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Abstract

Motivated by biological evolution, this paper explains the rationality of Vision Transformer by analogy with the proven practical
evolutionary algorithm (EA) and derives that both have consistent mathematical formulation. Then inspired by effective EA
variants, we propose a novel pyramid EATFormer backbone that only contains the proposed EA-based transformer (EAT)
block, which consists of three residual parts, i.e., Multi-scale region aggregation, global and local interaction, and feed-
forward network modules, to model multi-scale, interactive, and individual information separately. Moreover, we design
a task-related head docked with transformer backbone to complete final information fusion more flexibly and improve a
modulated deformable MSA to dynamically model irregular locations. Massive quantitative and quantitative experiments on
image classification, downstream tasks, and explanatory experiments demonstrate the effectiveness and superiority of our
approach over state-of-the-art methods. E.g., our Mobile (1.8 M), Tiny (6.1 M), Small (24.3 M), and Base (49.0 M) models
achieve 69.4,78.4,83.1, and 83.9 Top-1 only trained on ImageNet- 1K with naive training recipe; EATFormer-Tiny/Small/Base
armed Mask-R-CNN obtain 45.4/47.4/49.0 box AP and 41.4/42.9/44.2 mask AP on COCO detection, surpassing contemporary
MPVIT-T, Swin-T, and Swin-S by 0.6/1.4/0.5 box AP and 0.4/1.3/0.9 mask AP separately with less FLOPs; Our EATFormer-
Small/Base achieve 47.3/49.3 mIoU on ADE20K by Upernet that exceeds Swin-T/S by 2.8/1.7. Code is available at https://
github.com/zhangzjn/EATFormer.

Keywords Computer vision - Vision transformer - Evolutionary algorithm - Image classification - Object detection - Image
segmentation

1 Introduction

Communicated by Suha Kwak. Since Vaswani et al. (2017) introduce the Transformer that

achieves outstanding success in the machine translation task,
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many improvements have been made over this structure
(Choromanski et al., 2021; Kitaev et al., 2020; Devlin et
al., 2019). Subsequently, Dosovitskiy et al. (2021) firstly
introduce Transformer to the computer vision field and pro-
pose a novel ViT model that successfully sparks a new wave
of research besides conventional CNN-based vision models.
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Recently, many excellent vision transformer models (Wang
et al., 2021a; Liu et al., 2021; Ali et al., 2021; Yu et al.,
2022; Hassani et al., 2023; Lee et al., 2022; Li et al., 2022)
have been proposed and have achieved great success in the
field of many vision tasks. Currently, many attempts have
been made to explain and improve the Transformer struc-
ture from different perspectives (Goyal & Bengio, 2022; Pan
et al., 2022; Cordonnier et al., 2020; Raghu et al., 2021,
Min et al., 2022; d’Ascoli et al. 2021a; Bhojanapalli et al.,
2021; Liu et al., 2022a; Hao et al., 2021), while continu-
ing research is still needed. Most current models generally
migrate the structural design of CNN, and they are experi-
mentally conducted to verify the effectiveness of modules or
improvements, which lacks explanations about why improved
Transformer approaches work (Hao et al., 2021; Yu et al.,
2022; Dong et al., 2021a).

Inspired by biological population evolution, we explain
the rationality of Transformer by analogy with the proven
effective, stable, and robust Evolutionary Algorithm (EA) in
this article, which has been widely used in many practical
applications. We observe that the procedure of the Trans-
former (abbr., TR) has similar attributes to the naive EA
through analogical analysis in Fig. 1a-TR and b-EA:

(1) Interms of data format, TR processes patch embeddings
while EA evolutes individuals, both of them have the
same data formats and necessary initialization.

(2) Interms of optimization objective, TR aims to obtain an
optimal vector representation that fuses global informa-
tion through multiple layers (denoted as xV in Fig. 1),
while EA focuses on getting the best individual globally
through multiple iterations.

(3) Interms of component, Multi-head Self-Attention (MSA)
in TR aims to enrich patch embeddings through global
information communication densely, while crossover
operation in EA plays the role of interacting global indi-
viduals sparsely. Also, Feed-Forward Network (FFN) in
TR enhances every single embedding for all spatial posi-
tions, which is similar to Mutation in EA that evolves
each individual of the whole population.

(4) Furthermore, we deduce the mathematical characteri-
zation of crossover and mutation operators in EA (c.f.,
Egs.5, 8) and find that they have the same mathematical
formulations as MSA and FFN in TR (c.f., Egs.6, 9),
respectively.

In addition to the above basic analogies between naive
Transformer and EA, we explore further to improve the cur-
rent vision transformer by leveraging other domain knowl-
edge of EA variants. Without losing generality, we only study
the widely used and effective EA methods that could inspire
us to improve Transformer. They can be mainly divided into
the following categories:

@ Springer

(1) Global and Local populations inspired simultaneously
global and local modeling. In contrast to naive EA
that only models global interaction, local search-based
EA variants focus on finding a better individual in
its neighborhood (Kolen & Pesch, 1994; Land, 1998;
Garcia-Martinez & Lozano, 2008) that is more efficient
without associating the global search space. Further-
more, Moscato (1989) firstly propose the Memetic
Evolutionary Algorithm (MEA) that introduces a local
search process for converging high-quality solutions
faster than conventional evolutionary counterparts, and
intuitive illustration can be viewed in Fig.lc. For a
particular individual (i.e., center sheep with red back-
ground), naive EA only contains @ Global Population
concept, while @ Local Population idea enables the
model to focus on more relevant individuals. Inspired
by those EA variants, we revisit the global MSA part
and improve anovel Global and Local Interaction (GLI)
module, which is designed as a parallel structure that
employs an extra local operation beside the global oper-
ation, i.e., introducing inductive bias and locality in
MSA. The former is used to mine more relevant local
information, while the latter aims to model global cue
interactions. Considering that the spatial relationship
among real individuals will not be as horizontal and
vertical as the image, we further propose a Modulated
Deformable MSA (MD-MSA) to dynamically model
irregular locations, which could focus on more infor-
mative reorganizational regions.

(2) Multi-population inspired multi-scale information aggre-
gation. Some works (Chen & Kang, 2005; Li et al.,
2021b) introduce multi-population evolutionary algo-
rithm to solve the optimization problems, which adopts
different searching regions to more efficiently enhance
the diversity of individuals and can obtain a better model
performance significantly. As shown in Fig. 1c, ¢ Long-
Distance Population could supplement more diverse
and richer cues, while € Short-Distance Population
focuses on providing general evolutionary features.
Analogously, this idea inspires us to design a Multi-Scale
Region Aggregation (MSRA) module that aggregates
information from different receptive fields for vision
transformer, which could integrate more expressive fea-
tures from different resolutions before feeding them into
the next module.

(3) Dynamic population inspired pyramid architecture design.
The works (Brest et al., 2008; 2010; Shi et al. 2014)
investigate JDEdynNP-F algorithm with a dynamic pop-
ulation reduction scheme that significantly improves the
effectiveness and accelerates the convergence of the
model, which is similar to pyramid-alike improvements
of some current vision transformers (Wang et al., 2022b;
Chu et al., 2021; Liu et al., 2022b; Hassani et al., 2023;
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Fig. 1 Comparisons of structural analogousness between a Trans-
former module and b evolutionary algorithm, where they have anal-
ogous concepts of (1) individual definition (Token Embedding vs.
Individual), (2) global information interaction (MSA vs. Crossover), (3)

Yu et al., 2022). Analogously, we extend our previous
columnar-alike work (Zhang et al., 2021) to a pyramid
structure like PVT (Wang et al., 2021a), which signifi-
cantly boosts the performance for many vision tasks.

(4) Self-adapted parameters inspired weighted operation
mixing. Brest et al. (2006) propose an adaptation mech-
anism to control different optimization processes for
better results, and some memetic EAs (Moscato, 1989;
Hart et al., 2005; Kumar et al., 2014) own a similar
concept of search intensity to balance the global and
local calculation. This encourages us to learn appropri-
ate weights for different operations, which can increase
the performance and be more interpretable.

(5) Multi-objective EA inspired task-related feature merg-
ing. Current TR-based vision models would initialize
different tokens for different tasks (Touvron et al.,
2021a) (e.g., classification and distillation) or use the
pooling operation to obtain global representation (Liu
etal., 2021). However, both manners suffer from poten-
tially incompatibility: the former treats the task token
and image patches coequally that is unreasonable, and
the calculation of each layer will slightly increase the
amount of calculation (O (n2) to O((n+ 1)?)), while the
latter uses only one pooling result for multiple tasks that
could potentially damage the model accuracy. Inspired
by multi-objective EAs (Coello & Lamont, 2004; Khare
et al., 2003, Toffolo et al., 2003) that find a set of solu-
tions for different targets, we design a Task-Related
Head (TRH) docked with transformer backbone to com-

individual feature enhancement (FEN vs. Mutation), (4) feature inher-
itance (Skip Connection vs. Population Succession), etc. ¢ Intuitive
illustration of some EA variants
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Fig.2 Paradigm of the proposed basic EAT Block, which contains three
y = f(x)+x residuals to model: a multi-scale information aggregation,
b feature interactions among tokens, and ¢ individual enhancement

plete final information fusion, which is elegant and
flexible for different tasks learning (2).

Based on the above analyses, we improve our columnar
EAT model (Zhang et al., 2021) to a pyramid EA-inspired
Transformer (EATFormer) that achieves a new SOTA result.
Figure 2 illustrates intuitive comparisons with SOTAs under
GPU throughput, Top-1, and the number of parameters
evaluation indexes, where our smallest EATFormer-Mobile
obtains 69.4 Top-1 with 3,926 throughput under one V100
GPU, and the EATFormer-Base achieves 83.9 Top-1 with
only 49.0M parameters. Specifically, we make the following
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Fig. 3 Comparison with SOTAs in terms of Top-1 vs. GPU through-
put. All models are trained only with ImageNet-1K (Deng et al., 2009)
dataset in 224 x 224, and the radius represents the relative number of
parameters

four contributions compared with the previous conference
work:

e In theory, we enrich evolutionary explanations for the
rationality of Vision Transformer and derive a consistent
mathematical formulation with evolutionary algorithm.

e On framework, we propose a novel basic EA-based
Transformer (EAT) block (shown in Fig. 3) that consists
of three residual parts to model multi-scale, interactive,
and individual information, respectively, which is stacked
to form our proposed pyramid EATFormer.

e For method, inspired by effective EA variants, we analo-
gously design: (1) Global and Local Interaction module,
(2) Multi-Scale Region Aggregation module, (3) Task-
Related Head module, and (4) Modulated Deformable
MSA module to improve effectiveness and usability of
our EATFormer.

e Massive experiments on classification, object detection,
and semantic segmentation tasks demonstrate the supe-
riority and efficiency of our approach, while ablation
and explanatory experiments further prove the efficacy
of EATFormer and its components.

2 Related Work
2.1 Evolution Algorithms

Evolution algorithm (EA) is a subset of evolutionary compu-
tation in computational intelligence that belongs to modern
heuristics, and it serves as an essential umbrella term to
describe population-based optimization and search tech-
niques in the last 50 years (Sloss & Gustafson, 2020; Vikhar,
2016; Bartz-Beielstein et al., 2014). Inspired by biolog-
ical evolution, general EAs mainly contain reproduction,
crossover, mutation, and selection steps, which have been
proven effective and stable in many application scenarios
(Moscato, 1989; Hart et al., 2005), and a series of improved
EA approaches have been advanced in succession. Differ-
ential Evolution (DE) developed in 1995 (Storn & Price,
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1997) is arguably one of the most competitive improved
EA that significantly advances the global modeling capa-
bility (Das & Suganthan, 2010; Padhye et al., 2013). The
core idea of DE is introducing a complete differential con-
cept to the conventional EA, which differentiates and scales
two individuals in the same population and interacts with
the third individual to generate a new individual. In contrast
to the category mentioned above, local search-based EAs
aim to find a solution that is as good as or better than all
other solutions in its neighborhood (Kolen & Pesch, 1994,
Land, 1998; Garcia-Martinez & Lozano, 2008. This thought
is more efficient than global search in that a solution can
quickly be verified as a local optimum without associat-
ing the global search space. However, the locality-aware
operation will restrict the ability of global modeling that
could lead to suboptimal results in some scenarios, so some
researchers attempt to fuse both above modeling manners.
Moscato (1989) firstly propose the Memetic Evolutionary
Algorithm (MEA) in 1989 that applies a local search process
to refine solutions for hard problems, which could converge
to high-quality solutions more efficiently than conventional
evolutionary counterparts. In detail, this variant is a particular
global-local search hybrid: the global character is given by
the traditional EA, while the local aspect is mainly performed
through constructive methods and intelligent local search
heuristics (Hart et al., 2005). Analogously, some later works
(Chen & Kang, 2005; Li et al., 2021b) introduce a multi-
population evolutionary algorithm to solve the constrained
function optimization problems relatively efficiently, which
adopts different searching regions to enhance the diversity
of individuals that improves the model ability dramatically.
This strategy inspires us to design a basic feature extraction
module for vision transformer: whether a similar multi-scale
manner can be adopted to enhance model expressiveness.
Furthermore, Brest et al. (2006) propose an adaptation mech-
anism on the control parameters CR and F for crossover
and mutation operations associated with DE, where adapted
parameters are applied to different optimization processes for
obtaining better results. Remarkably, those MEAs (Moscato,
1989; Hart et al., 2005; Kumar et al., 2014) mentioned above
own a similar concept of search intensity to balance the global
and local calculation. Subsequent work (Brest et al., 2008)
investigates JDEdynNP-F algorithm with a dynamic popu-
lation reduction scheme, where the population size of the
next generation is equal to half the previous population size.
This strategy significantly improves the effectiveness and
accelerates the convergence of the model that is consistently
illustrated by works (Brest et al., 2010; Shi et al., 2014). Fur-
thermore, some literatures (Motter, 1993; Bhowmik et al.,
2021; Felleman & Van Essen, 1991) suggest that there are
hierarchical structures of V1, V2, V4, and inferotemporal
cortex in the evolutionary brain, which have ordered inter-
connection among them in the form of both feed-forward
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and feedback connections. Moreover, researchers (Coello &
Lamont, 2004; Khare et al., 2003; Toffolo et al., 2003) study
multi-objective EAs to find optimal trade-offs to get a set of
solutions for different targets.

Inspired by the aforementioned EA variants that intro-
duce various and valid concepts for optimization, we explain
and improve the naive transformer structure by conceptual
analogy in the paper, where a novel and potent EATFormer
with pyramid architecture, multi-scale region aggregation,
and global-local modeling is hand-designed. Furthermore, a
plug-and-play task-related head module is developed to solve
different targets separately and improve model performance.

2.2 Vision Transformers

Since Transformer structure achieves significant progress
for machine translation task (Vaswani et al., 2017), many
improved language models (Peters et al., 2018; Devlin et
al., 2019; Radford et al., 2018, 2019; Brown et al., 2020)
are proposed and obtain great achievements, and some later
works (He et al., 2020; Wang et al., 2020b; Choromanski
et al., 2021; Kitaev et al., 2020; Bello, 2021; Wang et al.,
2021b) advance the basic transformer module for better effi-
ciency. Inspired by the success of Transformer in NLP and
the rapid improvement of computing power, Dosovitskiy et
al. (2021) propose a novel ViT that firstly introduces the
transformer to vision classification and sparks a new wave
of research besides conventional CNN-based vision models.
Subsequently, many excellent vision transformer models are
proposed, and they can mainly be divided into two categories,
i.e., pure and hybrid vision transformers. The former only
contains transformer module without CNN-based layers, and
early works (Touvron et al., 2021a; Zhou et al., 2021; Han et
al., 2021; Touvron et al., 2021b; Yuan et al., 2021b; Chu et
al., 2023; Ali et al., 2021) follow columnar structure of orig-
inal ViT. Typically, DeiT (Touvron et al., 2021a) propose an
efficient training recipe to moderate the dependence on large
datasets, DeepViT (Zhou et al., 2021) and CaiT (Touvron et
al., 2021b) focus on fast performance saturation when scal-
ing ViT to be deeper, and TNT (Han et al., 2021) divide local
patches into smaller patches for fine-grained modeling. Fur-
thermore, researchers (Wang et al., 2021a; Liu et al., 2021;
Huang et al., 2021; Vaswani et al., 2021; Chu et al., 2021,
Liu et al., 2022b; Hassani et al., 2023; Chen et al., 2021g;
Yu et al., 2022; Ren et al., 2022) advance ViT to pyramid
structure that is more powerful and suitable for dense predic-
tion. PVT (Wang et al., 2021a) leverages a non-overlapping
patch partition to reduce feature size, while Swin (Liu et al.,
2021) utilizes a shifted window scheme to alternately model
in-window and cross-window connection. The latter incor-
porates the idea of convolution that owns natural inductive
bias of locality and translation invariance, and this kind of
combination dramatically improves the model effect. Specif-

ically, Srinivas et al. (2021) advance CNN-based models by
replacing the convolution of the bottleneck block with the
MSA structure. Later researches (Li et al., 2021c; Yuan et
al., 2021a; d’Ascoli et al., 2021a; Xu et al., 2021c¢) intro-
duce convolution designs into columnar visual transformers,
while works (Yang et al., 2022; Yuan et al., 2022; Wang et al.,
2022c; Luetal.,2021; Lietal., 2022; Xu et al., 2021b; Wu et
al., 2021; Wang et al., 2022b; Zhang et al., 2023b) fuse con-
volution structures into pyramid structure or use CNN-based
backbone on early stages, which has obvious advantages over
pure transformer models. Moreover, some researchers design
hybrid models from the parallel perspective of convolution
and transformer (Xu et al., 2021b; Chen et al., 2022c, 2022a),
while Dosovitskiy et al. (2021) introduce a deformable idea
(Dai et al., 2017) to MSA module and obtain a boost on
Swin (Liu et al., 2021). Recently, MPViT (Lee et al., 2022)
explores multi-scale patch embedding and multi-path struc-
ture that enable both fine and coarse feature representations
simultaneously. Benefiting from advances in basic vision
transformer models, many task-specific models are proposed
and achieve significant progress in down-stream vision tasks,
e.g., object detection (Carion et al., 2020; Zhu et al., 2021;
Fang et al., 2021; Chen et al., 2022b), semantic segmenta-
tion (Zheng et al., 2021; Chen et al., 2021c; Valanarasu et al.,
2021; Xie et al., 2021; Yuan et al., 2021c; Cheng et al., 2021,
2022), generative adversarial network (Jiang et al., 2021a;
Wan et al., 2022; Hudson and Zitnick, 2021), low-level vision
(Chen et al., 2021b; Liang et al., 2021; Zamir et al., 2022),
video understanding (Neimark et al., 2021; Bertasius et al.,
2021; Thatipelli et al., 2022; Wang et al., 2022a; Xu et al.,
2021a), self-supervised learning (Atito et al., 2021; Chen et
al., 2021f; Nakashima et al., 2022; He et al., 2022; Bao et al.,
2022; Caron et al., 2021; Dong et al., 2023; Chen et al., 2023;
Xieetal., 2022; Wei et al., 2022; Baevski et al., 2022; Gao et
al., 2022), neural architecture search (Wang et al., 2020a; Li
et al., 2021a; Chen et al., 2021a,d,e), etc. Inspired by prac-
tical improvements in EA variants, this work migrates them
to Transformer improvement and designs a powerful visual
model with higher precision and efficiency than contempo-
rary works. Also, thanks to the elaborate analogical design,
the proposed EATFormer in this paper is highly explanatory.

2.3 Explanatory of Transformers

Transformer-based models have achieved remarkable results
on CV tasks, leading us to question why Transformer works
so well, even better than Convolutional Neural Networks
(CNN). Many efforts have done to answer this question.
Goyal and Bengio (2022) point out that studying the kind
of inductive biases that humans and animals exploit could
help inspire Al research and neuroscience theories. Pan et al.
(2022) show a strong underlying relation between convolu-
tion and self-attention operations. Cordonnier et al. (2020)

@ Springer
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prove that a multi-head self-attention layer with a sufficient
number of heads is at least as expressive as any convolutional
layer, while Raghu et al. (2021) find striking differences
between ViT and CNN on image classification. Li et al.
(2022) seamlessly integrate the merits of convolution and
self-attention in a concise transformer format, while Con-
Vit (d’Ascoli et al., 2021a) combines the strengths of both
CNN/Transformer architectures to introduce gated positional
self-attention. Introducing local CNN into Transformer is fol-
lowed by many subsequent works (Chu et al., 2023; Li et al.,
2022; Guo et al., 2022; Zhang et al., 2023b, Mehta & Raste-
gari, 2022; Maaz et al., 2023). Furthermore, Min et al. (2022)
take a biologically inspired approach and explore modeling
peripheral vision by incorporating peripheral position encod-
ing to the multi-head self-attention layers in Transformer.
Besides, some works explore the relation between Trans-
former and other models, e.g., Katharopoulos et al. (2020)
reveals their relationship of Transformer to recurrent neural
networks, and Kim et al. (2022) prove that Transformer is the-
oretically at least as expressive as an invariant graph network
composed of equivariant linear layers. Moreover, Bhojana-
palli et al. (2021) find that ViT models are at least as robust
as the ResNet counterparts on a broad range of perturbations
when pre-trained with a sufficient amount of data. Hao et al.
(2021) propose a self-attention attribution method to interpret
the information interactions inside Transformer, while Liu et
al. (2022a) propose an actionable diagnostic methodology to
measure the consistency between explanation weights and
the impact polarity for attention-based models. Dong et al.
(2021a) find that MLP stops the output from degeneration,
and removing MSA in Transformer would also significantly
damage the performance. Recently, Qiang et al. (2022) pro-
pose a novel Transformer explanation technique via attentive
class activation tokens by leveraging encoded features, gradi-
ents, and attention weights to generate a faithful and confident
explanation. Xu et al. (2023) propose a new way to visualize
the model by firstly computing attention scores based on attri-
bution and then propagating these attention scores through
the layers. Works Yu et al. (2022), Zhang et al. (2023a)
demonstrate that the general architecture of the Transform-
ers is more essential to performance rather than the specific
token mixer module. The above work explores the interpre-
tation of Transformer from a variety of perspectives. At the
same time, we will provide another explanation from the
perspective of evolutionary algorithms and design a robust
model to perform multiple CV tasks.

3 Preliminary Transformer
The vision transformer generally refers to the encoder part of

the original transformer structure, which consists of Multi-
head Self-Attention layer (MSA), Feed-Forward Network

@ Springer

(FFN), Layer Normalization (LN), and Residual Connec-
tion (RC). Given the input feature maps X, € REXHXW
Img2Seq operation firstly flattens it to a 1D sequence X, €
RE*N that complies with standard NLP format, denoted as:
Xseq = Img2Seq(Xpmg).

e MSA fuses several SA operations to process Q KV that
jointly attend to information in different representation
subspaces. Specifically, LN solved X, goes through
linear layers to obtain projected queries (Q), keys (K)
and values (V') presentations, formulated as:

H
MSA(Xseq) = (@ Xh> wo,
h=1
_ ; 0 K 1%
where X, = Attention (Xxeq W, XseqgWh s Xseq W) )

Q K\T
XseqgWE) (X segW
:Softmax<|:( seg Wi ) Xseg Wi, ) D XeqW)

Vi
T
= Softmax <|: Q&;ikh :|> Vi

= AV,
(D

where d,, is the input dimension, while d;, di, and d,
are hidden dimensions of the corresponding projection
subspace, and generally d, equals d; h is the head num-
ber; W2 € Rénxda, WK ¢ Rdnxdic and W) € Rin*d>
are parameter matrices for QK 'V, respectively; WO e
R/dv*dn maps each head feature X}, to the output; @
means concatenation operation; Ay, € R!*! ig the atten-
tion matrix of A-th head.

e FFN consists of two cascaded linear transformations with
a ReLU activation in between:

FEN(X,0q) = max (0, Xyoq W1 +b1) Wo + b2, (2)

where W and W are weights of two linear layers, while
b and b, are corresponding biases.

e LN is applied before each layer of MSA and FFN, and
the transformed X seq 18 calculated by:

A

Xseq = Xseq + [MSA | FFN](LN(Xseq)). 3)

Finally, reversed Seq2Img operation reshapes the enhanced

Xseq back to 2D feature maps, denoted as: )A(img =
Seq2Img(Xseq).

4 EA-Inspired Vision Transformer

In this section, we expand the relationship among operators
in naive EA and modules in naive Transformer, and con-
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sistent mathematical formulations for each conceptual pair
can be derived, revealing evolutionary explanations for the
rationality of Vision Transformer structure. Inspired by the
core ideas of some effective EA variants, we deduce them
into transformer architecture design and improve a mighty
pyramid EATFormer over the previous columnar model.

4.1 Evolutionary Explanation of Transformer

As aforementioned in Fig. 1, the Transformer block has con-
ceptually similar sub-modules analogously to evolutionary
algorithm. Basically, Transformer inputs a sequence of patch
tokens while EA evolutes a population that consists of many
individuals. Both of which have the consistent vector format
and necessary initialization. In order to facilitate the sub-
sequent analogy and formula derivation, we symbolize the
patch token (individual) as x; = [x; 1, X; 2, .. ., X;, p], where
i and D indicate data order and dimension, respectively.
Define L as the sequence length, the sequence (population)
can be denoted as X = [x1, X2, ...,x]T. The specific rela-
tionship analyses of different components are as follows:

e Crossover Operator vs MSA Module
For the crossover operator of EA, it aims at creating new
individuals by combining parts of other individuals. For
an individual x; specifically, the operator will randomly
pick another individual x ; = [x; 1, x;2,...,x; p](1 <
Jj < L) in the global population and randomly replaces
features of x; with x ; to form the new individual Xi:

P Xjd, if randb(d) < CR
= xi4,  otherwise 4

st.i#j.de{l,2,... Dl

where randb(d) is the d-th evaluation of a uniform ran-
dom number generator with outcome in [0, 1], and CR
is the crossover constant in [0, 1] that is determined by
the user. We re-formulate this process as:

Xi =X 1Wi1,...,X; pwW;pl
+[xj71wj,1,...,xj,ij7D]
=x1®0+...xl~@wi+...xj®wj+...xL®0
=x10+...xin’—i—...ijj»’-i—...xLO

L
=2 (ww),
=1

st wi +w; =1,
w;iq €[0,1], w;jys€[0,1], d €{L,2,..., D},

where w; and w; are vectors filled with zeros or ones,
indicating the feature selections of x; and x ;, while W§"

®)

and Wjir are corresponding diagonal matrix representa-
tions. ® means the point-wise multiplication operation
for each position. 0 represents that corresponding indi-
vidual has no contribution, i.e., W;" (I # i, j) fulls of
zeros. As can be seen above, crossover operator is actu-
ally a sparse global feature interaction process.

For the MSA module of Transformer, each patch embed-
ding interacts with all embeddings in dense communi-
cations. Without loss of generality, x; interacts with the
whole population X as follows:

(6)

where A;, (1 € {1,2,...,L}) is the attention weight of
h-th head from embedding token x; to x;, which is cal-
culated between the query value of x; j, and the key value
of x;, of h-th head followed with a Softmax(-) post-
processing; V;, (1 € {1,2,...,L}) is the projected Value
feature for x; with corresponding weights W,Y; Xipis
the sum of all weighted V;, (1 € {1,2,...,.L}) by A; 5 (1
€ {(1,2,..,L), e, Xin = Y12, AinVig, (cf, Eq. 1
in Sect. 3) for more details. WV is the parameter matrix
for the value projection and @ means the concatenation
operation. By comparing Eq. (5) with Eq. (6), we find
that both above components have the same formula rep-
resentation, and the crossover operation is a sparse global
interaction while densely-modeling MSA has more com-
plex computing and modeling capabilities.

Mutation Operator vs FFN Module

For the mutation operator in EA, it brings random evo-
lutions into the population by stochastically changing
specific features of individuals. Specifically, an individ-
ual x; in the population goes through Mutation operation
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to form the new individual X;, formulated as follows:

if randb(d) < MU

otherwise

. rand(v{g, vf) “Xids
Xid =

(N

1-Xjq,
st. defl,2,..., D),

where randb(d) is the d-th evaluation of a uniform ran-
dom number generator with outcome in [0, 1], and MU
is the mutation constant in [0, 1] that user determines.
vl and v#! are lower and upper scale bounds of the j-th
feature relative to x; 4. Similarly, we re-formulate this
process as:

Xi =X Qn:‘l:l ®)
= X; Wi ,
where w; is a randomly generated vector that represents
weights of each feature value, while W"" is the corre-
sponding diagonal matrix representation; ® means the
point-wise multiplication operation for each position.
For the FFN module in Transformer, each patch embed-
ding carries on directional feature transformation through
cascaded linear layers (c.f., Eq. 2). Getting rid of complex
nonlinear transformations, we only take one linear layer
as an example:
i =x W, ©)
where W FN is the weight of the linear layer, and it is
applied to each embedding separately and identically.
By analyzing the calculation process of Eqs. (refeq:mutation)
and (9), Mutation and FFN operations share a unified
form of matrix multiplication, so they are supposed to
own a consistent function essentially. Besides, at the
microcosmic level, the weight of FFN change dynam-
ically during the training process, so the output of the
individual differs among different iterations (similar to
the random process of mutation). At the macroscopic
objective of the algorithm, the mutation in EA is opti-
mized into one potential direction under the constraint of
the objective function (statistically speaking, only partial
mutation individuals are retained, that is, the mutation
also has a determinate meaning in the whole training pro-
cess). In comparison, the trained FFN can be regarded
as a directional mutation under the constraint of loss
functions. Finally, note that we are only discussing the
comparison with the mutation on one linear layer of FFN,
and WV is more expressive than diagonal Wi in fact
because it contains cascaded linear layers and the non-
linear ReLLU activation is interspersed between adjacent
linear layers, as depicted in Eq. (2).
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e Population Succession vs RC Operation

In the evolution of the biological population, individ-
uals at the current iteration have a certain probability
of inheriting to the next iteration, where a partial pop-
ulation of the current iteration will be combined with
the selected individuals. Similarly, the above pattern
is expressed by Transformer structure in the form of
Residual Connection (RC), i.e., patch embeddings of
the previous layer are directly mapped to the next layer.
Specifically, partial-selection can be viewed as a dropout
technique in Transformer, while population succession
can be formulated as a concatenation operation that has
a consistent mathematical expression with residual con-
catenation, whereas addition operation can be regarded
as a particular case of the concatenation operation that
shares some partial weights.

Best Individual vs Task-Related Token

Generally speaking, the Transformer-based model chooses
an enhanced task-related token (e.g., classification token)
that combines information of all patch embeddings as the
output feature, while the EA-based method chooses the
individual with the best fitness score among the popula-
tion as the output.

Necessity of Modules in Transformer

As described in the work (Hassanat et al., 2019), the
absence of the crossover operator or mutation operator
will significantly damage the model’s performance. Sim-
ilarly, Dong et al. (2021a) explore the effect of MLP in
the Transformer and find that MLP stops the output from
degeneration, and removing MSA in Transformer would
also significantly damage the effectiveness of the model.
Thus we can conclude that global information interaction
and individual evolution are necessary for Transformer,
just like the global crossover and individual mutation in
EA.

4.2 Short Description of Previous Columnar EAT

We explore the relationship among operators in naive EA and
modules in naive Transformer in the previous NeurIPS’21
conference (Zhang et al., 2021) and analogically improve
a columnar EAT based on ViT model. Figure4a shows the
structure of EAT model that is stacked of with N improved
Transformer blocks inspired by local population concept in
some EA works (Kolen & Pesch, 1994; Land, 1998; Moscato,
1989), where alocal path is introduced in parallel with global
MSA operation. Also, this work designs a Task-Related Head
to deal with various tasks more flexibly, i.e., classification and
distillation.

However, the columnar structure is naturally inadequate
for downstream dense prediction tasks, and it is inferior in
terms of accuracy compared with contemporaneous works
(Wang et al., 2021a; Liu et al., 2021), which limits the use-
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Fig. 4 Structure of EA-inspired columnar EAT model (Zhang et al.,
2021) and improved pyramid EATFormer. a The fop part shows the
architecture of the previous EAT model, where the basic block consists
of parallel global and local paths as well as an FFN module. b The
middle part illustrates overall architecture of EATFormer that contains
four stages with i-th stage consisting of V; basic EAT blocks; The bot-

fulness of the model in some scenarios. To address the above
weaknesses, this paper further explores analogies between
EA and Transformer and improves the previous work to a
pyramid EATFormer, consisting of the newly designed EAT
block inspired by the effective EA variants.

4.3 Methodology of Pyramid EATFormer
Architecture

Architecture of the improved EATFormer is illustrated in
Fig.4b, which contains four stages of different resolutions
following PVT (Wang et al., 2021a). Specifically, the model
is made up of EAT blocks that contains three mixed-paradigm
y = f(x) + x residuals: (a) Multi-Scale Region Aggrega-
tion (MSRA), (b) Global and Local Interaction (GLI), and
(c) Feed-Forward Network (FFN) modules, and the down-
sampling procedure between two stages is realized by MSRA
with stride greater than 1. Besides, we propose a novel
Modulated Deformable MSA (MD-MSA) to advance global
modeling and a Task-Related Head (TRH) to complete dif-
ferent tasks more elegantly and flexibly.

tom part illustrates the structure of serial modules in EAT block, i.e.,
MSRA (c.f., Sect.4.3.1), GLI (c.f., Sect.4.3.2), and FEN (c.f., Sect.3)
from left to right, and a MD-MSA is proposed to effectively improve
the model performance; The right part shows the designed Task-Related
Head module docked with transformer backbone for specific tasks

4.3.1 Multi-scale Region Aggregation

Inspired by some multi-population-based EA methods (Chen
& Kang, 2005; Li et al., 2021b) that would adopt different
searching regions for obtaining a better model performance,
we analogically extend this concept to multiple sets of
spatial positions for the 2D image and design a novel Multi-
Scale Region Aggregation (MSRA) module for the studied
vision transformer. As shown in Fig.4a, MSRA contains N
local convolution operations (i.e., Convs,,1 < n < N)
with different strides to aggregate information from differ-
ent receptive fields, which simultaneously play the role of
providing inductive bias without extra position embedding
procedures. Specifically, the n-th dilation operation o, that
transforms input feature map x can be formulated as:

0, (x) = Convg, (Norm(x))

10
st. ne{l,2,..., N}, (1o

Weighted Operation Mixing (WOM) mechanism is further
proposed to mix all operations by a softmax function over
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a set of learnable weights o1, ..., ay, and the intermediate
representation x, is calculated by the mixing function F as
follows:

N

xo= 3 ) (11)
n=1 Zn/zl exXp (an’)

where F in the above formula is the addition function, and
other fusion functions like concatenation are also available
for a better effect at the cost of more parameters. The paper
chooses the addition function acquiescently. Then, a convo-
lution layer Convs, maps x,, to the same number of channels
as the input x, and the final output of the module is obtained
after a residual connection. Also, the MSRA module serves
as the model stem and Patch Embedding that makes the EAT-
Former more uniform and elegant. Note that this paper does
not use any form of position embedding since CNN-based
MSRA can provide a natural inductive bias for the next GLI
module.

4.3.2 Global and Local Interaction

Motivated by EA variants (Moscato, 1989; Hart et al.,
2005; Kumar et al., 2014) that introduce local search pro-
cedures besides conventional global search for converging
higher-quality solutions faster and effectively (c.f., Fig. lc
for a better intuitive explanation), we improve a MSA-based
global module to a novel Global and Local Interaction (GLI)
module. As shown in Fig. 4b, GLI contains an extra local path
in parallel with the global path, where the former aims to
mine more discriminative locality-relevant information like
the above-mentioned local population idea, while the latter is
retained to model global information. Specifically, the input
features are divided into global features (marked green) and
local features (marked blue) at the channel level with ratio
p, which are then fed into global and local paths to conduct
feature interactions, respectively. Note that we also apply the
proposed Weighted Operation Mixing mechanism in 4.3.1
to balance two branches, i.e., global weight g and local
weight «;. The outputs of the two paths recover the origi-
nal data dimension by concatenation operation . Thus the
improved module is very flexible and can be viewed as a
plug-and-play module for the current transformer structure.
In detail, the local operation can be traditional convolution
layer or other improved modules, e.g., DCN (Dai et al., 2017,
Zhu et al., 2019), local MSA, etc, while global operation can
be MSA (Vaswani et al., 2017; Dosovitskiy et al., 2021), D-
MSA (Chen et al., 2021g), Performer (Choromanski et al.,
2021), etc.

In this paper, we choose naive convolution with MSA
modules as basic compositions of GLI, and it owns O(1)
maximum path length between any two positions for keep-
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ing global modeling capability besides enhancing locality,
as shown in Table 1. Therefore, the proposed structure main-
tains the same parallelism and efficiency as the original vision
transformer. Also, the selection of feature separation ratio p
is crucial to the effect and efficiency of the model because
different ratios bring different parameters, FLOPs, and pre-
cision of the model. In detail, the local path contains a group
of point-wise and k x k depth-wise convolutions. Assume
that the feature map in RE*#*W = RC*L and both paths
have C, = p x C and C; = C — C, channels, respectively.
Here we present an analysis process about the number of
parameters and computation of the improved GLI module as
follows:

(1) Overall Params equals 4(C, + 1)C, + (k> +1)C; +
(C1+1)Cj according to Table 1, and it is factorized based
onC; =C —Cq:

Params = 5C,* + (2 —2C — K*)C,

(12)
+ &> +24+C)C.
Applying the minimum value formula of a quadratic
function, Eq. (12 obtains the minimum value when
Cg"" = 0.2C + 0.1(k* — 2). Given that the channel
number are integers and latter term can be ignored, we
obtains C;,mn" =0.2C, i.e., p""r equals 0.2.
(2) Overall FLOPs equals 8C; L + 4CoL* + 3 L% +
(2k*)LC; + 2C;LC; according to Table 1, and it is fac-

torized based on C; = C — Cy:

FLOPs = 10LC,> + (4L> — 2k’ L — 4LC)C,

2 2 (13)

+ BL +2k“C +2C*)L.
Applying the minimum value formula of a quadratic
function, Eq. (13) obtains the minimum value when

min g

C, ' =02C+ 0.1(k*> — 2L). Also, ignoring the latter
term, we obtains C;mnf = 0.2C that follows the same

trend with CZ”"" . Therefore, we can draw two conclu-
sions: @ The parameters and calculations of GLI are
much lower than single-path MSA (p < 1), and the
minimum value can be obtained when using both paths
(p > 0); @ According to Egs. (12) and (13), there is not
much difference about the total parameters and calcula-
tions when p lies in the range [0, 0.5], so p is set 0.5 for
all layers in this paper for simplicity and efficiency. Also,
experiments in Sect. 5.5.1 demonstrate that p = 0.5 is the
most economical and efficient option. Note that the num-
ber of convolution parameters and computation of the
current local path are smaller compared with the global
path, while the stronger local structure will make ratio
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Table 1 Properties of convolution and MSA layers with Parame-
ters (Params), floating point operations (FLOPs), and Maximum Path o
Length (MPL). Assume that the input and output feature maps in Q -
REXHXW 1 — H x W, H =W, k and G are kernel size and grou 1= ) 4 £ b 4
number for convolution layers o > % g :() > % E :C) B>
= = = L
Type Params FLOPs MPL
MSA 4C+1C 8CZL +4CL? +3L2 o) 4
Conv (Ck*/G + HC (2Ck*/G)LC O(H k)
Fig.6 Structure of the proposed Task-Related Head
£ Q’ 0 = f4(X), which is then used to predict deformable offset
LA A % Al and modulation scalar Am for all positions:
N
|4 Al Am = fna(Q). (14)
For the /-th position, the re-sampled and re-weighted feature
p a X is calculated by:

l l

Re-sample Re-modulate
(a) (b)

Fig.5 Structure of the proposed MD-MSA

p change larger and this paper will not elaborate on the
details.

Furthermore, we advance the global path by designing a
Modulated Deformable MSA (MD-MSA in Sect. 4.3.3) mod-
ule, which improves the model performance with negligible
parameters and GFLOPs increasing, and a comparison study
to explore combinations of different operations is further con-
ducted in the experimental section.

4.3.3 Modulated Deformable MSA

Inspired by the irregular spatial distribution among real indi-
viduals that are not as horizontal and vertical as the image, we
improve a novel Modulated Deformable MSA (MD-MSA)
module that considers position fine-tuning and re-weighting
of each spatial patch. As shown in Fig.5, the blue dotted
line represents naive MSA procedure that Q KV features are
obtained by the input feature map X from function fyiy(-),
ie., OKV = fup(X) and fyry = f4 @ fi @ fv (© denotes
concatenation operation), while the red solid line shows the
procedure of MD-MSA. And the main difference between
the proposed MD-MSA and original MSA lies in the query-
aware access of fine-tuned feature map X to extract KV
features further. Specifically, given the input feature map
X with L positions, @ is obtained by function f,, i.e.,

X, = S(X;, Al - Am, (15)

where Al is the relative coordinate with an unconstrained
range for the /-th position, while Am lies in the range
[0, 1], and S represents the bilinear interpolation function.
Then KV is obtained with the new feature map X , 1.e.,
KV = fi, ()}). It is worth mentioning that the main dif-
ference between MD-MSA and recent similar work (Xia et
al., 2022) lies in the modulation operation, where MD-MSA
could apply appropriate attention to different position fea-
tures to obtain better results. Also, any form of position
embedding is not used since it makes no contribution to
results, and detailed comparative experiments can be viewed
in Sect.5.4.3.

4.3.4 Task-Related Head

Current transformer-based vision models would initialize
different tokens for different tasks Touvron et al. (2021a)
or use the pooling operation to obtain global representation
Liu et al. (2021). However, both manners are potentially
incompatible: the former treats the task token and image
patches coequally as unreasonable and clumsy, because the
task token and image tokens have different feature distribu-
tions while additional computation is required from O (n?)
to O((n + 1)?); the latter uses only one pooling result for
multiple tasks that is also inappropriate and harmful for los-
ing wealthy information. Inspired by multi-objective EAs
(Coello & Lamont, 2004; Khare et al., 2003; Toffolo et al.,
2003) that find a set of solutions for different targets, we
design a Task-Related Head (TRH) docked with transformer
backbone to obtain the corresponding task output through the
final features. As shown in Fig. 6, we employ a cross-attention
paradigm to implement this module: K and V (gray lines) are
output features extracted by the transformer backbone, while
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Table 2 Overall analogical correlations between EA and EATFormer

EA

Basics Population size

(Discrete) Individual

(Sparse) Crossover operation
(Sparse) Mutation operation
(Partial) Population succession
(Global) Best individual
Improvements Multi-scale population

Global and local population
Self-adapting parameters
Irregular population distribution
Multi-objective EA

Dynamic population

EATFormer

Patch number (Sect. 1)
(Continuous) Patch token

(Dense) Global MSA module

(Dense) Individual FFN module

(Integral) Residual connection

(Aggregated) Task-related token

Multi-scale region aggregation module (Sect.4.3.1)
Global and Local interaction module (Sect.4.3.2)
Weighted operation mixing (Sect.4.3.2)
Modulated deformable MSA (Sect.4.3.3)
Task-related head (Sect.4.3.4)
Pyramid architecture (Fig.4)

Q (red line) is the task-related token to integrate global infor-
mation. Note that this design is more effective and flexible
for different tasks learning simultaneously while consuming
a negligible computation amount compared to the backbone,
and more analytical experiments can be viewed in the follow-
ing Sect.5.4.8. For a more fair comparison, TRH presented
in the former conference version (Zhang et al., 2021) is not
used by default because this plug-and-play module can easily
be added to other methods, and we will conduct an ablation
experiment in Sect. 5.4.8 to verify the validity of TRH.

4.3.5 Overall Congruent Relationships

To more clearly show the design inspirations of different
modules, we summarize the analogies between the improved
EATFormer research and homologous concepts (ideas) from
EA variants in Table 2.

4.4 EATFormer Variants

In the former conference version (Zhang et al., 2021), we
improve the columnar ViT by introducing a local path in par-
allel with global MSA operation, denoted as EAT-Ti, EAT-S,
and EAT-B in the top part of Table 3. In this paper, we extend
the columnar structure to a pyramid architecture and carefully
re-design a novel EATFormer model, which has a series of
scales for different practical applications, and these variants
can be viewed in the bottom part of Table 3. Except for the
depth and dimension of the model, other parameters remain
consistent for all models: the head dimension of MSA is
32; window size is set to 7; kernel size of all convolution is
3 x 3; dilations of the MSRA module for four stages are [1],
[11, [1,2,3], and [1,2], respectively; low-level stage1-2 only
use local path while high-level stage3-4 employ hybrid GLI
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module for efficiency. More detailed structures and imple-
mentations can be viewed in the attached source code.

4.5 Further Discussion

Compared with EAT in the former conference version, the
improved EATFormer has better inspirations, finer ana-
logical designs, and more sufficient experiments. And we
prove the effectiveness and integrity of the proposed method
through a series of following experiments, such as com-
parison with SOTA methods, downstream task transferring,
ablation studies, and explanatory experiments. It is worth
noting that the backbone of EATFormer in this paper only
contains one unified EAT block, which fully considers three
aspects of modeling: (1) multi-scale information aggrega-
tion, (2) feature interactions among tokens, and (3) individual
enhancement. Also, the architecture recipes of EATFormer
variants in this paper are mainly given by our intuition and
proved by experiments, but the alterable configure param-
eters can be used as the search space for NAS that is
worth further exploration in our future works, e.g., embed-
ding dimension, dilations of MSRA, kernel size of MSRA,
fusion function of MSRA, down-sampling mode of MSRA,
separation ratio of GLI, normalization types, window size,
operation combinations of GLI, etc.

5 Experiments

In this section, to evaluate the effectiveness and superior-
ity of our improved EATFormer architecture, we experiment
for mainstream vision tasks with models of different vol-
umes as the backbone and orderly conduct down-stream
tasks, i.e., image-level classification (ImageNet-1K, Deng
et al., 2009), object-level detection and instance segmenta-
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Table 3 Detailed settings of different EATFormer variants. Top part shows previous columnar EAT models (Zhang et al., 2021)
Network Depth Dimension Params. (M) FLOPs (G) Inf. Mem. (G) Top-1
Col EAT-Ti 12 192 5.7 1.01 2.2 72.7
EAT-S 12 384 22.1 3.83 2.9 80.4
EAT-B 12 768 86.6 14.83 4.5 82.0
Pyramid EATFormer-Mobile [1,1,4,1] [48, 64, 160, 256] 1.8 0.36 2.2 69.4
EATFormer-Lite [1,2,6,1] [64, 128, 192, 256] 3.5 0.91 2.7 75.4
EATFormer-Tiny [2,2,6,2] [64, 128, 192, 256] 6.1 1.41 3.1 78.4
EATFormer-Mini [2,3,8,2] [64, 128, 256, 320] 11.1 2.29 3.6 80.9
EATFormer-Small [3,4,12, 3] [64, 128, 320, 448] 24.3 4.32 4.9 83.1
EATFormer-Medium 4,5, 14, 4] [64, 160, 384, 512] 39.9 7.07 6.2 83.6
EATFormer-Base [5, 6,20, 7] [96, 160, 384, 576] 63.5 10.89 8.7 83.9

tion (COCO 2017, Lin et al., 2014), and pixel-level semantic
segmentation (ADE20K, Zhou et al., 2019). Massive abla-
tion and explanatory experiments are further conducted to
prove the effectiveness of EATFormer and its components.

5.1 Image Classification
5.1.1 Experimental Setting

All of our EATFormer variants are trained for 300 epochs
from scratch without pre-training, extra datasets, pre-trained
models, token labeling (Jiang et al., 2021b) alike strategy,
and exponential moving average. We employ the same train-
ing recipe as Deit (Touvron et al., 2021a) to all EATFormer
variants for fair comparisons with different SOTA methods:
AdamW (Loshchilov and Hutter, 2019) optimizer is used for
training with betas and weight decay equaling (0.9, 0.999)
and 5e~2, respectively; Batch size is set to 2048, while learn-
ing rate is 5¢~* by default with a linear increasing compared
with batch size divided by 512; Standard cosine learning
rate scheduler, data augmentation strategies, warm-up, and
stochastic depth are used during the training phase (Touvron
et al., 2021a). EATFormer is built on PyTorch (Paszke et al.,
2019) and relies on the TIMM interface (Wightman, 2019).

5.1.2 Experimental Results

In this work, we design EATFormer variations at different
scales to meet different application requirements, and com-
parison results with SOTA methods are shown in Table 4.
To fully evaluate the effects of different methods, we choose
the number of parameters (Params.), FLOPs, Top-1 accuracy
on ImageNet-1K, as well as throughput of GPU (with basic
batch size equaling 128 by a single V100 SXM2 32GB, and
the batch size will be reduced to the maximum that mem-
ory requires for large models) and CPU (with batch size
equaling 128 by Xeon 8255C CPU @ 2.50GHz) as evalu-

ation indexes. Our smallest EATFormer-Mobile obtains 69.4
that is much higher than MobileNetV3-Small 0.75x coun-
terpart, i.e., 65.4, while the largest EATFormer-Base obtains
a very competitive result with only 49.0M parameters, and
it further achieves 84.9 at 384 x 384 resolution. Compara-
tively, although our approach obtains a slight improvement
over recent SOTA MPVIiT-T/-XS/-S by + 0.2%/+ 0.0%/+
0.1%, EATFormer features significantly fewer FLOPs by —
0.21G/— 0.68G/— 0.48G, faster GPU speed by + 2.1x/+
1.7x/+ 1.5x, and CPU speed by + 1.33x/+ 1.27x/+ 1.07 x.
At the highest 5S0M-level model, our EATFormer-B still
achieves a throughput of 329 that is 1.8x % faster than
MPVIT-B, and this efficiency increase is also considerable.
Meaning that EATFormer is more user-friendly than MPViT
on general-purpose GPU and CPU devices, and our EAT-
Former can better trade-off parameters, computation, and
precision. At the same time, our tiny, small, and base models
improve by +5.74,+2.74, and + 1.91 compared with the pre-
vious conference version. Interestingly, we find that the Top- 1
accuracy of different methods with 50-80M parameters
would be approximately saturated to 84.0 without external
data, token labeling, larger resolution, etc., so it is worth
future exploration to alleviate this problem.

5.2 Object Detection and Instance Segmentation
5.2.1 Experimental Setting

To further evaluate the effectiveness and superiority of
our method, ImageNet-1K (Deng et al., 2009) pre-trained
EATFormer is benchmarked as the feature extractor for
downstream object detection and instance segmentation tasks
on COCO2017 dataset (Lin et al., 2014), and its window size
increases from 7 to 12 without global attention and other
changes. For fair comparisons, we employ MMDetection
library (Chen et al., 2019) for experiments and follow the
same training recipe as Swin-Transformer (Liu et al., 2021):

@ Springer
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| ~ s
a. Object Detection and Instance Segmentation

Swin

ours

b. Semantic Segmentation

Fig.7 Intuitive visualizations of two downstream tasks compared with
Swin Transformer. Distinct differences are highlighted with red circles
and rectangles

1x schedule for 12 epochs and 3 x schedule with a multi-
scale training strategy for 36 epochs. AdamW (Loshchilov
& Hutter, 2019) optimizer is used for training with learning
rate and weight decay equaling le~* and 5¢~2, respectively.

5.2.2 Experimental Results

Comparison results of box mAP (A P?) and mask mAP
(AP™) are reported in Table 5, and our improved EAT-
Former obtains competitive results over recent approaches.
Specifically, our tiny model obtains +5.61/+5.6% AP? and
+3.91/+4.01 AP™ improvements over PVT-Tiny Wang et
al. (2021a) on both 1x and 3x schedules, while achieves
higher results over MPVIiT (Lee et al., 2022) with less param-
eters and FLOPs, i.e., +0.61 and +0.441 on 3 x schedule. For
larger EATFormer-small and EATFormer-base models, we
consistently get better results than recent counterparts, which
surpass Swin-T by +2.41/+2.11 and Swin-S by +1.51/+1.71
with 1 x schedule, while by +1.44/+1.31 and by +0.51/+0.94
with 3 x schedule. Also, we obtain slightly higher results than
DAT (Xiaet al., 2022) with computation amount going down
by 29 G| . Although EATFormer is slightly lower than SOTA
MPViT-S/B in the downstream task metrics, our method has
obvious advantages in the number of parameters and com-
putation, e.g., -10G| FLOPs decreasing than MPViT-S for
Mask R-CNN, while -154 G|, (—30.6%) FLOPs and -27 M|,
(—28.4%) parameters decreasing than MPViT-B, effectively
balancing the trade-off between effectiveness and perfor-

mance. For MPVIiT-T, our EATFormer-Tiny has obvious
metrics, parameter numbers, and computation advantages.
Qualitative visualizations on validation dataset compared
with Swin-S (Liu et al., 2021) are shown in the top part of
Fig.7. Results indicate that our EATFormer can obtain more
accurate detection accuracy, fewer false positives, and finer
segmentation results than Swin Transformer.

5.3 Semantic Segmentation
5.3.1 Experimental Setting

We further conduct semantic segmentation experiments on
the ADE20K (Zhou et al., 2019) dataset, and pre-trained
EATFormer with window size equaling 12 is integrated into
UperNet (Xiao et al., 2018) architecture to obtain pixel-level
predictions. In detail, we follow the same setting of Swin-
Transformer (Liu et al., 2021) to train the model for 160k
iterations. AdamW (Loshchilov & Hutter, 2019) optimizer
is also used with learning rate and weight decay equaling
le~* and 5¢72, respectively.

5.3.2 Experimental Results

Segmentation results compared with contemporary SOTA
works under three main model scales are reported in
Table 6. Our EATFormer-Tiny obtains a significantly +3.44
improvement than recent VAN-Tiny (Guo et al., 2023),
while EATFormer-Small achieves a higher mloU with fewer
FLOPs over SOTA methods. For larger EATFormer-Base,
it consistently obtains competitive results, i.e., +1.71 and
+1.04 than Swin-S (Liu et al., 2021) and DAT-S (Xia et
al., 2022), respectively. Compared with SOTA MPViT, we
obtain a better trade-off among parameters, computation,
and precision. E.g., our EATFormer-Base has 26 M fewer
parameters and 156 G fewer FLOPs compared to MPViT-B.
Our approach generally has excellent overall precision and
computation performance than counterpart. Also, intuitive
visualizations of the validation dataset compared with Swin-
S (Liu et al., 2021) are shown in the bottom part of Fig.7.
Qualitative results consistently demonstrate the robustness
and effectiveness of the proposed approach, where our EAT-
Former has more accurate segmentation results.

5.4 Ablation Study

To fully evaluate the effectiveness of each designed mod-
ule, we conduct a series of ablation studies in the following
sections. By default, EATFormer-Tiny is used for all experi-
ments, and we follow the same training recipe as mentioned
in Sect.5.1.1.

@ Springer
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Table 6 Semantic segmentation
results compared with SOTAs

on ADE20K (Zhou et al., 2019)
by Upernet (Xiao et al., 2018)

Backbone Params. GFLOPs mloU Pub
XCiT-T12 (Ali et al., 2021) 34 - 43.5 NeurIPS’21
VAN-Tiny (Guo et al., 2023) 32 858 41.1 CVPR’22
EATFormer-Tiny 34 870 44.5 -

Swin-T (Liu et al., 2021) 60 945 44.5 ICCV’21
XCiT-S12 (Ali et al., 2021) 52 - 46.6 NeurIPS’21
DAT-T (Xia et al., 2022) 60 957 45.5 CVPR’22
ViTAEV2-S (Zhang et al., 2023b) 49 - 45.0 1IJCV’23
MPVIT-S (Lee et al., 2022) 52 943 48.3 CVPR’22
UniFormer-S (Li et al., 2023a) 52 955 47.0 arXiv’22
EATFormer-Small 53 934 47.3 -

Swin-S (Liu et al., 2021) 81 1038 47.6 ICCV’21
XCiT-M24 (Ali et al., 2021) 109 - 48.4 NeurIPS’21
DAT-S (Xia et al., 2022) 81 1079 48.3 CVPR’22
MPVIT-B (Lee et al., 2022) 105 1186 50.3 CVPR’22
UniFormer-B (Li et al., 2023a) 80 1106 49.5 arXiv’22
EATFormer-Base 79 1030 49.3 -

Table 7 Ablation study for different component combinations in EAT
block

MSRA GLI FFN Params FLOPs Top-1
%4 24 0.45 62.9
v 2.6 0.51 64.4
v 52 1.17 71.4
4 4 29 0.60 67.7
4 v 5.5 1.26 76.0
4 4 5.8 1.32 77.4
4 v 4 6.1 1.41 78.4

5.4.1 Component of EAT Block

As afore-mentioned in Sect.4.3, our proposed EAT block
contains: (1) MSRA, (2) GLI, and (3) FFN modules that are
responsible for aggregating multi-scale information, inter-
acting global and local features, and enhancing the features
of each location, respectively. To verify the validity of
each module in the EAT block, we conduct an ablation
experiment in Table 7 that contains different component com-
binations. Results indicate that each component contributes
to the model performance, and our EATFormer obtains the
best result when using all three parts. Since FFN takes up
most of the parameters and calculations, we can conduct
further research on optimizing this module to obtain better-
integrated model performance.

5.4.2 Separation Ratio of GLI

We deduce from Egs. (12) and (13) in Sect.4.3.2 that EAT-
Former has the lowest number of parameters and calculation

@ Springer

amount when separation ratio p of GLI equals 0.2, and there
is not much difference about the total parameters and cal-
culations when p lies in the range [0, 0.5]. To further prove
the above analysis and verify the validity of the GLI, we
conduct a set of experiments with equal interval sampling
of p in range [0, 1] for the classification task. As shown in
Fig. 8, the x-coordinate represents different proportions, and
the left y-ordinate represents Top-1 accuracy of the modified
EATFormer-Tiny with embedding dims equaling [64, 128,
230, 320] for divisible channels. The right y-ordinate shows
the model’s running speed and relative computation amount.
Results in the figure are consistent with the foregoing deriva-
tion, and p equaling 0.5 is the most economical and efficient
choice, where the model has relatively high precision, fast
speed, and low computational cost. All GLI layers in this
article use the same ratio, and exploring different ratios for
different layers should lead to further improvements based
on the above analysis.

5.4.3 Component Ablation of EATFormer

Following the core idea of paralleling global and local
modelings, this paper extends a pyramid architecture over
the previous columnar EAT model (Zhang et al., 2021).
Specifically, EAT block-based EATFormer can be seen as
evolving from the naive baseline, which employs: (1) patch
embedding for down-sampling; (2) MSRA with only one
scale; (3) naive MSA; (4) simple addition operation with
ai,i =1,..., N, g,l equaling 1, instead of: (1) MSRA for
down-sampling; (2) MSRA with multiple scale; (3) improved
MD-MSA; (4) weighted operation mixing (WOM) with
learnable «;,i = 1,..., N, g, [. Detail ablation experiment
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Table 8 Ablation study for MSRA Down MSRA MD-MSA WOM Param FLOPs Top-1
different component
combinations in EATFormer. v/ 4792 1.232 774
means choice while  is the ’ ’ '
opposite, and 4 represents v 5.202 1.300 77.8
D-MSA that abandons the v 5.208 1.283 77.9
modulation operation + 4.804 1.236 775
v 4.805 1.236 77.7
v v 6.109 1.412 78.2
v v 5.214 1.304 78.0
v v 5.220 1.288 78.1
v v (%4 6.122 1.416 78.2
v v v 6.109 1.412 78.1
v v v 5.221 1.288 78.0
v v v v 6.122 1.416 78.4
805 va Table 9 Ablation study for compositions of GLI
Speed
0.0 FLOPS Global Local Param FLOPs GPU Top-1
2.2
LS § MSA CNN 6.1 1.412 1896 78.1
8 s MSA DCNv2 9.0 1.522 1567  79.0
79.0 3
18 & MD-MSA CNN 6.1 1.416 1549 78.4
783 MD-MSA DCNv2 9.0 1.526 1333 79.2

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11
Separation Ratio

Fig.8 Separation ratio analysis of GLI. Blue circle represents the Top-
1 accuracy of EATFormer at different separation ratios (c.f., left axis),
and the radius represents the relative number of parameters. Orange and
pink lines represent the running speed and relative FLOPs of the model
(c.f., right axis)

based on EATFormer-tiny can be viewed in Table 8, and
the results indicate that each individual component has a
role, and different components combination can complement
each other to help the model achieve higher results. Note that
WOM can only be applied if multi-path-based MSRA is used.

5.4.4 Composition of GLI

By default, the global path in GLI employs the designed MD-
MSA module inspired by the dynamic population concept,
while the local branch uses conventional CNN to model static
feature extraction. To further assess the potential of the GLI
module, different combinations of global (i.e., MSA and MD-
MSA) and local (i.e., CNN and DCNv2, Zhu et al., 2019)
operators are used for experiments. As shown in Table 9, MD-
MSA improves the model effect by 0.3 1 only with negligible
parameters and computation, while DCNv2 can further boost
performance by a large margin at the cost of higher storage
and computation. Theoretically, MD-MSA has no significant
impact on the speed, but the naive PyTorch implementation

without CUDA acceleration leads to a obvious decrease in
GPU speed. Therefore, the running speed of our model could
be improved after further optimization for MD-MSA.

5.4.5 Normalization Type

Transformer-based vision models generally use Layer Nor-
malization (LN) to achieve better results rather than Batch
Normalization (BN). Nevertheless, considering that LN
requires slightly more computation than BN and the proposed
hybrid EATFormer contains many convolutions that are usu-
ally combined with Batch Normalization (BN) layers, we
conduct an ablation study to evaluate which normalization
would be better. Table 10 shows the results on three EAT-
Former variants, and BN-normalized EATFormer achieves
slightly better results while owing an significantly faster GPU
inference speed. Note that merging convolution and BN lay-
ers is not used here, and this technique can further improve
the inference speed.

5.4.6 MSRA at Different Stages

Different network depths may have different requirements
for the MSRA module, so we explore the introduction of
MSRA at different stages. As shown in Table 11, our model
obtains the best result when MSRA is used in [2, 3, 4] stages,
and the model effect decreases sharply when only used in the
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Table 10 Effects of different normalization types

Table 13 Quantitative ablation study for the layer number of TRH

Network Params FLOPs GPU Top-1 Network Params FLOPs GPU Top-1
Tiny-LN 6.1 1.425 963 78.2 Tiny 6.1 1.416 1549 78.4
Tiny-BN 6.1 1.416 1549 78.4 Tiny +1 6.940.38 1.423 1495 78.7
Small-LN 24.3 4.337 448 82.8 Tiny +2 77416 1.430 1461 79.1
Small-BN 24.3 4.320 615 83.1 Tiny +3 84,23 1.438 1423 79.2
Base-LN 49.0 8.775 240 83.7 Small +2 29.11438 4.363 589 83.2
Base-BN 49.0 8.744 345 83.9 Base +2 553463 9.001 316 83.9
Table 11 Ablation study of MSRA on different stages )
the larger models, so the multi-task advantage of TRH for the
Stages Params FLOPs GPU Top-1 1 . . .
arger model is more important than accuracy improvement.
[1,2,3,4] 6.3 1.541 1291 78.2
[2,3,4] 6.3 1.533 1434 78.5 5.5 EATFormer Explanation
[3,4] 6.1 1.416 1549 78.4
[4] 5.6 1.326 1695 77.9 5.5.1 Alpha Distribution of Different Depths
The weighted operation mixing mechanism can improve the
Table 12 Ablation study on kernel size of MSRA g s
model performance and objectively represent the model’s
Size Params FLOPs GPU Top-1 attention to different branches at different depths. Based on
r n -indi i is-
5x5 9.0 1.845 1342 78.5 - oreac 0 00 and The AP laTnaicared Weight €18
tribution after training is shown in Fig.9. (1) For the MSRA
Tx7 13.4 2.487 1087 78.5

fourth stage. Considering the model accuracy and efficiency,
using this module in [3, 4] stages is a better choice.

5.4.7 Kernel Size of MSRA

The MSRA module for multi-scale modeling adopts CNN
as its primary component so that the convolution kernel may
influence the model results. As shown in Table 12, a larger
kernel size can only slightly increase the model effect, but the
number of parameters and the amount of calculation could
increase dramatically. Therefore, we employ efficient 3 x 3
kernel size in MSRA for EATFormer at all scales.

5.4.8 Layer Number of TRH

The Plug-and-play TRH module can easily be docked with
the transformer backbone to obtain the task-related feature
representation, and we take the classification task as an
example to explore the effect of this module. As shown
in Table 13, Top-1 accuracy is significantly improved by
gradually increasing the number of TRH layers in the
EATFormer-Tiny model, and the performance tends to sat-
uration after two layers. Therefore, using two-layer TRH is
the recommended choice to balance model effectiveness and
efficiency. However, there is no noticeable improvement in
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module, the proportion of «; (i.e., dilation equals 1) in the
same stage shows an increasing trend while the larger a3
is the opposite, indicating that local feature extraction with
stronger correlation (i.e., smaller scale) is more critical for
the network. And weight mutation between adjacent stages is
caused by a down-sampling operation that changes the fea-
ture distribution. In the last stage4, large scale paths have
more weight because they need to model as much global
information as possible to get proper classification results.
But in general, the proportion of each branch is balanced,
meaning that feature learning at all scales contributes to the
network. Considering the amount of computation and the
number of parameters, this also supports the experimental
result about why only using MSRA for stage3/4 described in
above Sect. 5.4.6. (2) For the GLI module, the global branch
has more and more weight than the local branches as the
network deepens, indicating that both branches are effective
and complement each other: local CNN is more suitable for
low-level feature extraction while the global transformer is
better at high-level information fusion.

5.5.2 Attention Visualization

To better illustrate which parts of the image the model focuses
on, Grad-CAM (Selvaraju et al., 2017) is applied to high-
light concerning regions by our small model. As shown in
Fig. 10, we visualize different images by column for ResNet-
50 (He et al., 2016), Swin-B (Liu et al., 2021), and our
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Fig.9 Alphadistribution of the trained EATFormer for different depths.
Top and bottom parts represent ;, i = 1, ..., Nin MSRA and o, i =
g, 1 in GLI, respectively

Fig. 10 Attention visualizations by Grad-CAM of our EATFormer
compared to CNN-based ResNet-50 (He et al., 2016) and transformer-
based Swin-B (Liu et al., 2021)

EATFormer-Base models, respectively. Results indicate that:
(1) CNN-based ResNet tends to focus on as many regions as
possible but ignores edges; (2) Transformer-based Swin pays
more attention to sparse local areas; (3) Thanks to the design
of MSRA and GLI modules, our EATFormer has more dis-
criminative attention to subject targets that own very sharp
edges.

5.5.3 Attention Distance of Global Path in GLI

We design the GLI module to explicitly model global and
local information separately, so the local branch could under-
take part of the short-distance modeling of the global branch.
To verify this, we visualize the modeling distance of the
global branch for our previous columnar EAT model (Zhang
etal.,2021) and current studied EATFormerin Fig. 11: /-Top)
Compared with DeiT without local modeling, our EAT pays
more attention to global information fusion (choosing layer

5 t
w/0 GLIg,,; |

Fig.11 Attention scope for the transformer-based global branch in GLI.
The top part shows the attention maps for columnar DeiT (Touvron et
al., 2021a) (w/o local modeling) and our previous EAT model (Zhang et
al., 2021) (w/ local modeling) in different depths; the bottom part shows
results of EATFormer w/ and w/o local modelings in the last stage

4/6 for examples), where more significant values are found at
off-diagonal locations. 2-Bottom) Attention maps in the last
stage are visualized because the window size equals the fea-
ture size that could cover overall information. When using
global modeling alone (w/o GLI), the model only focuses
on sparse regions but will pay attention to more regions
when GLI is used. Results indicate that the designed par-
allel local path takes responsibility for some local modelings
that should be the responsibility of the global path. We can
find differences in feature modeling between columnar-alike
and pyramid-aware architectures.

Relationship with EA. Motivated by EA variants (Moscato,
1989; Hart et al., 2005; Kumar et al., 2014) that intro-
duce local search procedures besides conventional global
search for converging higher-quality solutions, we analog-
ically improve the novel GLI module. When GLI is not used
(only global modeling), the model tends to correlate local
regional features, which is consistent with the concept of
local population in biological evolution due to geographical
constraints, i.e., just like the concept of local search in EA.
With GLI, explicit local modeling unlocks global modeling
potential, forcing global branches to associate more distant
features for better results, just as the global/local concept in
EA (Moscato, 1989; Hart et al., 2005; Kumar et al., 2014)
that improves performance.

5.5.4 Al and Am Distribution of MD-MSA

Figure 12 visualizes the learned offset (the longer the arrow,
the farther the deformable distance, and the arrow direction
indicates sampling direction) and modulation (the brighter
the color, the greater the weight) of MD-MSA in stage4.
There are differences in offset and modulation of each loca-
tion in different depths, and the model unexpectedly tends to
give more weight to the main object that could describe the
main parts of the object. Since we set align_corners to true
when resampling, it has a gradually increasing bias from 0 to
0.5 from the center to the edge. Therefore, the visualization
results behave as a whole spreading outwards that may visu-
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S4-11 » S4-13

Input

Fig. 12 Visualization of deformable offsets (denoted as arrows) and
modulation scalar (denoted as color) for MD-MSA of our small model
in the last stage. Please zoom in on the red circle for more details

ally weaken changes in each learned position. Please zoom
in for better visualization.

Relationship with EA. Inspired by the irregular spatial
distribution among real individuals that are not as horizontal
and vertical as the image, we improve the novel MD-MSA
module that considers the offset of each spatial position. As
show in Fig. 12, different positions (individuals) prefer dif-
ferent offsets and modulation (i.e., direction and scale), just
as individuals have different preferences in different regions
of the biological world. This modeling method has also been
verified in EA, e.g., the improved works (Liu & Lampinen,
2005; Opara & Arabas, 2019; Pant et al., 2020) adopt the sim-
ilar parameter adaption and feature scaling idea to conduct
global feature interaction.

5.5.5 Visualization of Attention Map in TRH

Taking the classification task as an example, we visualize the
attention map in the two-layer TRH that contains multiple
heads in the inner cross-attention layer. As shown in Fig. 13,
we normalize values of attention maps to [0, 1] and draw
them on the right side of the image. Results indicate that
different heads focus on different regions, and the deeper
TRH; focuses on a broader area than TRH| to form the final
feature.

5.5.6 Parameters and FLOPs Distribution

Taking the designed EATFormer-Tiny as an example, we
analyze the distribution of parameters and FLOPs in differ-
ent layers, where the model contains a stem for resolution
reduction, four stages for feature extraction, and a head for
target output. As shown in Fig. 14, the number of parameters
is mainly distributed in the deep stage3/4, while FLOPs con-
centrate in the early stages, and FFN occupies the majority
of parameter number calculation. Therefore, we can focus on
the optimization of the FFN structure to better balance the
comprehensive model efficiency in future work.
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Fig. 13 Attention map visualization in TRH for the classification task.
The model contains two TRHs, and four head attentions are displayed
in each TRH
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Fig. 14 Analyses of Params. and FLOPs distribution

5.5.7 Works Comparison with Local/Global Concepts

In this paper, the locality in ViT refers to the introduction of
CNN with inductive bias into the Transformer structure, and
we design the GLI block as a parallel structure that introduces
a different local branch beside the global branch. This idea
is motivated by some EA variants (Moscato, 1989; Hart et
al., 2005; Kumar et al., 2014) that employ local search pro-
cedures besides conventional global search for converging
higher-quality solutions. Also, global/local concept is only
an idea in the macro sense, and the specific way varies from
method to method. E.g., global/local concept in MPViT (Lee
etal., 2022) is expressed as parallelism between blocks rather
than within each block, while CMT (Guo et al., 2022) cas-
cades local information into the FFN module rather than the
MSA as previous works (Srinivas et al., 2021; Yuan et al.,
2021a; Li et al., 2023b). Comparatively, our GLI block con-
sists of local convolution and global MD-MSA operations,
and Weighted Operation Mixing (WOM) mechanism is fur-
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Table 14 Global/local idea comparisons among recent methods. ®:
Whether the local/global concept is instantiated as a parallel block;
@: Whether the local operation is combined with MSA; ®: Whether
only one kind of block is used for the model; @: Whether feature split
is employed for local/global paths; ®: Whether feature importance is
considered for local/global paths. ¢: Satisfied; X: Unsatisfied

®

Method vs. Criterion O]

MPVIT (Lee et al., 2022)

CMT (Guo et al., 2022)

UniFormer (Li et al., 2022)

ViTAEV2 (Zhang et al., 2023b)
MobileViT (Mehta & Rastegari, 2022)
EdgeNeXt (Maaz et al., 2023)
EfficientFormerv2 (Li et al., 2023b)
EATFormer (Ours)

VX X X X X %X
S XSRS XX
N X x x x SN
UX X X X X X X [®
U X X X X X X X [©

ther proposed to mix all operations adaptively. So, we argue
that GLI obviously differs comparison methods. Besides, we
compare our method with some contemporary/recent works
(Lee et al., 2022; Guo et al., 2022; Li et al., 2022; Zhang et
al., 2023b; Mehta and Rastegari, 2022; Maaz et al., 2023; Li
et al., 2023b) which incorporate the global/local concept to
their model designs. To further illustrate the differences with
these methods, we make comprehensive comparison with
them in terms of local/global concepts by several criteria in
Table 14). Results illustrates the uniqueness of GLI in the
technical level.

6 Conclusion

This paper explains the rationality of vision transformer by
analogy with EA and improves our previous columnar EAT to
a novel pyramid EATFormer architecture inspired by effec-
tive EA variants. Specifically, the designed backbone consists
only of the proposed EAT block that contains three resid-
ual parts, i.e., MSRA, GLI, and FFN modules, to model
multi-scale, interactive, and individual information sepa-
rately. Moreover, we propose a TRH module and improve
an MD-MSA module to boost the effectiveness and usability
of our EATFormer further. Abundant experiments on clas-
sification and downstream tasks demonstrate the superiority
of our approach over SOTA methods in terms of accuracy
and efficiency, while ablation and explanatory experiments
further illustrate the effectiveness of EATFormer and each
analogically designed component.

Nevertheless, we do not use larger models (e.g., > 100M),
larger datasets(i.e., ImageNet-21K Deng et al., 2009) or
stronger training strategy (i.e., token labeling Jiang et al.,
2021b) for experiments due to limited amount of computa-
tion. Also, the architecture recipes are mainly given by our

intuition, and the super-parameter could be used to optimize
the model structure further. We will explore the above aspects
and the combination with self-supervised learning techniques
in future works.
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