weight is an impor-
tant factor for model performance. We set the hyper-parameter
6 as the learning ratio in our framework. The sensitivity of
DCCD to the hyper-parameter 6 is tested with teacher WRN-
40-2 and student WRN-16-2. As shown in Fig. 9(a), our
method surpasses CRD and WCoRD in general and usually
performs better when 6 € [1.5,4.5]. Therefore, 6 is set as
2.0 for all the experiments in this article.

Besides, as a supplement to the original KD, DKD also
uses Lk to narrow the distance between teacher output and
student output. We naturally consider whether MSE loss or
higher temperature v could strengthen DKD. The results on
WRN-40-2 — WRN-16-2 and WRN-40-2 — ShuffleNetV1
are summarized in Fig. 9(b). We can see that Lx; works better
than Lysg and DKD does not need for higher temperature.
DKD + KD achieves a nearly 1% accuracy improvement
compared with the original KD.

V. CONCLUSION AND FUTURE WORK

In this article, we propose a novel distillation method
named DCCD, which focuses on reducing the information
redundancy of the student network during distillation train-
ing. We propose channel contrastive loss Lccp to establish
imitation and contrast relationships between the teacher’s
and student’s channels and difference distillation loss Lpkp
to supplement the traditional KD with dynamic difference
knowledge. The framework reduces the overlap between the
internal channels and increases the sensitivity of the external
response to detailed changes. Our method meets or exceeds
other state-of-the-art distillation methods on various datasets
and tasks. Experiments and visualizations demonstrate that
our proposed method has unique effectiveness in reducing
student network redundancy and improving model perfor-
mance compared with other distillation methods. For future
work, we are interested in applying DCCD to other tasks to
distill from extremely deep teachers into compact students.
Moreover, the channel-based CCD DCCD we proposed differs
from the previous instance-level CCDs in terms of implemen-
tation principle and effect. Studying the essential difference
between these two types of methods and whether they can be
merged into a unified contrastive distillation framework is an
interesting topic for us to explore.

APPENDIX
A. Supplementary Experiments

In Table I, we present our experimental data for the
CIFAR-100 dataset, including two scenarios: 1) the student
and the teacher share the same network architecture and
2) different network architectures are used. In order to better
verify the stability and validity of DCCD, we add more
experimental data in Table VII. It can be seen that our method
still achieves better effects than other CCDs CRD, SSKD, and
WCoRD in more teacher-student network pairs.

Due to the space limitation of the article, we did not
conduct a detailed analysis on the role of DKD, except in
Tables II and III. As an improvement to traditional distillation,
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Fig. 10.  Training time per epoch for CRD, SSKD, and our DCCD for
different teacher-student network pairs on CIFAR-100.

DKD introduces more dynamic knowledge and makes the
student network more sensitive to subtle response changes
in all categories. The premise of DKD is that the responses
of the teacher network and the student network are similar,
so DKD must work on the basis of KD. Therefore, the
specific performance of DKD is difficult to separate from KD.
We conducted more supplementary experiments on the effect
of KD + DKD in Table VIII. After introducing the DKD loss,
compared with traditional distillation, KD + DKD achieves
a relatively high accuracy improvement in the CIFAR-100
experimental results. Under the same experimental setting,
KD + DKD can achieve a similar accuracy level as the CRD
method.

B. Time Complexity Analysis

Since the teacher network and additional knowledge trans-
fer modules can be removed after KD training, the student
network can achieve better performance in inference without
computational burden. However, we employ data augmenta-
tions on the same image to obtain two augmented inputs and
rely on the randomness of data augmentations to transfer more
teacher network’s dark knowledge. So it is worth analyzing
the time complexity during training. We measure the time
complexity of CRD, SSKD, and DCCD on a single GeForce
RTX 2080Ti GPU (For all we know right now, we do not
find an open-source project for WCoRD). The results are
summarized in Fig. 10. Compared with other contrastive-based
methods, our method adds little extra training time per epoch
on four experiments for different teacher-student settings. CRD
needs to maintain a negative sample memory bank and requires
an additional random sample operation for each batch. SSKD
trains its Self-Supervision Prediction module for extra epochs
and stacks four rotation angle inputs for 4 x training batch size.
Our method DCCD also stacks augmented inputs to reduce the
network forward times.

As shown in Fig. 11, CCDs (CRD, SSKD, and DCCD)
generally consume longer training time per epoch than tra-
ditional distillation methods (KD, AT, and CCKD). This is
mainly due to additional module components that need to be
trained, more data augmentation steps and more complex loss
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1. Analysis of the composition of training time complexity. Results are

obtained on GeForce RTX 2080Ti with teacher network ResNet-56, student
network ResNet-20 and dataset CIFAR-100.

calculation processes. Although our method introduces once
additional data augmentations and extra knowledge transfer

mod

ule M;, the overall training time complexity is similar to

CRD and slightly better than SSKD.
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