
Learning Safe Locomotion for Quadrupedal Robots
by Derived-Action Optimization

Deye Zhu1, Chengrui Zhu, Zhen Zhang, Shuo Xin, Yong Liu∗

Abstract— Deep reinforcement learning controllers with exte-
roception have enabled quadrupedal robots to traverse terrain
robustly. However, most of these controllers heavily depend on
complex reward functions and suffer from poor convergence.
This work proposes a novel learning framework called derived-
action optimization. The derived action is defined as a high-
level representation of a policy and can be introduced into
the reward function to guide decision-making behaviors. The
proposed derived-action optimization method is applied to learn
safer quadrupedal locomotion, achieving fast convergence and
better performance. Specifically, we choose the foothold as the
derived action and optimize the flatness of the terrain around
the foothold to reduce potential sliding and collisions. Extensive
experiments demonstrate the high safety and effectiveness of
our method.

I. INTRODUCTION

Quadrupedal locomotion controllers [1]–[5] have made
significant progress in recent years. Unlike wheeled robots,
quadrupedal robots can autonomously select footholds and
adaptively traverse various challenging terrains. In complex
application scenarios such as patrols and deliveries, robots
need to carefully control their feet to navigate through
various staircases and steps safely, preventing dangerous
behaviors such as getting stuck and falling.

Most existing methods construct the robot-centric eleva-
tion map with LiDAR or cameras as the form of extero-
ception [5]–[7]. Model-based approaches [8]–[10] explicitly
select safe footholds from the elevation map and generate
joint commands to achieve the desired footholds. However,
model-based methods can only solve some corner cases, and
model mismatch or violation of assumptions leads to poor ro-
bustness [7]. Controllers based on model-free reinforcement
learning (RL) are suitable for addressing such a problem.

Incorporating terrain observation in learning-based con-
trollers leads to better dynamic responsiveness. Some
learning-based methods [11]–[13] directly use raw sensor
data like depth images as environmental perception. The
disadvantage is that it is usually expensive to obtain dense
depth during simulated training. Using height sampling to
describe the terrain, Rudin et al. [14] trained thousands
of robots in parallel on different terrains, obtaining strong
terrain traversal capabilities but still prone to dangerous
foot collision behavior. This issue arises because the RL
policy does not have a fine-grained perception of the terrain,

Deye Zhu, Chengrui Zhu, Zhen Zhang, Shuo Xin and Yong Liu
are with the College of Control Science and Engineering, Zhejiang
University, Hangzhou, 310027 China {zhudy, jewel, zhenz,
22232036}@zju.edu.cn, yongliu@iipc.zju.edu.cn

Yong Liu is the corresponding author.

Fig. 1. Aliengo travels outdoors, with the robot autonomously selecting
safe and reliable contact positions. The terrain consists of steps of varying
widths and heights. Uneven surfaces and irregular steps pose a challenge
for Aliengo.

suggesting that the neural network does not fully understand
the terrain information.

Some methods [15], [16] introduce actions output by an
external planner as a reference to shorten the training time
and improve the stability of the policy. Jenelten et al. [17]
introduced a model-based trajectory optimization method
into the RL training process to achieve adaptive foothold
locomotion in complex terrain. For a simpler implementation
of safe locomotion, Shi et al. [18] introduced a discrete
safety reward function in reinforcement learning. The pol-
icy’s training speed is improved by introducing an adjustable
trajectory generator. Meanwhile, the learning-based policy
has also been proven to have the ability to generate footstep
plans [19], which reveals the great potential of the policy for
planning macro-actions. Research on how to improve policy
understanding of terrain and learn more efficient and safe
locomotion is crucial.

With prior knowledge, animals can select safe footholds
ahead of time to avoid collision in challenging terrain. Dur-
ing locomotion, the muscle-generated action and expected
footholds are alternately optimized. Inspired by this process,
we propose a derived-action optimization framework to
solve the problem that learning-based methods have en-
countered. In this framework, we define derived action as a
high-level representation of policy and introduce a derived-
action reward function to reinforcement learning. This allows
for the alternating optimization of both action and derived
action, which speeds up policy convergence and enables safe
locomotion in complex terrain.

Our contributions are as follows:

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 14-18, 2024. Abu Dhabi, UAE

979-8-3503-7770-5/24/$31.00 ©2024 IEEE 6870

20
24

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

97
9-

8-
35

03
-7

77
0-

5/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IR

O
S5

85
92

.2
02

4.
10

80
27

25

Authorized licensed use limited to: Zhejiang University. Downloaded on February 11,2025 at 03:17:54 UTC from IEEE Xplore. Restrictions apply.

Reward
Policy

Gradient

LSTM

Action

Exporation

Target
Joint

Position PD
Controller

Simulation / Deployment

Torque

Simulation OnlySimulation & Deployment

Reinforcement
Learning

Joint positions

Linear velocity
Angular velocity

Gravity vector

Joint velocities

Last action

Derived Action Supervised
Learning

Derived-Action
Reward

Elevation map

Convolutional
Encoder

Derived-Action ReferenceDerived-
Action
Head

Action
Head

Proprioception

Command velocity
Derived-Action Optimization

Fig. 2. An overview of training method and deployment. The policy takes proprioception and elevation map as inputs and outputs joint action as well
as derived action. Supervised learning is used to train the derived action head, and then the derived-action reward function is introduced to accelerate the
convergence of the policy.

• We propose a novel framework for policy training. The
derived action is explicitly represented by the policy and
participates in the optimization of RL.

• We choose the foothold as the derived action to learn
safe locomotion. By optimizing the terrain flatness
around the foothold, the policy automatically selects
safe footholds to reduce unintended collisions.

• The effectiveness of our method is demonstrated in
simulation and real-world experiments. Compared to
baseline methods, our proposed method converges faster
and achieves fewer collisions in challenging terrains.

II. METHOD

A. Problem Formulation

Quadrupedal locomotion and control can be defined as a
Markov Decision Process (MDP), which is defined by a tuple
< S,A,R, P >, where S is the state space, A is the action
space, P : S × A × S 7→ [0, 1] is the transition probability
distribution, and R : S ×A 7→ R is the reward function. At
time t, the agent gets a state st from the environment and
selects an action at. Then environment transits to the next
state st+1 with the probability P (st+1|st, at) while earning
reward rt = R(st, at). Given the discount factor γ ∈ [0, 1),
its objective is to find a parameterized policy π∗(at|st) that
maximizes the expected long-term reward:

π∗(at|st) = argmax
at

E[
∞∑
t=0

γtrt] (1)

In our derived-action optimization framework, a MDP can
be represented by a tuple < S,A,Ad,R, P >, where Ad is
the derived-action space and R : S × A × Ad 7→ R is the
reward function. At time t, the policy also emits a derived
action adt ∈ Ad ∼ π(·|st) along with the action at, and the
reward is calculated by rt = R(st, at, a

d
t).

B. Policy Training

We trained a policy network to accomplish the task of
crossing challenging terrain. As shown in Figure 2, the
policy network combines the robot’s proprioceptive and
exteroceptive information, as well as the main action head
and derived-action head of the policy output both joint
action and derived action. The joint action is used to control
robot locomotion and participate in the interaction with the
simulation environment. The derived action is associated
with the action through probabilistic supervised learning
[20]. It is used to enrich the reward function and accelerate
the convergence of the policy and the locomotion effect.
Finally, the policy network is transferred to a physical robot
with [21], [22].

1) State, Action and Derived-Action Spaces: The state
is defined as st = (spt , s

e
t) ∈ R658, where spt =

[vt ωt gt ct θt θ̇t ajt−1] refers to the proprioception, where
vt ∈ R3, ωt ∈ R3, gt ∈ R3, ct ∈ R3, θt ∈ R12, θ̇t ∈
R12, at−1 ∈ R12 denote body linear velocity, body angular
velocity, gravity vector, velocity commands, joint positions,
joint velocities, and the previous action, respectively. The
exteroception set is a robot-centric elevation map, which is a
rectangular area of 1m×1.4m with a resolution of 0.05m.

The action at ∈ R12 is defined as the target positions of the
robot’s 12 joints, which are then used to calculate the joint
torques by the proportional-derivative (PD) controller. The
derived action adt is chosen as the distribution of the foothold
of each leg at the moment of landing. At time t, it is assumed
that the foothold of leg i follows a Gaussian distribution
N ((xi,t, yi,t), σ

2
i,t), where (xi,t, yi,t) denotes the expected

foothold of leg i expressed in the robot coordinate system,
and σi,t denotes the standard deviation of the foothold.

2) Probabilistically Supervised Learning of the Derived
Action: As shown in Figure 3, the locomotion process of one
foot can be divided into two phases: the contact phase and

6871

Authorized licensed use limited to: Zhejiang University. Downloaded on February 11,2025 at 03:17:54 UTC from IEEE Xplore. Restrictions apply.

RL

contact phase swing phase

trainning episode

share supervision value

Fig. 3. The foot locomotion process can be divided into two phases. The
small box indicates that the foot is in contact with the ground, while the
large box indicates that the foot is airborne. The grey box indicates that the
derived action shares a supervised value.

the swing phase. In the contact phase, we take the position
and variance of the foot in contact with the ground as the
derived action. In the swing phase, we take the position and
variance of the contact moment in the future as the derived
action. More intuitively, Shared supervised value ensures the
derived action always focuses on the safety of the footfall,
which can optimize the policy more clearly and efficiently.

The derived-action head of the policy is trained using
probabilistic supervised learning. For instance, when cross-
ing stairs, a foot may get stuck because of colliding with
the vertical surface of a step or stepping up to the next one.
Thus, the derived action represents this uncertainty through
variance. We define the loss of the derived action prediction
as follows:

L =
∥y − ŷ∥2

2σ̂2
+ log (σ̂2) (2)

where y denotes the actual position of the foothold, ŷ denotes
the mean position of the derived action, and σ̂2 denotes the
standard deviation of the derived action. Based on the Mean
Squared Error (MSE) loss, this approach introduces variance
that allows the policy to learn a probability distribution for
each foothold rather than just an expected position. The
variance will increase significantly at the beginning of the
swing phase, and the foot contact location becomes fuzzy
due to the uncertain foothold. Towards the end of the leg
swing phase, the variance will decrease rapidly and the foot
contact location becomes precise.

3) Reward Function: As shown in Equation 3, in rein-
forcement learning rewards, we categorize the rewards into
ordinary rewards rji and derived-action rewards rdi , where i is
the ordinal index of the reward function and ω denotes the
reward function coefficients. The ordinary reward function
rji follows the setup of the work [14]. The primary rewards
are accurate velocity tracking rewards and rewards that can
increase the naturalness of robot locomotion, such as joint
velocity, acceleration, smoothness, and so on. The derived-
action reward function is shown in Equation 4:

rt(st, a
j
t , a

d
t) =

∑
ωj
i r

j
i (a

j
t) + ωd

i r
d
i (a

d
t) (3)

rd = 1
exp(kσσ̂)

∫∫
S
p(x, y)V (x, y)dxdy,

(x, y) ∼ N ((x̂i,t, ŷi,t), σ̂
2
i,t)

(4)

where V (·) is an evaluation function that computes the

Fig. 4. Representing the foothold safety as an integral of terrain security
and predicted foothold probability.

flatness of terrain at a point on the map. We select the vari-
ance of terrain height around the foothold as the evaluation
function. As shown in Figure 4, the closer the foothold is
to the edge of the step, the greater the variance, indicating a
higher risk. Meanwhile, compared to calculating the distance
from the foothold to the edge of the step, this evaluation
function is more accessible to calculate in parallel. p(·)
is the probability density of a two-dimensional Gaussian
distribution centered on the derived action (x̂i,t, ŷi,t), with σ̂
as the variance. The derived-action reward is the integral of
the terrain safety value and represents the average foothold
safety under consideration of the foothold probability. When
the robot lifts its foot, the derived action shifts from the
current foothold to the next. Therefore, the mean of the
derived action will move to the next point, and the variance
will become extremely large. To reduce the position bias
and excessive variance error, we multiply the function by a
variance decay coefficient, paying more attention to assessing
footholds during the swing and the contact phase. It can
be seen that the reward function designed with derived
action can generate a continuous reward signal to optimize
the derived action without interruption. Thus, the policy is
optimized at a fast speed of convergence.

4) Curriculum Learning: We use a game-inspired curricu-
lum [14] to ensure progressive learning on difficult terrain.
Terrains include flat terrain, rough terrain, discrete steps
terrain, continuous stair terrain, sloping terrain, and gap
terrain. Rough terrain is a wave-shaped terrain with grid
sides of 0.05 m and heights uniformly sampled between [-
0.05, 0.05] m. Discrete step terrain consists of a group of
rectangular squares, with heights uniformly sampled between
[0.05, 0.25] m. On continuous stair terrain, we sample step
widths from {0.25, 0.3, 0.35, 0.4} m, and sample step heights
from [0.05, 0.20] m to make the policy more robust. The
slope of the sloping terrain was sampled between [5◦, 30◦].
The width and depth of the gaps of gap terrain are sampled
between [0.0, 0.20] m. The proportion of continuous stairs
is higher because it is common and challenging, while that
of other terrains is roughly the same.

5) Domain Randomization: We randomize the mass of
the robot’s body and legs, the joint PD parameters, the
initial joint positions and velocities, and the initial body
positions for each episode to increase the robustness of the
policy. The friction coefficient is also randomized to enhance
adaptation to different surfaces. The parameters of domain
randomization follow the settings of Rudin et al. [14].

6872

Authorized licensed use limited to: Zhejiang University. Downloaded on February 11,2025 at 03:17:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. The terrain settings for IsaacGym include flat terrain, rough
terrain, sloping terrain, continuous stair terrain, gap terrain, and discrete
steps terrain.

III. EXPERIMENTS

To evaluate the effectiveness of derived-action optimiza-
tion, we compare the following three methods:

1) Baseline [14]: The policy is trained with regular
reward functions, which do not include terms that constrain
footholds.

2) DR (Discrete Reward): Based on the Baseline, the
reward functions include a discrete form of Equation 4 ,
which is only valid for the first contact moment.

3) DAO (Derived-Action Optimization): The policy is
optimized by the derived-action optimization framework.

Other experimental settings remain consistent across the
three methods.

A. Policy Training in Simulation

We implement the environment with IsaacGym [23]. The
policy network is trained by Proximal Policy Optimization
(PPO) [24]. The policy network consists of four parts: a
convolutional encoder for encoding elevation maps, a Long
Short-Term Memory (LSTM) to keep historical encodings,
an action head, and a derived-action head. The convolutional
encoder consists of a two-layer Convolutional Neural Net-
work (CNN) with channels of [8, 16] and a three-layer Multi-
Layer Perceptron (MLP) with neurons of [128, 64, 32]. Both
the action head and derived-action head are MLPs with three
hidden layers with [512, 256, 128] neurons.

The policies are trained in 1024 parallel environments for
20,000 iterations and updated every 24 steps. The terrain
settings for the training are shown in Figure 5. All training
is performed on a desktop PC equipped with an Intel Core
i7-12700KF CPU, 64 GB RAM, and an NVIDIA RTX 3090
GPU. The algorithms are trained for 16 hours.

B. Behavior of Derived Action

We demonstrate the variation of the derived action on
a continuous staircase. As shown in Figure 6, at time t1,
the robot’s front right foot is just lifted, and the derived
action indicates the estimated location of the front right
foot and the distribution of the possible foothold. The large
variance indicates the considerable uncertainty of footfall at
this moment. At time t2, the robot’s front right foot is about
to touch the ground, and the actual foothold is close to the
derived action. The decrease in variance indicates that the
foothold estimated by the policy is becoming more accurate.
At time t3, the front right foot of the robot completely lands
on the ground, and the derived action converges to the actual

Fig. 6. Demonstration of the robot’s derived action during the contact phase
and the swing phase. The orange and blue curves, respectively, represent
the x-coordinate of the derived action and the actual position of the front
right foot. The blue area represents the 1-σ variance of the derived action.
The three images from left to right at the top correspond to at time t1, t2,
and t3, indicating that the foot is just lifted, the foot is about to touch the
ground, and the foot has already contacted the ground. The position and size
of the blue sphere represent the mean and variance of the derived action.

Fig. 7. These are the reward curves for derived-action and discrete action
rewards during unsafe foot contact (a) and safe foot contact (b), respectively.
The episodes of unsafe foot contact and safe foot contact are collected
from two policies at the beginning and end of training, respectively. The
foot contact reward is calculated by Equation 4. The blue curve shows the
derived-action reward normalized using the variance decay coefficient, the
transparent blue dashed line shows the original derived-action reward and the
orange curve shows the discrete reward. The red dashed box demonstrates
that derived action also generates incentives in the swing phase.

contact point with a small variance. Changes in the position
and variance of the derived action suggest that the policy can
accurately represent its high-level behavior.

C. Reward of Derived Action

The derived-action reward accelerates the convergence of
the training process and produces robust results by gener-
ating continuous rewards compared to the discrete reward
function. At the beginning of training with DAO, as shown in
Figure 7(a), the blue curve declines slowly at first, produces
a larger peak at the moment of contact, and then rises to
zero as the contact phase ends. As shown in Equation 4, the
reward for the derived action at the start of the foot lift is
maintained to a higher value after being reshaped by the large
variance decay coefficient, even though the original reward
for the derived action is relatively low. Unlike the discrete

6873

Authorized licensed use limited to: Zhejiang University. Downloaded on February 11,2025 at 03:17:54 UTC from IEEE Xplore. Restrictions apply.

0 1000 2000 3000 4000 5000 6000
Iterations

6.5

7.0

7.5

8.0

8.5

9.0

9.5
Fo

ot
ho

ld
 sa

fe
ty

 (c
m

)
DAO
DR

Fig. 8. Comparison of the convergence speed and effectiveness of DAO
and DR in terms of foothold security from the 0th to the 6000th iteration.
Vertical coordinates indicate the distance from the foothold to the edge.

foothold reward in orange, the derived-action reward has an
effect during both the swing and contact phases. Figure 7(b)
demonstrates that the derived-action reward remains high
throughout the locomotion when the policy converges. It
indicates that the policy automatically selects a safe foothold
and plans a collision-free leg trajectory to reach the selected
foothold.

D. Speed and Performance of Convergence
Continuous incentives of the derived-action reward func-

tion can significantly improve the efficiency of convergence.
We select a checkpoint of Baseline and fine-tune it for 6000
iterations using the derived-action reward function and the
discrete reward function, respectively. We take the policies
with 0 to 6000 iterations and compare their average foothold
safety and the number of foot collisions on continuous
staircase terrain. For a more intuitive comparison, we define
the average foothold safety as follows:

Rsafety =
1

N

N∑
i=0

∥pi − pedge∥, (5)

Rc =

T∑
t=0

∑
i=1,2,3,4

max(sgn(∥F i
xy,t∥ − 5|F i

z,t|), 0), (6)

where N represents the total times the four feet contact the
terrain in an episode, pi, pedge denotes the actual foothold
and the nearest step edge locations, respectively. Rsafety is
used to compute the average distance of footholds from the
step edges during the motion process, which is more intuitive
compared to Equation 4. Ideally, the robot will choose the
midpoint of the edges of the two steps as the foothold
for each locomotion procedure. Rc is used to evaluate the
number of unintended foot collisions within an episode.
When traversing on challenging terrain, such as stairs with
narrow steps, robots may stumble, resulting in a dangerous
body posture.

We construct a continuous staircase with a width of 0.35
m and a height of 0.15 m in IsaacGym, and select DR and
DAO policies with iterations between 0 and 6000 to evaluate
the average foothold safety. Each policy controls the robot
to locomote on the terrain for 10 minutes with randomly
sampling velocities between [-1.0, 1.0] m/s. We test each
policy five times.

Figure 8 shows that as training progresses, DAO converges
faster, indicating that the introduction of derived-action re-
wards leads to better training effects than the discrete reward.

0.
25

0.
30

0.
35

0.
40

7.1 6.6 6.1 5.7 5.5

7.8 7.3 6.7 6.4 6.2

7.2 6.7 6.3 5.9 5.4

7.4 6.9 6.5 6.1 5.8

(a)

Baseline

0.1 0.125 0.15 0.175 0.2

0.
25

0.
30

0.
35

0.
40

19 23 31 33 57

19 20 21 27 24

14 14 24 23 32

16 15 17 21 28

(d)

7.2 6.5 5.7 5 4.3

7.6 7.4 7 6.5 5.8

8.2 7.9 7.4 6.9 6.4

8.3 8 7.5 7.2 6.7

(b)

DR

0.1 0.125 0.15 0.175 0.2

4.1 8.1 5.5 9.3 17

5.3 13 15 20 20

3.5 5.2 11 24 26

2.2 4.1 12 22 25

(e)

8.9 8.6 8.3 8.3 8.2

9.9 9.5 9.2 9 8.9

10 9.7 9.4 9.2 9.1

10 10 9.7 9.6 9.2

(c)

DAO

0.1 0.125 0.15 0.175 0.2

11 3 4.5 8.3 6.5

2.8 2.9 2.4 3.6 3.3

1.8 2.8 1.6 2.9 2.4

1.8 1.8 1.6 2.5 3

(f)

4

5

6

7

8

9

10

Fo
ot

ho
ld

 sa
fe

ty
 (c

m
)

0

10

20

30

40

Nu
m

be
r o

f f
oo

t c
ol

lis
io

ns

Step height (m)

St
ep

 w
id

th
 (m

)

Fig. 9. Performance of Baseline (a, d), DR (b, e), and DAO (c, f) on
staircases of different heights and widths. The horizontal coordinate denotes
the height of the stair step, and the vertical coordinate denotes the width of
the stair step. The blue heatmap is the average foothold safety calculated by
Equation 5, and the red heatmap is the average number of foot collisions.
Darker colors for all heat maps indicate poorer performance.

TABLE I
ROBUSTNESS TEST WITH SUCCESS AND COLLISION RATE.

terrain DR DAO

Survival rate (%)
regular staircase 90 100
floating staircase 80 100

wide staircase 100 100

Collision rate (%)
regular staircase 5 0.3125
floating staircase 2.5 0.2083

wide staircase 0.2083 0

DAO can take a foothold safely up to 10 cm from the edge
of the steps, while the DR can only improve slightly.

To quantify the final performance of the Baseline, DR, and
DAO, we construct continuous staircases in IsaacGym with
widths ranging from 0.25 m to 0.4 m and heights ranging
from 0.1 m to 0.2 m. We evaluated each policy using the
average foothold safety and the number of foot collisions.

As shown in Figure 9 (a-c), DAO has a higher average
foothold safety on continuous steps. Even on the most chal-
lenging terrain with a width of 25 cm and a height of 20 cm,
the DAO can traverse the terrain with an average foothold
safety of 8.2 cm. In comparison, on DR and Baseline, these
values are only 4.3 cm and 5.5 cm, respectively. On all
staircase terrain, the DAO selects safe footholds and avoids
stepping on edges as much as possible. At the same time, on
a 40 cm wide stair, DAO does not blindly choose the safest
footholds but considers the appropriate ones to achieve robust
locomotion. In Figure 9 (d-f), DR and DAO have fewer
collisions than Baseline. Throughout the episode, DAO can
easily keep the number of collisions less than ten, while DR’s
foot collision times increase significantly as the step height
increases. Baseline is highly prone to stumble on any terrain
since it does not have a foothold safety reward. In summary,
these results demonstrate the superior effectiveness of our
proposed method.

E. Real World Deployment

We deploy our controller on an Aliengo made by Unitree
Robotics and modify the sensor configuration. The head

6874

Authorized licensed use limited to: Zhejiang University. Downloaded on February 11,2025 at 03:17:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Performance of the DAO on real-world environments and its corresponding elevation map. With our controller, the robot can traverse terrains
like (a) regular indoor staircases with a step width of 25 cm and a height of 16 cm, (b, f) wide outdoor staircases with a step width of 35 cm and a height
of 16 cm, (c) floating staircases with a step width of 25 cm and a height of 17 cm, (d) irregular steps in the wild, (e) single steps with a height of 25 cm,
(g) high continuous stairs with a step width of 25 cm and height of 20 cm, and (h) wooden thresholds with a height of 10 cm. The red, yellow, blue, and
green spheres represent the derived action of the FR, FL, RR, and RL foot, respectively.

of Aliengo is equipped with two LIVOX-MID360 LiDAR
sensors for a 120-degree vertical field of view. We sampled
the height of the terrain from a constructed elevation map
as perceptual inputs to the controller. All terrain-sensing
algorithms and control policy run on an onboard mini PC
with an Intel 13700H processor and 16GB of RAM. The
policy runs at 50 Hz, and we use a PD controller with
proportional and derivative gains of Kp = 40 and Kd = 1.5,
respectively, to track the desired joint positions at 1000 Hz.

We demonstrate the effectiveness of our model on regular
staircases, floating staircases, wide staircases, high steps, and
thresholds. As shown in Figure 10, scenes (a, b, f, g) are
regular staircases with varying heights and widths, which
shows that our policy can be widely applied to different
staircases. Scene (c) is a special kind of floating staircase
where the robot’s foot can easily get stuck between two steps.
Scene (d) is an outdoor hiking trail with masonry steps of
varying widths and heights. Scene (e) is a high stepping stone
to verify that our policy will choose appropriate footholds
to prevent stumbling. Scene (h) is continuous wooden sills,
where the robot is prone to stumble. In scenes (a, b, c),
the robot is tested ten times by moving at a speed of 0.5
m/s, and then we recorded whether it successfully passed
and the number of times the foot collided with the step wall.
This challenging staircase verifies that our method ensures
the safety of footholds and the stability of locomotion, as
our policy avoids collisions with the vertical surface of the
steps.

As shown in Table I, our model is superior in terms of
survival rate and collision rate compared to DR. The robot
is 100% guaranteed to traverse the terrain when running at
a speed of 0.5 m/s. The foot collision probability also stays
within 0.5% on each terrain, allowing almost collision-free
passage on each terrain. This is particularly important for
robots in application environments similar to scene (c), such
as in industrial patrol, to improve the safety of robots when
working on continuous and complex staircases.

IV. CONCLUSIONS

In this work, we introduce the derived-action optimization
framework, which enables quadruped robots to utilize a
policy to output a high-level derived action after developing
natural locomotion capabilities. This derived action provides
a more intuitive representation of the policy’s locomotion
ability, which can be targeted to accelerate the training
convergence speed and convergence effect. The derived-
action framework can introduce more substantial reward
incentives than normal reinforcement learning frameworks.
We demonstrate its effectiveness on Unitree’s Aliengo robot.
The limitations of the derived-action framework are how
to select appropriate derived action and how to design the
derived-action reward function to speed up the convergence
speed and convergence effect of the model. In future work,
we will implement it in more challenging tasks, such as
jumping to high platforms, by combining robot state and
action prediction.

6875

Authorized licensed use limited to: Zhejiang University. Downloaded on February 11,2025 at 03:17:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “Big-
dog, the rough-terrain quadruped robot,” IFAC Proceedings Volumes,
p. 10822–10825, Jan 2008.

[2] B. Katz, J. D. Carlo, and S. Kim, “Mini cheetah: A platform for push-
ing the limits of dynamic quadruped control,” in 2019 International
Conference on Robotics and Automation (ICRA), May 2019.

[3] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, Jan 2019.

[4] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, Oct 2020.

[5] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[6] D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and
S. Kim, “Vision aided dynamic exploration of unstructured terrain
with a small-scale quadruped robot,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), May 2020.

[7] F. Jenelten, T. Miki, A. E. Vijayan, M. Bjelonic, and M. Hutter, “Per-
ceptive locomotion in rough terrain – online foothold optimization,”
IEEE Robotics and Automation Letters, p. 5370–5376, Oct 2020.

[8] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter,
“Perceptive locomotion through nonlinear model predictive control,”
Aug 2022.

[9] O. Villarreal, V. Barasuol, P. Wensing, D. Caldwell, and C. Semini,
“Mpc-based controller with terrain insight for dynamic legged loco-
motion,” arXiv: Robotics,arXiv: Robotics, Sep 2019.

[10] K. Wang, T. Chen, J. Bi, Y. Li, and X. Rong, “Vision-based terrain per-
ception of quadruped robots in complex environments,” in 2021 IEEE
International Conference on Robotics and Biomimetics (ROBIO), Dec
2021.

[11] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion
in challenging terrains using egocentric vision,” in Conference on
Robot Learning, pp. 403–415, PMLR, 2023.

[12] S. Kareer, N. Yokoyama, D. Batra, S. Ha, and J. Truong, “Vinl: Visual
navigation and locomotion over obstacles,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2018–2024,
IEEE, 2023.

[13] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang, “Learning
vision-guided quadrupedal locomotion end-to-end with cross-modal
transformers,” arXiv preprint arXiv:2107.03996, 2021.

[14] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in
minutes using massively parallel deep reinforcement learning,” arXiv:
Robotics,arXiv: Robotics, Sep 2021.

[15] P. Brakel, S. Bohez, L. Hasenclever, N. Heess, and K. Bousmalis,
“Learning coordinated terrain-adaptive locomotion by imitating a
centroidal dynamics planner,”

[16] M. Bogdanovic, M. Khadiv, and L. Righetti, “Model-free reinforce-
ment learning for robust locomotion using demonstrations from tra-
jectory optimization,”

[17] F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep track-
ing control – a unifying approach to model-based planning and
reinforcement-learning for versatile and robust locomotion,” Sep 2023.

[18] H. Shi, Q. Zhu, L. Han, W. Chi, T. Li, and M.-H. Meng, “Terrain-
aware quadrupedal locomotion via reinforcement learning,” Oct 2023.

[19] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Rloc: Terrain-aware legged locomotion using reinforcement learning
and optimal control.,” IEEE Transactions on Robotics, p. 2908–2927,
Oct 2022.

[20] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision,” Neural Information Processing
Systems,Neural Information Processing Systems, Dec 2017.

[21] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain
mapping for mobile robots with uncertain localization,” IEEE Robotics
and Automation Letters (RA-L), vol. 3, no. 4, pp. 3019–3026, 2018.

[22] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart,
“Robot-centric elevation mapping with uncertainty estimates,” in In-
ternational Conference on Climbing and Walking Robots (CLAWAR),
2014.

[23] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu based physics simulation for robot

learning,” Neural Information Processing Systems,Neural Information
Processing Systems, Aug 2021.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv: Learning,arXiv:
Learning, Jul 2017.

6876

Authorized licensed use limited to: Zhejiang University. Downloaded on February 11,2025 at 03:17:54 UTC from IEEE Xplore. Restrictions apply.

