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Abstract— Visual bird’s eye view (BEV) semantic segmen-
tation helps autonomous vehicles understand the surrounding
environment only from front-view (FV) images, including static
elements (e.g., roads) and dynamic elements (e.g., vehicles,
pedestrians). However, the high cost of annotation procedures
of full-supervised methods limits the capability of the visual
BEV semantic segmentation, which usually needs HD maps,
3D object bounding boxes, and camera extrinsic matrixes. In
this paper, we present a novel semi-supervised framework for
visual BEV semantic segmentation to boost performance by
exploiting unlabeled images during the training. A consistency
loss that makes full use of unlabeled data is then proposed
to constrain the model on not only semantic prediction but
also the BEV feature. Furthermore, we propose a novel and
effective data augmentation method named conjoint rotation
which reasonably augments the dataset while maintaining the
geometric relationship between the FV images and the BEV
semantic segmentation. Extensive experiments on the nuScenes
dataset show that our semi-supervised framework can effectively
improve prediction accuracy. To the best of our knowledge, this
is the first work that explores improving visual BEV semantic
segmentation performance using unlabeled data. The code is
available at https://github.com/Junyu-Z/Semi-BEVseg.

I. INTRODUCTION

Bird’s eye view (BEV) semantic segmentation is a powerful
representation of the surrounding environment, which can
assist mobile robots such as autonomous vehicles in per-
ceiving the surroundings of static road layouts and dynamic
objects(e.g., vehicles, pedestrians). With rich information and
absolute scales, BEV semantic segmentation can directly
connect with many downstream tasks, such as path planning
and motion control. Recently, vision-based methods [1], [2],
[3], [4], [5] that infer BEV semantic segmentation only from
cameras have been developed to reduce the cost of sensors.

A visual BEV semantic segmentation model generally
consists of three components [6]: a backbone network as
a visual feature extractor, a view transformer module for
getting the BEV feature from the front-view (FV) feature,
and a segmentation decoder to predict semantic segmentation
from the BEV feature. And most of the existing BEV semantic
segmentation methods are full-supervised, mainly focusing
on exploring new view transform approaches [7], [1], [8],
integrating temporal cues [9], [10], and designing more
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Fig. 1. mIoU(%) on the nuScenes dataset between our semi-supervised
framework and supervised baseline using different label ratios.

complex segmentation decoders [3], [11]. However, these
methods rely heavily on the accessibility and quantity of
labeled data that needs high costs for constructing HD maps,
annotating 3D object bounding boxes, and capturing camera
extrinsic parameters. Compared with annotation, collecting
unlabeled images requires less labor. Therefore, in this work,
we are motivated to study semi-supervised learning based
BEV semantic segmentation from monocular images to boost
the performance by exploiting unlabeled data.

While many works have explored semi-supervised learning
for conventional 2D semantic segmentation, semi-supervised
visual BEV semantic segmentation is rather underexplored.
Following the common consistency regularization in semi-
supervised learning, we propose a consistency loss that
restricts the model with perturbations on unlabeled images.
Inspired by [12], in addition to semantic segmentation
consistency, we use additional consistency of BEV feature for
further improvement. And to excavate the spatial consistency
of the BEV feature, we use horizontal flipping as the
perturbation rather than color jitter which is typical for semi-
supervised 2D semantic segmentation.

Apart from using the above consistency regularization on
unlabeled data, we also explore improving the quantity and
diversity of the dataset for better performance. Although
several well-designed and effective data augmentation meth-
ods [13], [14] have been proposed for 2D/3D semantic
segmentation, there is no relevant research in the visual
BEV semantic segmentation field. Unlike pixel-aligned 2D/3D
semantic segmentation, the complex geometric relationship
of the projection between FV images and BEV semantic
segmentation maps makes data augmentation harder. Through
geometric intuition and mathematical analysis, we propose
a novel data augmentation method called conjoint rotation
for this task. And it benefits not only our semi-supervised
framework but also the full-supervised model.

Following the conventions in semi-supervised tasks, we
conduct experiments on nuScenes [15] dataset with different
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ratios of labels and demonstrate that our semi-supervised
framework can effectively improve performance by relatively
>10% on average with the unlabeled data as shown in Fig. 1.
Moreover, extensive ablation studies are also conducted to
prove the effectiveness of each component. We hope this
work can be a stepping-stone for future research in this field.

To summarize, our main contributions are as follows:
• We dig into visual BEV semantic segmentation with

limited labels and offer the first semi-supervised BEV
semantic segmentation framework that enhances the
performance using unlabeled data.

• We propose a consistency loss exploiting unlabeled data
to restrict the model on semantic segmentation and the
BEV feature.

• We design a novel data augmentation method for visual
BEV semantic segmentation, and it works well on our
semi-supervised framework and full-supervised model.

• The proposed framework achieves relatively >10%
average improvements over the full-supervised baseline
on the nuScenes.

II. RELATED WORKS

A. Visual BEV Semantic Segmentation

Visual BEV semantic segmentation is a task of using
FV images to predict BEV semantic segmentation. Via ho-
mography transformations, [16], [17] use inverse perspective
mapping (IPM) to map FV images/features onto the BEV
plane. This approach relies heavily on the plane hypothesis,
so it easily fails for objects that lie above the BEV plane, such
as cars and pedestrians. VED [5] uses the fully-connected
bottleneck layer to realize the feature transformation from the
front view to the BEV. Due to the lack of available ground
truth data, early methods rely on various weak supervision.
And with the emergence of the nuScenes dataset [15] that
contains HD maps, 3D object bounding boxes, and much
image data from six calibrated cameras in different scenes,
visual BEV semantic segmentation develops rapidly. Based
on view transformation (VT) strategies, different methods
can be divided into the following categories:

MLP-based VT [1], [3], [2] is based on the geometric
correspondence between the vertical lines in the image and
polar rays in BEV. 2D-to-3D-based VT [18], [7] gets BEV
feature by explicit or implicit depth estimation. 3D-to-2D-
based VT [19], [10], [20] projects 3D points from the BEV
plane onto the 2D image plane to get corresponding features.
Transformer-based VT [4], [21], [22], [10] is another ready
solution for transforming features from the front view to the
BEV by implicit geometric reasoning.

Although impressive results have been achieved by recent
fully-supervised methods, requiring time-consuming and
laborious labeling is a common shortcoming. Gao et al. [23]
present a framework that can be trained with both labeled
and unlabeled data but fails to improve performance with
unlabeled data. And their work focuses on estimating road
layout but no dynamic elements. In this work, under a
more challenging setting, we dig into underexplored semi-

supervised learning in visual BEV semantic segmentation to
improve performance by exploiting unlabeled data.

B. Semi-Supervised 2D Semantic Segmentation

Inspired by the progress of semi-supervised learning
in the image classification field, semi-supervised semantic
segmentation for the 2D image has been explored by many
works in these years. To force the decision boundary to lie
in the low-density area, many works [24], [25], [26], [27]
utilize a common strategy, consistency regularization. Pseudo-
labeling [28], [29], [30] is another effective technique.

In this work, we apply consistency regularization to the
semi-supervised visual BEV semantic segmentation task
and propose a consistency loss that acts on both semantic
segmentation and the BEV feature.

C. Data Augmentation

Data augmentation is a practical approach to improving
generalization ability and has been explored in many fields,
including image classification [31], [32], 3D point cloud se-
mantic segmentation [14], and 2D semantic segmentation [13].
In the visual BEV semantic segmentation field, there is no
relevant work currently, to the best of our knowledge.

In this work, out of geometric intuition and mathematical
analysis, we propose a new data augmentation named conjoint
rotation that is effective for this task.

III. METHOD

For the visual BEV semantic segmentation task, we need
to predict a semantic segmentation map Y from the given FV
image I with its corresponding camera intrinsic matrix K. In
this paper, each pixel of Y ∈ pC×Z×X describes the probabil-
ity of C categories, such as drivable area, walkway, pedestrian,
and car. And different types in a BEV semantic map may
appear in the same pixel, which is different from the setting of
some existing works [7], [10], [4]. Under the semi-supervised
setting, the training set consists of a labeled set DL =
{(I0L,K0

L, Ŷ
0), (I1L,K

1
L, Ŷ

1), ..., (IiL,K
i
L, Ŷ

i), ...} and an
unlabeled set DU = {(I0U ,K0

U ), (I
1
U ,K

1
U ), ..., (I

i
U ,K

i
U ), ...}.

And we aim to exploit DL∪DU to train a model that performs
better than only trained on DL. An overview of the proposed
framework is illustrated in Fig. 2.

In this work, we follow the Mean Teacher [33] that is
originally proposed for image classification and extend it to
the more taxing task of visual BEV semantic segmentation.
We design a segmentation consistency loss Lsc and a
feature consistency loss Lfc for consistency regularization.
Furthermore, we propose a novel data augmentation method
called conjoint rotation to improve performance.

In the following subsections, we first give a brief intro-
duction to the visual BEV semantic segmentation model in
Sec. III-A. In Secs. III-B,III-C,III-D, we successively describe
the supervised loss Lsup, segmentation consistency loss Lsc,
and BEV feature consistency loss Lfc. And we present our
proposed conjoint rotation in Sec. III-E. Finally, Sec. III-F
summarizes the training process.
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Fig. 2. Framework overview. By our proposed conjoint rotation, the labeled and unlabeled data are first augmented to get IL, Ŷ , and IU . Immediately
after that, Y and YU are predicted by the Student Net MS and Teacher Net MT , respectively. Meanwhile, MS predicted Y

′
U from flipped image I

′
U .

Note that the view transformer of MS and MT needs the camera intrinsic matrix K as input, and K would also be changed when flipping the image.
The feature consistency loss Lfc is computed from the L2 loss of BEV features of IU and I

′
U . And the segmentation consistency loss Lsc is computed

from the L2 loss of BEV semantic segmentation, YU and Y
′
U . Also, the supervised loss Lsup is computed between Y and Ŷ . After MS is updated with

gradient descent using the above losses, MT is updated as an exponential moving average (EMA) of MS . The Teacher Net can perform better than the
Student Net after the training with proper hyper-parameters.

A. Visual BEV semantic segmentation Model

Generally, a visual BEV semantic segmentation model M
first uses a backbone network to extract the FV feature from
the given FV image I ∈ R3×H×W . The model gets the BEV
feature from the FV feature through a view transformer that
is usually related to the camera intrinsic matrix K ∈ R3×3.
Finally, using a segmentation decoder, the model predicts
BEV semantic segmentation Y ∈ pC×Z×X from the BEV
feature. In this work, our framework uses two models with the
same structure called Teacher Net MT and Student Net MS .
Their parameters are separately randomly initialized except
the pretrained backbone network, and the MT performs better
after the training process.

B. Supervised Loss

Following state-of-the-art methods [9], [3], [2], we use the
same Dice loss as the supervised loss Lsup for labeled data.
The Lsup is defined over C classes and N pixels:

Lsup = 1− 1

|C|

C∑
k=1

2
∑N

i ŷki y
k
i∑N

i ŷki + yki + ϵ
. (1)

where ŷki is the target binary variable grid cell of Ŷ , yki is
the predicted probability variable of Y , and ϵ is set as 1e-5
to prevent the denominator from being zero.

C. Segmentation Consistency Loss

For the unlabeled data, we calculate the segmentation
consistency loss Lsc between semantic segmentations, YU and
Y

′

U , from the unlabeled data {IU ,KU} and the horizontally

flipped version {I ′

U ,K
′

U}. The YU and Y
′

U are the output
class probability matrixes after the last sigmoid function.
Because of the geometric relationship between the FV and
the BEV, the consistency of BEV semantic segmentation of
the original image and the flipped one is natural. Using L2
distance ∥ · ∥2 and horizontally flipping operation Φ, the Lsc

is formulated as:

Lsc = ∥ỸU − Φ(Y
′

U )∥2. (2)

where ỸU means that the gradient of YU is detached.

D. BEV Feature Consistency Loss

In BEVDet [12], Huang et al. conducted common 2D
augmentation operations, including random flipping, scaling
and rotating on both the BEV feature and the 3D object
detection targets for boosting the detection performance.
Their augmentation strategy actually indicates spatial cor-
respondence between the BEV feature and BEV position.
And we further find the spatial correspondence between the
BEV feature and BEV semantic segmentation can also be
established. In other words, when two semantic segmentation
maps are symmetric, their BEV features should also be
symmetric. Thus apart from applying consistency in BEV
semantic segmentation, we design a feature consistency loss
Lfc for the BEV feature to refine the consistency:

Lfc = ∥F̃U − Φ(F
′

U )∥2. (3)

where FU and F
′

U are the BEV features of IU and I
′

U . ∥·∥2 is
the L2 distance. Φ denotes the horizontally flipping operation
and F̃U means that the gradient of FU is detached.
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E. Conjoint Rotation for Data Augmentation

Data augmentation can effectively improve the quantity
and diversity of the training set to boost performance. There
are no specially designed data augmentation methods on the
visual BEV semantic segmentation, and only some simple
methods, e.g., horizontal flipping and color jitter are used, to
the best of our knowledge. it’s mainly because the geometric
relationship between the FV image and the BEV semantic
segmentation is more complex than in the pixel-aligned 2D/3D
tasks. The existing methods can easily destroy the spatial
position relationship of corresponding pixels, making the
view transformer more challenging to be trained.

We find that conjointly rotating the FV image and the GT
BEV semantic segmentation map can reasonably augment
the dataset without damaging the geometric relationship. As
shown in Fig. 3, with the random angle α sampled from a
pre-determined interval [−αmax, αmax], we rotate the GT
BEV semantic segmentation map and the FV image along a
y-axis that is vertical to the BEV plane and passes through
the origin of camera coordinate system.

y

z

x

O

y

zO

x

Replicate 
border

Pure 
rotation for 
front-view 

image

Pure rotation for BEV 
semantic map

Fig. 3. Illustration of conjoint rotation.

The above rotation is a pure rotation for the camera, so
the rotated FV image can be obtained using a homography
transformation H1 that merely relates to the camera intrinsic
matrix K and angle α by forward warping operation. And
according to [34], the transformation brought by H1 can be
expressed using the follow equations:{

u2 = (h11u1 + h12v1 + h13)/(h31u1 + h32v1 + h33)
v2 = (h21u1 + h22v1 + h23)/(h31u1 + h32v1 + h33)

,

(4)
where the (u1, v1) and (u2, v2) respectively denotes the pixel
coordinate in the original and transformed images, and hij

is only determined by K and α. The above forward warping
operation will introduce black edges in the transformed
image. Such black edges can lower the improvement of the
conjoint rotation, and we find replicating the border after the
homography transformation can work better, as shown in our
experiments in Sec. IV-E.

Furthermore, the perpendicular relationship between the
BEV plane and the y-axis makes the rotation of the BEV
semantic segmentation map equivalent to a rotation in the
x-z plane around the coordinate origin O. The rotated GT
BEV semantic segmentation map can be obtained by inverse
warping operation with a 2D rotation matrix H2:

H2 =

[
cos(α) −sin(α)
sin(α) cos(α)

]
. (5)

Note that if the above y-axis is not vertical to the BEV plane,
it is impossible to get the rotated BEV segmentation map
because of the unpredictable occlusion.

Conjoint rotation acts concurrently on the FV images and
the GT BEV segmentation map for labeled data while only
acting on the FV images for unlabeled data.

F. Training Process

Each training batch consists of half labeled data and half
unlabeled data, which is then augmented by the proposed
conjoint rotation to get IL and IU . And I

′

U is got by horizontal
flipping the IU . The Student Net MS is used to predict BEV
semantic segmentation maps Y and Y

′

U . The Teacher Net
MT is used to predict YU . We update θt, the parameters of
MS at training step t using following overall loss:

L = Lsup + λ1Lsc + λ2Lfc, (6)

Then, following Mean-Teacher [33], we update θ
′

t, the
parameters of MT at training step t using exponential moving
average (EMA):

θ
′

t = αθ
′

t−1 + (1− α)θt. (7)

where the EMA decay factor α is set as 0.999 empirically.
And after the training, we use the MT for evaluation.

IV. EXPERIMENTS

A. Datasets

We conduct experiments on the nuScenes [15]. Follow-
ing [1], We use the same data generation process and the same
data split. The training set and testing set contain 168048
images and 35886 images, respectively. The resolution of
input images is 600 × 800, and the output BEV semantic
segmentation map has a resolution of 196× 200, with each
pixel representing 0.25m× 0.25m in the real world.

Following the conventions in semi-supervised tasks, we
divide the training set into labeled and unlabeled subsets with
different ratios. Specifically, we use the first 5%, 10%, 20%,
and 40% samples of each sequence of nuScenes as the labeled
set and assume the remaining samples as the unlabeled set.

B. Network Architecture

Our model has the same architecture as PON [1], a
milestone work in the visual BEV semantic segmentation
field. The mode uses a ResNet-50 with an FPN [35] as the
backbone. The view transformer is implemented by an MLP.
And the segmentation decoder consists of a stack of residual
blocks and a sigmoid activation function at the last layer.

C. Implementation Details

Our work is implemented in Pytorch on 8 NVIDIA V100
GPUs. We train the models using the Adam optimizer with
25 epochs and a batch size of 32. The initial learning rate is
set as 1× 10−4 and decays to 1× 10−5 after 15 epochs. The
weight λ1 and λ2 in Eq. 6 are empirically set as 2× 10−3

and 2× 10−4 respectively. Besides, we set αmax = 35◦ for
the proposed conjoint rotation augmentation. With a 50%
chance, we apply the conjoint rotation on the FV images
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TABLE I
IOU(%) ON NUSCENES WITH DIFFERENT RATIOS OF LABELS. "C.V.": CONSTRUCTION VEHICLES, "PED.": PEDESTRIAN, "MOTOR": MOTORCYCLE.

Ratio Method Mean drivable crossing walkway carpark car trunk bus trailer C.V. ped. motor. bike cone barrier

5%

sup-only 14.8 57.7 25.7 30.3 24.9 29.5 9.8 5.1 4.3 0.6 2.7 0.6 1.4 6.1 8.0
Π-Model [36] 15.1 57.1 26.2 29.7 24.2 29.4 10.8 5.5 7.3 1.7 2.7 0.7 1.7 5.4 8.2

MT [33] 15.4 56.7 26.8 30.4 25.3 30.4 11.4 6.8 7.5 0.9 3.0 0.5 1.2 6.9 8.4
CPS [29] 14.5 57.0 25.4 29.4 24.0 29.3 10.5 5.9 6.6 0.3 2.0 0.1 0.3 5.0 7.8

UniMatch [37] 14.4 57.0 25.2 29.3 24.0 29.2 10.4 5.7 6.4 0.4 1.8 0.1 0.3 4.8 7.2
Ours 18.1 59.3 29.8 33.8 26.1 34.6 14.7 9.8 10.7 1.5 5.9 1.6 2.7 9.6 12.5

10%

sup-only 17.3 58.6 26.8 32.5 28.5 33.2 14.9 9.9 10.3 1.2 4.9 2.1 2.3 7.5 10.2
Π-Model [36] 17.4 59.3 30.0 32.7 27.2 33.0 13.2 8.7 9.5 1.4 5.8 1.8 3.1 8.0 10.4

MT [33] 17.8 58.6 29.7 31.8 27.4 33.7 15.6 8.9 11.4 1.9 5.1 1.8 2.8 9.4 10.8
CPS [29] 16.4 58.7 27.0 30.3 26.0 32.0 14.6 7.7 10.1 1.2 3.0 0.5 1.3 8.0 8.7

UniMatch [37] 16.6 58.8 27.2 30.2 26.4 32.4 14.7 8.0 10.0 1.7 3.2 0.7 1.2 8.5 8.9
Ours 20.1 60.8 31.9 35.7 27.4 36.4 17.3 13.8 13.9 2.8 7.8 4.0 5.2 11.4 12.9

20%

sup-only 19.5 61.0 32.4 34.8 27.7 36.8 15.8 14.0 11.9 2.3 7.1 3.8 3.5 7.8 13.7
Π-Model [36] 19.8 60.7 32.2 35.2 26.8 36.5 16.7 13.6 11.4 1.9 6.8 4.7 4.7 10.6 15.0

MT [33] 20.3 60.4 32.8 36.0 29.8 36.2 17.6 11.9 12.9 4.4 7.8 3.7 4.4 11.1 15.1
CPS [29] 18.4 59.4 31.7 35.2 29.2 35.0 17.0 10.9 12.0 3.6 7.0 2.7 3.5 10.2 13.6

UniMatch [37] 18.2 59.4 31.3 35.0 29.0 35.0 16.8 10.5 11.8 3.5 6.8 2.6 3.2 10.0 13.6
Ours 21.9 61.5 34.0 37.0 30.6 38.5 20.4 16.8 14.3 3.4 9.7 6.7 6.9 10.7 15.8

40%

sup-only 22.3 61.3 34.9 37.5 30.9 38.9 20.5 17.8 16.4 3.0 10.5 6.1 6.3 11.5 15.9
Π-Model [36] 22.6 61.8 35.1 37.9 30.8 38.2 20.6 21.1 15.5 4.7 9.9 6.4 7.1 10.4 16.4

MT [33] 22.6 61.5 34.9 37.9 31.6 38.4 20.0 18.5 16.2 3.2 10.5 7.6 8.3 10.9 16.7
CPS [29] 20.6 59.5 33.0 36.0 29.5 37.3 18.0 17.2 13.1 1.6 8.5 5.7 6.2 8.9 15.0

UniMatch [37] 20.5 59.6 33.0 35.7 29.4 37.3 18.0 17.0 12.8 1.6 8.4 5.6 6.0 8.9 15.0
Ours 23.5 62.8 36.0 38.9 31.5 39.6 22.7 21.6 18.3 5.1 11.1 6.8 7.6 11.1 16.1

Drivable Ped.crossing Walkway Carpark Car Trunk Bus Trailer Constr.veh Pedestrian Motorcycle Bicycle Traffic cone BarriernuScene:

FV image GT sup-only Π-Model[36] MT[33] CPS[29] UniMatch[37] Ours

Fig. 4. Qualitative results with 20% labels. We follow the color scheme in PON [1] and use the visibility mask (black) for visualization.

before being resized and fed to the network. For evaluation,
following [1], we use the IoU as our evaluation metric, and
those invisible pixels are ignored during evaluation.

For sufficient comparison, we extend several classical and
state-of-the-art semi-supervised 2D segmentation methods
to this task. Especially, we look into Π-Model [36], Mean-
Teacher (MT) [33], CPS [29] and UniMatch [37]. And their
weights of consistency loss are respectively set as 5× 10−3,
2× 10−3, 1× 10−3 and 1× 10−3.

D. Main Results

Tab. I presents the class-wise IoU scores on the nuScenes
dataset. With various ratios of labeled data, our semi-
supervised framework can significantly outperform the
supervised-only baselines in almost all categories, indicating
that our framework is able to utilize unlabeled data to
effectively enhance performance. Given 10% labeled data
and 90% unlabeled data, our framework can even outperform
the full-supervised baseline using 20% labels. A similar
improvement is also achieved under the setting of 5% labels.
This implies that our semi-supervised framework can enhance
the efficiency of data utilization. Compared with extended 2D
semi-supervised methods [36], [33], [29], [37], our framework
achieves better scores. Thus the superiority of our framework
is presented. And interestingly, state-of-the-art 2D semi-
supervised methods [29], [37] perform worse than classical
methods [36], [33] on this task. We conjecture that the
operation of generating pseudo labels in [29] and [37] is
not applicable to this multi-label classification task.

Furthermore, the qualitative results on the nuScenes with
20% labels are shown in Fig. 4. They also prove that by
exploiting unlabeled data, our framework helps improve the
semantic segmentation quality.

TABLE II
MIOU(%) FOR ABLATION STUDIES. CR DENOTES CONJOINT ROTATION.

Lsup Lsc Lfc CR 5% 10% 20% 40%

✓ 14.8 17.3 19.5 22.3
✓ ✓ 15.4(↑0.6) 17.8(↑0.5) 20.3(↑0.8) 22.6(↑0.3)
✓ ✓ ✓ 15.5(↑0.7) 17.9(↑0.6) 20.5(↑1.0) 22.3(↑0.0)
✓ ✓ 17.5(↑2.7) 19.2(↑1.9) 21.1(↑1.6) 22.8(↑0.5)
✓ ✓ ✓ 18.1(↑3.3) 20.1(↑2.8) 21.4(↑1.9) 23.3(↑1.0)
✓ ✓ ✓ ✓ 18.1(↑3.3) 20.1(↑2.8) 21.9(↑2.4) 23.5(↑1.2)

E. Ablation Study

To better understand the effect of each component of our
framework, we conduct an ablation study as presented in
Tab. II. The results show that when all components are
combined together, the performance is the best. Note that we
only report mIoU scores in this section, due to the abundance
of experiments.

We conduct more detailed ablation studies to get deeper
insights into our framework. The following experiments are
conducted with 20% labels unless otherwise specified.
Benefits of Consistency losses. The supervised loss Lsup

gives the model the primary supervisory signal. However,
when labels are limited, information of unlabeled data cannot
be excavated with only Lsup. As shown in Tab. II, compared
with the full-supervised model, better scores can be gained by
introducing segmentation consistency loss Lsc. Furthermore,
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(a) (b) (c) (d)

Fig. 5. Different border modes. (a)Original FV image. Augmented FV image with (b)zero border, (c)reflect border, and (d)replicate border.

applying consistency constraints on the BEV feature by Lfc,
model performance can be further refined in almost all cases.
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Fig. 6. Sensitivity of θmax of conjoint rotation augmentation.
Effectiveness of conjoint rotation. The results in Tab. II
show that in all cases, conjoint rotation can significantly
improve performance. Thus, the conjoint rotation is effective
for both full-supervised and semi-supervised models thanks
to maintaining the 3D geometric relationship even though
information on image edges may be lost. As the unique
hyper-parameter for conjoint rotation, the role of αmax needs
to be explored. And we conduct sensitivity experiments
on αmax and show results in Fig. 6. According to Fig. 6,
we choose 35◦ as θmax for better performance. And the
results also show that the improvement is remarkable in
a wide range of θmax (15◦ − 55◦), which validates the
robustness of conjoint rotation. The bordering mode is also
essential for conjoint rotation. We compare the performance
using different bordering modes(Fig. 5(b) to (d)) and present
the results in Tab. III. With zero border, image black
edges brought by forward warping operation can lower the
improvement of conjoint rotation. And replicating border can
make the improvement more significant. But interestingly,
there is no improvement when reflecting border. Moreover,
we make a comparison with other augmentation methods to
demonstrate our effectiveness in Tab. IV. The unsatisfaction
with Cutout [38] and Random Erasing [31] may lie in
the damage to the geometric relationship between the FV
images and the BEV semantic segmentation maps. Although
BEV-Space data augmentation [12] can improve detection
performance, the performance degradation shown in Tab. IV
proves that it’s not applicable to this task.

TABLE III
ABATION STUDY ON BORDER MODE.

Replicate Border (Ours) Zero Border Reflect Border

21.9 21.3 21.3

Perturbation strategy. Different perturbation strategies may
bring different results for consistency-based semi-supervised
learning. We make a comparison between our horizontal flip
and color jitter, a common perturbation strategy in the semi-

TABLE IV
COMPARISON WITH OTHER AUGMENTATION METHODS.

Augmentation method mIoU(%)

Cutout [38] 20.1
Random Erasing [31] 20.5

BEV-space Data Augmentation(Rotate) [12] 20.4
BEV-space Data Augmentation(Flip) [12] 20.4

Conjoint Rotation 21.9

supervised 2D semantic segmentation field. Results of the
first two rows in Tab. V show that our framework without
Lfc performs slightly better when using color jitter as the
perturbation. But when feature consistency loss Lfc is applied,
performance can be further improved with the horizontal flip
while almost unchanged with color jitter. It indicates that
Lfc improves the performance by effectively constraining
the spatial consistency that is perturbed by horizontal flip.
And the results in the third row imply that the color jitter
can destroy such consistency.

TABLE V
MIOU(%) SCORES WITH DIFFERENT PERTURBATION STRATEGY.

Horizontal Flip Color Jitter Ours w/o Lfc Ours

✓ 21.4 21.9
✓ 21.5 21.5

✓ ✓ 21.3 21.6

Improvements with 3D-to-2D-based VT. To verify the
effectiveness of our framework, we further use the 3D-to-
2D-based VT [10] to conduct the experiments. mIoU scores
in Tab. VI validate that our framework can still effectively
exploit unlabeled data to improve performance.

TABLE VI
IMPROVEMENTS WITH 3D-TO-2D-BASED VT ON THE NUSCENES

Method 5% 10% 20% 40%

3D-to-2D(sup-only) 14.6 16.4 17.6 19.9
3D-to-2D(semi-sup) 16.2 17.4 18.9 20.7

V. CONCLUSION

In this work, we delve into the visual BEV semantic
segmentation with limited labels and present a novel semi-
supervised framework to utilize unlabeled data to improve
performance. We propose restricting the model using con-
sistency on semantic segmentation and the BEV feature to
use unlabeled data fully. Moreover, we design a novel data
augmentation method based on the ingenious geometric rela-
tionship. Experiment results demonstrate that our framework
can effectively improve performance and data utilization even
when using different view transformer. And the effectiveness
of our contributions is proved by extensive ablation studies.
In the future, we will investigate extending our contributions
to BEV detection and 3D semantic occupancy tasks.

9084

Authorized licensed use limited to: Zhejiang University. Downloaded on October 31,2024 at 06:43:09 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] T. Roddick and R. Cipolla, “Predicting semantic map representations
from images using pyramid occupancy networks,” in CVPR, 2020.

[2] S. Gong, X. Ye, X. Tan, J. Wang, E. Ding, Y. Zhou, and X. Bai, “Gitnet:
Geometric prior-based transformation for birds-eye-view segmentation,”
in ECCV, 2022.

[3] A. Saha, O. Mendez, C. Russell, and R. Bowden, “Translating images
into maps,” in ICRA, 2022.

[4] B. Zhou and P. Krähenbühl, “Cross-view transformers for real-time
map-view semantic segmentation,” in CVPR, 2022.

[5] C. Lu, M. J. G. van de Molengraft, and G. Dubbelman, “Monocular
semantic occupancy grid mapping with convolutional variational
encoder–decoder networks,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 445–452, 2019.

[6] H. Li, C. Sima, J. Dai, W. Wang, L. Lu, H. Wang, E. Xie, Z. Li, H. Deng,
H. Tian, et al., “Delving into the devils of bird’s-eye-view perception:
A review, evaluation and recipe,” arXiv preprint arXiv:2209.05324,
2022.

[7] J. Philion and S. Fidler, “Lift, splat, shoot: Encoding images from
arbitrary camera rigs by implicitly unprojecting to 3d,” in ECCV, 2020.

[8] H. Zhou, Z. Ge, Z. Li, and X. Zhang, “Matrixvt: Efficient multi-
camera to bev transformation for 3d perception,” arXiv preprint
arXiv:2211.10593, 2022.

[9] A. Saha, O. Mendez, C. Russell, and R. Bowden, “Enabling spatio-
temporal aggregation in birds-eye-view vehicle estimation,” in ICRA,
2021.

[10] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and J. Dai,
“Bevformer: Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers,” in ECCV, 2022.

[11] N. Gosala and A. Valada, “Bird’s-eye-view panoptic segmentation
using monocular frontal view images,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 1968–1975, 2022.

[12] J. Huang, G. Huang, Z. Zhu, and D. Du, “Bevdet: High-performance
multi-camera 3d object detection in bird-eye-view,” arXiv preprint
arXiv:2112.11790, 2021.

[13] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V.
Le, and B. Zoph, “Simple copy-paste is a strong data augmentation
method for instance segmentation,” in CVPR, 2021.

[14] A. Xiao, J. Huang, D. Guan, K. Cui, S. Lu, and L. Shao, “Polarmix: A
general data augmentation technique for lidar point clouds,” in NeurIPS,
2022.

[15] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in CVPR, 2020.

[16] S. Sengupta, P. Sturgess, L. Ladickỳ, and P. H. Torr, “Automatic dense
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