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Abstract—Building reliable fault detection systems
through deep neural networks is an appealing topic in in-
dustrial scenarios. In these contexts, the representations
extracted by neural networks on available labeled time-
series data can reflect system states. However, this en-
deavor remains challenging due to the necessity of labeled
data. Self-supervised contrastive learning (SSCL) is one of
the effective approaches to deal with this challenge, but
existing SSCL-based models suffer from sampling bias and
representation bias problems. This article introduces a de-
biased contrastive learning framework for time-series data
and applies it to industrial fault detection tasks. This frame-
work first develops the multigranularity augmented view
generation method to generate augmented views at differ-
ent granularities. It then introduces the momentum cluster-
ing contrastive learning strategy and the expert knowledge
guidance mechanism to mitigate sampling bias and repre-
sentation bias, respectively. Finally, the experiments on a
public bearing fault detection dataset and a widely used
valve stiction detection dataset show the effectiveness of
the proposed feature learning framework.

Index Terms—Data augmentation, expert knowledge, in-
dustrial fault detection, self-supervised contrastive learn-
ing (SSCL), time-series representation learning.

I. INTRODUCTION

IN RECENT years, deep learning has shown impressive
performance in extracting hidden patterns and features from

time-series data. It has also been proven to be one of the effective
techniques for constructing data-driven industrial fault detection
methods [1], [2]. Generally, the availability of a large amount of
labeled data is one of the critical factors for reliable diagnosis.
However, this requirement is difficult to meet in some indus-
trial scenarios because obtaining sufficient labeled data takes
time. Therefore, feature learning methods that rely on a limited
amount of labeled data have garnered increased attention.
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An autoencoder (AE) is an unsupervised artificial neural net-
work that consists of an encoder and a decoder [3], [4]. The AE is
trained by minimizing the error between the reconstructed input
and the original input, thereby reducing the high dependence
on labeled data. Due to this property, AEs are widely used in
industrial fault detection tasks, where there is a lack of sufficient
labeled data [5], [6], [7]. AE-based fault detection methods can
be broadly categorized into those based on intermediate rep-
resentation extraction (IRE) and those based on reconstruction
error comparison (REC). IRE-based methods treat the trained
encoder as a feature extractor, taking the intermediate represen-
tation Z as the feature of the original input X , and subsequently
build a classifier for fault detection tasks. For instance, Yu
et al. [6] developed a 1-D residual convolutional AE for gearbox
fault diagnosis. REC-based methods, on the other hand, directly
compare the reconstruction error with a predefined threshold.
Typically, a sample with a reconstruction error exceeding this
threshold is identified as a faulty sample. Examples include
the denoising AE for wind turbine fault detection [5] and an
ensemble of AEs for bearing fault detection [7].

These AE-based unsupervised fault diagnosis methods reduce
the dependence on labeled data. However, some challenges
in AE-based methods remain. First, IRE-based methods treat
AE’s encoder as a feature extractor, thereby encoding the raw
input into a more compact and informative representation for
downstream tasks. However, the commonly used reconstruction
loss is not directly related to the downstream task, making
the extracted representation suboptimal. Second, REC-based
methods usually only include normal data in the training stage
so that the model can reconstruct normal samples very well. In
contrast, the faulty samples are difficult to reconstruct, which
helps us realize the identification of normal samples and faulty
samples. However, REC-based methods cannot further identify
types of faulty samples. Third, although obtaining a large amount
of high-quality labeled data in most industrial scenarios is chal-
lenging, a small amount of labeled data is usually still available.
The available labeled data is insufficient to train a reliable fault
detection model but contains valuable expert knowledge. The
current AE-based methods completely discard these available
labeled data. However, expert knowledge of these available data
is still beneficial when building an AE-based fault detection
model.

As a potential feature learning method, self-supervised con-
trastive learning (SSCL) pretraining on unlabeled data followed
by supervised fine-tuning on labeled data is a popular paradigm
for learning from limited labeled examples. SSCL based on

1551-3203 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 11,2024 at 07:54:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1968-8004
https://orcid.org/0009-0006-3424-6967
https://orcid.org/0000-0001-6939-9732
https://orcid.org/0000-0003-4822-8939
mailto:zhangkexin@zju.edu.cn
mailto:zhangkexin@zju.edu.cn
mailto:rycai@zju.edu.cn
mailto:c_zhou@zju.edu.cn
mailto:yongliu@iipc.zju.edu.cn
mailto:yongliu@iipc.zju.edu.cn
https://doi.org/10.1109/TII.2024.3359409


7642 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 5, MAY 2024

multiview invariance is one of the most widely used contrastive
strategies. It utilizes data augmentation techniques to generate
different views of an input sample; then, it learns representa-
tions by maximizing the similarity of the views from the same
sample and minimizing the similarity of the views from different
samples [8], [9]. Importantly, SSCL can train models and extract
features without the need for additional labeled data. In industrial
fault detection tasks, Liu et al. [10] proposed a time-frequency
contrastive method for rotating machinery fault detection. Peng
et al. [11] used a linear classifier to identify faults in chemical
processes after obtaining the compact and informative repre-
sentations under the SSCL framework. However, there are chal-
lenges when using SSCL for fault detection tasks. First, existing
methods employ a biased feature learning framework, suffering
from sampling bias, which results in suboptimal representations.
Second, these methods lack the guidance of expert knowledge,
meaning they cannot guarantee that the extracted features is
relevant to the downstream fault detection task. This is what
we call the representation bias problem.

This article proposes a new feature learning method for time-
series data. It first builds a pretraining model under a newly
designed debiased SSCL framework. Then, expert knowledge
from the labeled data is then harnessed to guide weight up-
dates throughout the training process. The primary function of
the pretrained encoder is to serve as a feature extractor for
subsequent fault detection tasks. In particular, we introduce
a time-series augmentation technique termed multigranularity
augmented view generation (MGAVG). MGAVG first produces
augmented views across various granularities, followed by a
secondary augmentation involving window warping and slicing
techniques. To counter the sampling bias inherent when applying
SSCL for time-series feature learning, we propose a debiased
contrastive learning approach called momentum clustering con-
trastive learning (MCCL). MCCL employs a new momentum
clustering algorithm to generate pseudolabels, aiding the accu-
rate selection of true negative samples during model training.
In addition, we incorporate expert knowledge, sourced from the
limited labeled data during the pretraining phase, to adjust the
weights of the pretrained encoder in every training epoch. This
strategy ensures that the features extracted by our encoder are
optimally aligned with downstream tasks and is named the expert
knowledge guidance mechanism (EKGM). Finally, we validate
the effectiveness of our proposed method using a public bearing
fault detection dataset and a widely used valve stiction detection
dataset. The main contributions of this article are as follows:

1) A new time-series augmentation method called MGAVG
is introduced. This method combines the advantages of
two traditional augmentation methods, window warping
and window slicing, while offering additional perspec-
tives through the proposed multigranularity approach.

2) We propose a new debiased contrastive feature learning
strategy called MCCL, which alleviates the sampling
bias problem in SSCL-based feature learning methods
and encourages the extracted representations to exhibit a
cluster-friendly distribution in the feature space.

3) A new mechanism for incorporating expert knowledge
during the self-supervised feature learning process is

developed, which can ensure that the final extracted
features are directly related to downstream target tasks,
thereby alleviating the representation bias problem.

4) The experimental results on both the public industrial
bearing fault detection dataset and the widely used valve
stiction detection dataset demonstrate that our method
can create a reliable feature learning model using a small
amount of labeled data and a large amount of unlabeled
data. This showcases the practicality of our proposed
method in real industrial scenarios.

The rest of this article is organized as follows. Section II
gives the problem definition and overall framework. Section III
describes the proposed augmentation method. Section IV gives
the details of the debiased feature learning framework. Com-
perhensive experiments are implemented in Section V. Finally,
Section VI concludes this article.

II. OVERALL FRAMEWORK

A. Problem Definition

ConsiderXi ∈ RL×D, i = 1, 2, . . . , N as a single time-series
sample with a length of L and dimension of D. Here, N repre-
sents the total number of samples, and yi is the true label of Xi.
The setX = Xl ∪ Xu encompasses all available samples.Xl de-
notes the subset of time-series samples with true labels, and Xu

denotes the subset without true labels. The number of samples
in Xl is denoted as Nl, while the number of samples in Xu is
Nu, where Nl < Nu. The goal is to develop a feature learning
framework tailored for time-series data and subsequently apply
it to industrial fault detection tasks. This framework should avoid
manual feature engineering and make full use of Xu and Xl to
build a data-driven detection model.

B. Feature Learning Framework

The proposed feature learning framework is shown in Fig. 1.
We first divide all samples into a labeled set Xl and an un-
labeled set Xu. The whole feature learning is split into two
branches: one for expert knowledge acquisition based on super-
vised learning and the other for representation learning based
on self-supervised learning. The expert knowledge acquisition
branch constructs a label prediction network (LPN) to acquire
expert knowledge from Xl. The representation learning branch
utilizes Xu to train the feature extraction network (FEN) under
the SSCL framework. Its purpose is to establish a mapping model
from raw time-series data to compact and informative repre-
sentations. Compared with the traditional SSCL-based biased
feature learning method, we introduce MCCL and EKGM to
mitigate the problems of sampling and representation biases. The
MCCL module employs a new momentum clustering algorithm
to produce pseudolabels for each training batch, selects true
positive and negative samples based on these pseudolabels, and
updates the weights of the FEN using the debiased contrastive
loss. The EKGM leverages the LPN, which contains expert
knowledge, to update the weights of the FEN, allowing the FEN
to incorporate expert knowledge during training. Finally, the
trained FEN is used to extract features from raw time-series
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Fig. 1. Feature learning framework.

samples, which are then used as inputs to construct a fault
classifier.

III. DATA AUGMENTATION FOR TIME-SERIES

In multiview invariance-based SSCL, data augmentation is a
commonly used method to generate different views of an input
sample. Iwana et al. [12] pointed out that the window warping
and window slicing algorithms are highly recommended. In
this study, we continue to use these two effective algorithms.
In addition, we develop a new multigranularity segmentation
method for time-series data to further increase the diversity of
augmented views.

A. MGAVG

This study employs the temporally weighted hierarchical
clustering algorithm to segment time-series data at multiple
granularities. This algorithm was the first to successfully identify
adaptive segmentation for different action stages in videos [13].
We extend it to achieve multigranularity segmentations and to
generate augmented views of time-series data.

Given a time-series sample Xi = {xi,1,xi,2, . . . ,xi,L} ∈
RL×D, where L represents the length and D denotes the di-
mension. Let xi,t ∈ RD be the observation at time t. For the
sake of simplicity, we will omit the subscript i in the subsequent
description. We start by defining a matrix W of size L× L. The
element located in the jth row and kth column is represented as
wjk that can take the value of 0 or 1. If wjk = 1, it signifies that
xk is the observation most similar to xj out of all observations.
The similarity between two observations is gauged by both the
feature distance and the temporal distance. The definition of the
feature distance is

Gf (j, k) = 1− S〈xj ,xk〉 (1)

where Gf (j, k) represents the feature distance between xj and
xk. S〈xj ,xk〉 is the cosine distance. While the feature distance
can measure the similarity between any two observations, it does
not account for temporal information. Intuitively, two consecu-
tive (or very close) observations are more likely to be similar than
two distant ones. Therefore, the temporal distance is introduced

Fig. 2. Segmentation examples for the 12-steps time-series. (a) The
sparse matrix obtained by Eq. (4). (b) Three directed graphs constructed
from the sparse matrix, each directed graph forming a cluster.

by

Gt(j, k) = exp(|j − k|/L) (2)

where |j − k|/L provides a weighing mechanism relative to the
length of a time-series sample. Then, the modulated distance
between any two observations is

G(j, k) = Gf (j, k) ·Gt(j, k). (3)

We use (3) to calculate the modulated distance between every
pair of observations and then populate the matrix W with these
distance values. For each row of W , we retain only the smallest
value and set all other values to zero, i.e.,

wjk =

{
0 if G(j, k) > min

∀k
G(j, k)

1 otherwise
. (4)

We obtain the matrix W which consists solely of 0 s and 1 s.
A straightforward example is depicted in Fig. 2(a). It can be seen
that each row contains just one element with a value of 1, while
all other elements are set to 0. For instance, if w02 = 1, it indi-
cates that the observation most similar to x0 is x2. In this case,
the observationsx0 andx2 can be linked to form a cluster. During
the clustering, all possible connections are explored, resulting
in the formation of multiple clusters, as illustrated in Fig. 2(b).
The initial segmentation has the finest granularity, allowing the
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Fig. 3. Visualization of data augmentation.

original series to be divided into several segments. Then, we
repeatedly merge the similar clusters to obtain multigranularity
segmentations. Finally, we can split the original time-series into
multiple segments, denoted as X = {S1,S2, . . . ,SP }. P is the
number of segments. The raw values of all observations in each
segment is replaced by the mean of all observations in that
segment, which is defined as

X[aSp :bSp ] =
1

bSp − aSp + 1

bSp∑
t=aSp

Xt (5)

where aSp and bSp denote the start and end timestamps
of the segment Sp, respectively. For illustration, consider
Fig. 2(b), where the initial segmentation segregates the orig-
inal series into three clusters comprising six segments: x =
{S[0:6],S[7],S[8],S[9],S[10],S[11:12]}. Even though x8 and x10

are part of the same cluster, they are noncontiguous in the
time dimension, leading them to be categorized into separate
segments. MGAVG is adept at constructing augmented views of
time-series across varying granularities, while maintaining the
temporal attributes inherent to the original series. Examples of
such augmented views can be seen in Fig. 3.

B. Window Warping and Window Slicing

The augmented views generated by the MGAVG maintain
the global pattern of the original time-series but overlook the
local patterns. Thus, based on the multigranularity augmented
views, we apply window warping and window slicing algorithms
for further transformations of these views. Window warping
involves modifying a randomly selected window of a time-series
by either speeding it up or slowing it down, i.e.,

X[t:t+Swp∗Rwp] = Warping(X[t:t+w], Swp, Rwp) (6)

where Swp represents the size of the selected window. Rwp is
warping ratios, which are typically 1

2 or 2. X[t:t+Swp∗Rwp] refers
to the warped window. Unlike window warping, the process of
window slicing involves randomly sampling a slicing window
from the original time-series, i.e.,

X[t:t+Sws] = Slicing(X, Sws) (7)

Algorithm 1: Debiased Feature Learning Framework.
Input: The labeled time-series examples
Xl = {(Xi, yi) : i ∈ 1, 2, . . . , Nl}, the unlabeled
time-series examples Xu = {(Xj) : j ∈ 1, 2, . . . , Nu},
augmentation operation T (·), FEN’encoder fu

θ[E](·) and
LPN’encoder fs

φ[E](·), projector g(·), classifier c(·),
constant α and β

1: for e, sampled batch in Enumerate(Xu) do
2: Sampled batch X e

u ;
3: Get augmentations, representations, and projections

X̂ e
u = T (X e

u), Bh(e) = fu
θ[E](X̂ e

u), Bz(e) = g(X̂ e
u);

4: Substitute Bh(e) into (13) to obtain the cluster centers
C(e) of the current batch;

5: Substitute C(e), C(e−1) and α into (14) to obtain the

updated cluster centers Ĉ(e);
6: Use Ĉ(e) to obtain the pseudo-labels Ŷ(e) of X e

u ;

7: Substitute Ŷ(e) and Bz
(e) into (16) to calculate

debiased contrastive loss Lu;
8: Update encoder fu

θ[E](·) and projector g(·) to
minimize Lu;

9: end for
10: for k, sampled batch in Enumerate(Xl) do
11: Sampled batch X k

l ;
12: Get representations Bh(k) = fs

φ[E](X k
l );

13: Get predicted probabilities Pk = c(Bh(k));
14: Calculate supervised classification loss Ls using

Cross-Entropy loss;
15: Update encoder fs

φ[E](·) and classifier c(·) to
minimize Ls;

16: end for
17: Substitute fu

θ[E](·), fs
φ[E](·), and β into (17) to obtain

the debiased encoder fud

θ[E](·);
Output: FEN’s debiased encoder fud

θ[E](·)

where Sws represents the size of the sampled slicing window.
Illustrations of window warping and window slicing can be
found in Fig. 3.

IV. DEBIASED FEATURE LEARNING FRAMEWORK

This section introduces a debiased feature learning framework
for time-series data. This framework comprises two networks:
LPN and EEN. We also introduce a method for generating
pseudolabels based on clustering, as well as a weight correction
mechanism informed by expert knowledge. These are designed
to address sampling and representation biases, respectively.
A detailed pseudocode of this framework can be found in
Algorithm 1.

A. Dilated Causal Convolution

Convolutional neural networks (CNNs) are commonly used
in data-driven fault detection methods [14], [15], [16], [17], [18].
However, traditional 2D-CNNs encounter certain limitations
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Fig. 4. Model structure.

when processing time-series data. This article introduces a di-
lated causal convolution (DCC) to construct both LPN and FEN.
DCC’s strength lies in its ability to directly extract temporal fea-
tures from time-series data, even if the input series have varying
lengths. Compared with the widely used long short-term mem-
ory networks, DCC allows efficient parallelization on GPUs,
further improving computational efficiency. The DCC broadens
its receptive field via an exponentially expanding convolution
kernel, and it can capture long-range temporal dependencies by
deepening the model. A typical DCC block encompasses two
DCC layers, two weight normalization layers, two ReLU layers,
and a 1-D convolution layer.

B. LPN and FEN

The model structure is depicted in Fig. 4, LPN is defined as
fs
φ(·) and is represented by the red part, while FEN is defined

as fu
θ (·) and is represented by the blue part. Both LPN and

FEN possess the same encoder structure, but they have different
output layers. The encoder comprises three stacked DCC blocks
and is denoted as

hi = f (3)[k3,d3](f (2)[k2,d2](f (1)[k1,d1](Xi))) (8)

wherek represents the size of the convolution kernel.d is dilation
factor. f (h) represents the hth DCC block. The output layer of
LPN is a classification head c(·), which is a three-layer fully
connected neural network. Its purpose is to directly output the
predicted probabilities of the input time-series. c(·) is defined as

oi = c(hi) = Softmax(W (3)
c ReLU(W (2)

c ReLU((W (1)
c hi))))

(9)
where oi is the predicted probabilities of each possible class
for Xi. The final predicted class corresponds to the class with
the highest probability. The output layer of FEN is a projection
head, denoted as g(·). g(·) is a two-layer fully connected neural
network that maps the representationhi tozi, where the debiased
contrastive loss is applied, i.e.,

zi = g(hi) = W (2)
g ReLU((W (1)

g hi)). (10)

C. Debiased Contrastive Learning

1) Biased Contrastive Learning: Given a time-series sample
Xi, and its two augmented views, XT1

i and XT2
i . We first obtain

the projections zi(1) and zi(2) of the augmented views according
to (8) and (10). zi(1) and zi(2) are considered as a positive pair.
In the biased contrastive learning framework, negative samples
are indispensable. An implicit sampling mechanism is adopted.
Specifically, given a batch of Nb samples, we first perform
augmentations on all samples within the batch, resulting in 2Nb

augmented samples. When a positive pair is assigned, the rest
2(Nb − 1) samples within the batch are considered negative
samples. The biased contrastive loss for XT1

i is defined as

Li(1) = − log
exp

(
sim

(
zi(1), zi(2)

)
/τ
)

∑2Nb

j=1 1[j �=i] exp
(
sim

(
zi(1), zj(∗)

)
/τ
) (11)

where τ is the temperature parameter. sim(·) represents the
similarity between two vectors, typically measured using cosine
similarity. zj(∗) denotes samples other than zi(1) and zi(2) within
a training batch. (11) suffers from issues related to sampling and
representation biases, leading it to be termed a biased contrastive
learning loss. On one hand, the idea behind (11) is that all
samples within a training batch belong to different classes, thus,
augmented views from distinct samples are directly regarded
as negative samples. This assumption is often unreasonable, as
Xi and Xj might belong to the same class, making Xj a false
negative sample. Furthermore, (11) encourages all samples to
form a uniform distribution in the feature space, while the actual
data distribution should be clustered. On the other hand, (11)
lacks a direct relationship with downstream tasks. Therefore, a
trained model trained may not ensure that the extracted features
align with the needs of downstream tasks. This also makes (11)
vulnerable to representation bias.

2) MCCL: We first introduce the MCCL module to alleviate
the sampling bias problem. Assuming that the labels of all
training samples are known, we can accurately select the true
negative samples based on these labels. Supervised contrastive
learning (SCL) [19] is a constraint based on known labels. it is
defined as

L =
∑
i∈I

1
|P(i)|

∑
p∈P(i)

− log
exp (sim (zi, zp) /τ)∑

k∈A(i) exp(sim (zi, zk) /τ)

(12)
where I is the index set of all samples within a batch, and P(i)
represent the index set of samples belonging to the same class as
Xi. A(i) stands for an index set containing all samples. While
(12) provides an ideal solution when labels are available, it is
difficult to implement in practice, especially for time-series data.
Thus, this study employs a clustering algorithm to generate
pseudolabels capable of distinguishing between positive and
negative samples during model training.

Define the set of representations of all augmented views
within a training batch as Bh = {hk}, k ∈ 1, 2, . . . , Nb. The set
of projections by g(·) is Bz = {zk}, k ∈ 1, 2, . . . , Nb. We first
use a clustering algorithm to cluster all samples in Bh, here we
use the K-means algorithm and the number of clusters is set to
Cb. The clustering pseudolabels and the cluster centers of the
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(a)

(b)

Fig. 5. Illustration of MCCL. (a) Clustering contrastive learning.
(b) MCCL.

eth training batch can be expressed as

Y(e), C(e) ← Clustring(Bh(e)) (13)

where Bh(e) represents a set of all augmented views within the
eth training batch.

In the model training phase, fu
θ (·) is updated with each

training batch. If the pseudolabels in two consecutive training
batches are complete independent, it can lead to unstable model
training. This is because the model has to adapt to different
objective functions. Inspired by the momentum update algorithm
in MoCo [20], this study employs the momentum update strategy
to generate a more stable pseudolabel set. The cluster centersC(e)
is updated by

Ĉ(e) = αC(e−1) + (1− α)C(e) (14)

where α ∈ [0, 1] represent the cluster center update coefficient.
The updated cluster centers are denoted by Ĉ(e). The pseu-
dolabels of each training batch are influenced not only by the
current training batch but also by the previous one. This strategy
ensures that past information is considered when generating
pseudolabels. Finally, Ĉ(e) is used to re-generate pseudolabels
for the e-th training batch, denoted as

Ŷ(e) = G(Ĉ(e),Bh(e)) (15)

where G is the pseudolabel assignment function, i.e., assigning
each samples to the cluster with the nearest distance. Finally, the
(12) can be rewritten as

L =
∑
i∈I

1∣∣∣Ŷ(i)∣∣∣
∑

p∈Ŷ(i)

− log
exp (sim (zi, zp) /τ)∑

k∈A(i) exp(sim (zi, zk) /τ)

(16)
where Ŷ(i) is the index set of samples belonging to the same
class as Xi according to the momentum clustering results.

Fig. 5 provides an illustration of the MCCL. The motivation
behind MCCL can be divided into two aspects. The first is the
clustering phase, also known as clustering contrastive learning.
The purpose of this phase is to encourage a clustered distribution
of the feature space among the samples, rather than a uniform
distribution. The second aspect involves using momentum clus-
tering to ensure that the results of generating pseudolabels are

more accurate and stable. During the model training phase,
samples in each training batch are randomly sampled from the
complete dataset. Therefore, the cluster centers of the samples
in this training batch may deviate from the true cluster centers of
the complete dataset. As shown in Fig. 5(b), in the feature space,
we use the clustering results from the previous batch to correct
the cluster centers of the current batch. We aim for slow changes
in clustering centers to ensure training stability. If the clustering
results from the previous batch are accurate, the cluster centers
of the current batch will be closer to the true cluster centers,
ensuring the accuracy of generating pseudolabels.

3) EKGM: Although (16) encourages fu
θ (·) to encode the

original data into a feature space with multiple clusters, the
clustering algorithm remains fundamentally an unsupervised
learning strategy. As a result, the extracted representation h
is not guaranteed to be directly relevant to downstream fault
detection tasks. To address this, this article leverages the limited
labeled data Xl, which contains label information deemed as
expert knowledge, to further correct fu

θ (·). We first employ the
supervised classification loss to train LPN fs

φ(·). Since LPN and
FEN share the same encoder structure, we adjust the weights of
FEN’s encoder by

fud

θ[E](·) = βfu
θ[E](·) + (1− β)fs

φ[E](·) (17)

where β ∈ [0, 1] represents the weight correction coefficient.
fud

θ[E](·) is the debiased encoder.

D. Fault Classifier

Given fud

θ[E](·) and labeled data Xl, we first obtain the repre-
sentations of Xl, i.e.,

Hl = fud

θ[E](Xl). (18)

Then,Hl and its true label set Yl are used to construct a fault
detection classifier Clf(·), i.e.,

Yl = Clf(Hl). (19)

V. EXPERIMENTS

A. Dataset Description

Two time-series datasets are used to demonstrate the effective-
ness of the proposed method. The first is a well-known public
dataset from the case western reserve university (CWRU) bear-
ing data center. This dataset collects various vibration signals,
including drive end accelerometer data, fan end accelerometer
data, and base accelerometer data, under different working
conditions with a sampling rate of 12 kHz. In this article,
we construct one normal baseline category and nine drive end
bearing fault categories by selecting different fault diameters
(specifically 7, 14, and 21 mils). Each fault diameter is associated
with three fault types: inner race defect (IRD), outer race defect
(ORD), and ball defect (BD).

The second dataset is the international stiction data base
(ISDB), which is supported by [21] and is a well-known bench-
mark for validation of novel methods concerning control loop
performance assessment. These loops were collected from var-
ious process industries, including chemical plants (CHEM),
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TABLE I
TEST LOOPS IN THE ISDB DATASET

pulp and paper mills (PAP), buildings (BAS), mining (MIN),
and power plants (POW). Our goal is to identify stiction loops
and nonstiction loops. Note that being nonstiction does not
necessarily mean that the loop is normal, it may have other
issues, such as external disturbances or sensor failures.

B. Data Collection and Preprocessing

For the CWRU dataset, we randomly sampled 450 time-series
samples under each condition, each with a length of 512 and
a dimension of 2. To simulate scenarios where high-quality
training data is difficult to obtain at most industrial sites, we
selected only 50 from each class for the training data, with the
remaining 400 serving as the test data. The final constructed
dataset consists of 500 training samples and 4000 test samples.
For the ISDB dataset, we selected a total of 85 control loops with
available data. From each control loop, we randomly sampled
60 time-series samples, each of which has a length of 800 and
a dimension of 2. The final dataset contains 5100 samples.
To facilitate comparisons with other valve stiction detection
methods, we selected 26 control loops (1560 samples) as the
test set and the remaining 59 control loops (3540 samples) as
the training set. The main details of the test loops are described in
Table I, where Tem, Fic, Pre, Lev, Con, and Ana denote the
temperature, flow, pressure, level, concentration, and analyzer
control, respectively.

In our experiments, we consider all available training sam-
ples as unlabeled data. Therefore, for the CWRU dataset, the
available unlabeled data consists of 500 samples, while for the
ISDB dataset, there are 3540 unlabeled samples. To acquire
labeled data, our approach is to sample from all the training
samples according to a predefined ratio. For this purpose, we
introduce a new hyperparameter: availability of labels (AOL).
As an example, with an AOL of 0.5, for the CWRU dataset,
the available labeled data would be 250 samples (500× 0.5 =
250), whereas for the ISDB dataset, it would be 1770 samples
(3540× 0.5 = 1770).

In the data preprocessing stage, we use Z-score standardiza-
tion to scale the raw data to fit a standard normal distribution,

Fig. 6. Detection and comparison results for the CWRU dataset.

which is beneficial for most deep learning models. Given a
sample x ∈ RL×D. The standard score of xj (jth feature of
x) is calculated as

zj =
xj − x̄j

sj
(20)

where x̄j is the mean of xj , and sj is the standard deviation of
xj .

C. Evaluation Metric

The classification accuracy is used to evaluate the proposed
method, i.e.,

Acc =
1

n

n−1∑
i=0

1[ŷi=yi] (21)

where 1 ∈ {0, 1} is the indicator function evaluating to 1 if ŷi =
yi. ŷi is predicted label and yi is the true label of ith time-series
sample.

D. Detection and Comparison Results

This study first presents the detection results of the CWRU
dataset and also provides comparison results with existing fault
detection methods. The selected comparison methods include
IMSN [17], MSN [22], LeNet-5, DBN [23], SVM, OSELM [24],
DCTLN [25], RAE [26], and IPDL [27]. The results are dis-
played in Fig. 6. Both RAE and IPDL are methods designed
to handle uncertainty in time-series data and were originally ap-
plied to wind speed forecasting. In this article, the neural network
model outputs from these two methods serve as representation
vectors and are connected to a classification head for the fault
detection task. IMSN, MSN, LeNet-5, OSELM, and DCTLN
were originally designed for classification tasks and can thus
be directly applied to fault detection tasks. From the results,
it can be seen that our method achieved the highest detection
accuracy. Moreover, compared to OSELM and DCTLN, our
method is designed for a ten-class classification task, which is
more challenging than a four-class classification task. It should
be noted that the primary objective of this article is not to achieve
the highest possible detection accuracy. The experiments in this
subsection aim solely to demonstrate that the proposed method
can indeed surpass the state-of-the-art methods in fault detection
tasks. The results in Fig. 6 are provided without a fine-tuning of
the hyperparameters. However, further improvements in detec-
tion accuracy can be achieved through hyperparameter tuning,

Authorized licensed use limited to: Zhejiang University. Downloaded on July 11,2024 at 07:54:50 UTC from IEEE Xplore.  Restrictions apply. 



7648 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 5, MAY 2024

TABLE II
DETECTION AND COMPARISON RESULTS FOR THE ISDB DATASET

as discussed in Section V-E. It is also worth noting that the
reported detection accuracies of other methods in Fig. 6 might
differ from their original work. This difference arises from our
use of a different data collection method, especially the selection
of a smaller amount of training data.

For the ISDB dataset, we use the classification accuracy of
the control loop as the evaluation metric. The comparison results
with fifteen other detection methods are listed in Table II. Our
method outperforms the existing methods with an accuracy of
0.8461, which is the highest among the considered methods. It
can be observed that only nine methods can be applied to all
test control loops (“Not tested loops” is 0), while the remaining
seven methods are applicable only to some control loops. This
demonstrates that our method can be applied to a broader range
of industrial systems. Similar to our approach, D-value ANN,
Multiple-timescale CNN, BSD-CNN, and MTFCC all utilize
deep learning techniques to construct their detection models.
However, D-value ANN, Multiple-timescale CNN, and BSD-
CNN employ a fully supervised strategy, which significantly
increases their dependence on labeled data. MTFCC conducts
feature extraction under a SCCL framework and achieves the
same accuracy as our method. Nevertheless, it does not address
issues related to representation bias and sampling bias. Conse-
quently, there remain potential risks when using MTFCC for
other detection tasks.

E. Hyperparameters Study

The proposed method has several important hyperparameters,
including the learning rate, training epoch, batch size, depth of
the encoder, number of features in the representation vector, and
size of the convolutional kernel. In this section, we conducted
experiments on the CWRU dataset to demonstrate the impact of
these hyperparameters on detection results.

1) Learning Rate: The learning rate is a tuning parameter
in optimization algorithms that determines the step size at each
iteration when moving toward a minimum of a loss function.

Fig. 7. Results of the hyperparameter selection experiment.

Generally speaking, if the learning rate is too small, the conver-
gence process can be very slow. Conversely, if the learning rate
is too large, the model might struggle to converge. We tested
the learning rate with six different values: 1e-3, 1e-4, 1e-2,
5e-3, 5e-4, and 5e-2. The detection results for these different
learning rates are shown in Fig. 7(a). From the results, it is
evident that a learning rate of 1e-3 offers the best performance
for the detection model. In contrast, when the learning rate is
set too high (5e-2, represented by the green line) or too low
(1e-4, represented by the orange line), the model’s performance
significantly deteriorates. Based on these findings, we set the
learning rate to 1e-3 in this study.

2) Training Epoch: The number of training epochs is also
considered a hyperparameter. It specifies how many times the
entire training dataset is processed by the learning algorithm.
Too few epochs might not yield a satisfactory detection model,
while too many can be time-consuming. We tested six different
values for the training epochs: 10, 30, 50, 100, 150, and 200. The
detection results for these epochs are presented in Fig. 7(b). It can
be seen that when the number of epochs exceeds 50, the detection
model will exhibit reliable performance. Furthermore, when
AOL is low, increasing the training epochs improves the final
detection accuracy. However, while more epochs can enhance
accuracy, they also require more time. Thus, this article strikes a
balance between detection accuracy and training time by setting
the number of epochs to 100.

3) Batch Size: The batch size defines the number of training
samples that are propagated through the network. In the pro-
posed feature framework, the batch size is closely related to
both the momentum clustering process and contrastive learning
loss. We tested the batch size with five different values: 32, 64,
128, 256, and 512. The detection results are shown in Fig. 7(c).
From the results, it appears that our method performs better
with a smaller batch size. We believe this superior performance
is due to the fact that a smaller batch size ensures the accuracy
of the clustering results, which in turn makes the model loss, as
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calculated by (16), more precise. Therefore, this article recom-
mends a batch size of 32.

4) Depth of FEN’encoder: For a neural network model, a
deeper structure implies better nonlinear expressive capability,
allowing it to capture more complex relationships. However, a
complex network structure not only extends the training time
but also makes the training process more challenging. We set
the encoder depth to four distinct values: 1, 2, 3, and 4. The
detection results are presented in Fig. 7(d). It’s worth noting
that the reported detection accuracy represents the average value
across different AOLs. Observably, as the depth increases, the
model’s performance enhances. At a depth of 3, the average
detection rate peaks. Therefore, this study concludes that an
encoder depth of 3 is a reasonable choice.

5) Number of Features in the Representation Vector: The
number of features in the representation vector directly impacts
the expressive capability of the model. The greater the num-
ber of features, the more powerful its representation capability
becomes. However, with too many features, the representation
vector might contain excessive redundant or irrelevant infor-
mation. On the other hand, if the number of features is too
few, the representation capability is compromised, and there’s
a risk of omitting useful information. We tested the model with
representation vectors of five different feature sizes: 32, 64, 128,
256, and 512. The detection results are displayed in Fig. 7(e).
Notably, as the number of features rises, the detection accuracy
generally improves. However, after a certain point, an increase
in features leads to a decline in average accuracy, suggesting that
the model’s performance may suffer. Based on our observations,
a representation vector with 128 features appears optimal.

6) Size of Convolutional Kernel: The kernel size is a hyper-
parameter for both the LPN and the FEN. It is important as
it determines the receptive field of a layer. We set the number
of features to seven different values: 2, 3, 4, 5, 6, 7, and 8.
The detection results are shown in Fig. 7(f). From the figure,
it can be seen that a larger convolutional kernel size enhances
detection accuracy. However, this also leads to an increase in the
number of parameters that require training. Conversely, a smaller
convolutional kernel is simpler to train. Yet, it is challenging for a
small convolutional kernel to extract global information without
increasing the model’s depth, which in turn raises computational
costs. As a result, in this article, we are more inclined to set the
convolutional kernel size to 5.

7) Cluster Center Update Coefficient: This study delves
deeper into the impact of different cluster center update co-
efficients on detection accuracy. The primary settings for this
experiment are as follows: the data augmentation method used is
WW, the number of clusters is set at 10, and the EKGM is not im-
plemented. According to the definition in (14), a larger value of
α suggests a heightened reliance on the previous training batch.
Fig. 8 presents the detection results, with the tested coefficients
being 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0. The red star in Fig. 8
denotes the coefficient with the highest detection accuracy. In
most scenarios, utilizing the previous training batch to minimally
update the clusters of the current batch often results in better
detection accuracy, notably whenα = 0.1 orα = 0.3. However,
when α > 0.3, the detection accuracy diminishes due to an
excessive dependence on the prior training batch, preventing

Fig. 8. Accuracy under different cluster center update coefficients.

the correct clustering pseudolabels from being assigned to the
current batch.

8) Weight Correction Coefficient: The choice of the weight
correction coefficient poses a significant challenge. This study
conducts experiments using various weight correction coeffi-
cients to observe their effects on detection accuracy. According
to (17), a larger coefficient implies a lower degree of weight
correction. For instance, when β = 0.9, the FEN fs

θ (·) is less
influenced by the LPN fu

φ (·). Fig. 9 presents the experimental
results. When AOL is low (β ≤ 0.4), the detection accuracy
tends to increase as β decreases. This suggests that the expert
information from the limited labeled data remains valuable.
When AOL is relatively high (α > 0.4), a decrease in β leads
to an increase in detection accuracy, which then stabilizes. This
indicates that while the information provided by the LPN is
beneficial for the FEN, its advantage is restricted. At AOL values
of 0.5 and 0.7, an excessive reliance on the LPN diminishes the
final detection accuracy.

F. Ablation Study

MGAVG, MCCL, and EKGM are the main modules of our
proposed method. In this section, we demonstrate the effective-
ness of the proposed modules through ablation experiments on
the CWRU and ISDB datasets.

1) Effectiveness of MGAVG: This study initially validates
the effectiveness of the proposed data augmentation method
using the CWRU and ISDB datasets. The primary settings for
this experiment are as follows: the number of clusters is set at
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TABLE III
DETECTION RESULTS OF DIFFERENT DATA AUGMENTATION METHODS

Fig. 9. Accuracy under different weight correction coefficients.

10, the cluster center update coefficient is 0.1, and the EKGM
strategy is not employed. The data augmentation methods used
in this experiment encompass jitter (J), scaling (S), rotation (R),
window warping (WW), window slicing (WS), the combination
of window warping and window slicing (WW+WS), MGAVG
(M), MGAVG with window warping (M+WW), MGAVG with
window slicing (M+WS), and MGAVG with both window warp-
ing and window slicing (M+WW+WS). These results can be
found in Table III. The results suggest that WW and WS outper-
form J, S, and R on both datasets. While using M alone cannot
provide the highest detection accuracy, pairing M with WW

and WS (M+WW and M+WS) boosts the detection accuracy.
For the CWRU dataset, M+WS records the highest detection
accuracy at AOL settings of 0.6, 0.8, and 0.9. For the ISDB
dataset, M+WS tops the detection accuracy at AOL values of
0.3, 0.4, and 0.5. In addition, the detection accuracy experiences
significant improvement when M+WW is combined with
M+WS (M+WW+WS). The highest detection accuracy is
achieved under seven AOL settings for both datasets. Thus,
integrating multiple augmentation methods proves more advan-
tageous for the pretraining model in acquiring superior repre-
sentations.

2) Effectiveness of MCCL: This study then validates the ef-
fectiveness of the MCCL. The main experimental settings are
as follows: the data augmentation method is WW, the number
of clusters is 10, the cluster center update coefficient is 0.1, and
the EKGM is not adopted. The contrastive methods compared in
this experiment include biased contrastive learning (BCL) [9],
debiased contrastive learning (DCL) [28], hard contrastive learn-
ing (HCL) [29], SCL [19], and the proposed MCCL. In this
context, MCCLk indicates that the number of clusters is set
to k. The results are provided in Table IV. On the CWRU
dataset, SCL achieves the highest detection accuracy across all
AOL settings. This superior performance can be attributed to
its entirely unbiased contrastive learning framework, although
it requires additional labels during model training. Conversely,
BCL performs the poorest due to its completely biased property.
Both DCL and HCL, being implicit debiased methods, exhibit
detection accuracies superior to that of BCL. The detection
accuracy of our proposed MCCL varies with the number of
clusters. Specifically, when the number of clusters is small (such
as MCCL2 and MCCL4), the accuracy is notably lower than
with a larger number of clusters. This suggests that MCCL
benefits from increasing the number of clusters. For the ISDB
dataset, SCL is unable to achieve the highest detection accuracy
across all AOL settings, possibly due to erroneous labels in
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TABLE IV
DETECTION RESULTS OF DIFFERENT CONTRASTIVE METHODS

TABLE V
IMPACT OF EKGM ON DETECTION RESULTS UNDER DIFFERENT AOLS

the dataset. Yet, the proposed MCCL still achieved the top
detection accuracy at various AOLs. Compared to the CWRU
dataset, the ISDB dataset poses greater challenges, particularly
in determining the optimal number of cluster centers. Overall,
the ablation experiment results from both the ISDB and CWRU
datasets underscore the effectiveness of MCCL.

3) Effectiveness of EKGM: This study validates the effec-
tiveness of the EKGM strategy both with and without the use of
the weight correction mechanism during the pretraining stage.
The results are presented in Table V. The third column displays
the detection results without EKGM (denoted by No β), the
fourth column shows the peak detection accuracy among all
weight correction coefficients [labeled as Use β (max)], and

the fifth column presents the average detection accuracy [repre-
sented by Use β (mean)]. It can be observed that the proposed
EKGM strategy is effective across all AOLs for the CWUR
dataset. However, for the ISDB dataset, the EKGM strategy
becomes ineffective when the AOL is set to 0.8. We hypothesize
that this ineffectiveness arises from incorrect labeling within the
training dataset, which causes the model to assimilate inaccurate
information. When the AOL is set to 0.9 or higher, the presence
of more accurately labeled data counteracts the earlier mistakes,
ensuring the sustained effectiveness of the EKGM.

G. Time Efficiency Analysis

Time efficiency is also one of the key factors in assessing
model performance. In this article, we analyze the constructed
model using asymptotic notation, specifically Big O notation. In
the method we propose, convolutional layers serve as the cor-
nerstone of the detection model. Therefore, this article primarily
focuses on the time complexity analysis of convolutional layers,
and the time complexity of all convolutional layers is represented
as

O

(
d∑

l=1

Cl−1 · Cl · S2
l ·H2

l

)
(22)

where l is the index of a convolutional layer, and d is the depth
of the encoder. Cl−1 is the input channels of the l-th layer. Cl is
the output channels of the lth layer. Sl is the spatial size of the
convolutional kernel, Hl is the spatial size of the output feature
map. Comparing the running times with other methods is helpful
for model evaluation, but obtaining fair comparison results is
challenging. The actual algorithm runtime depends on various
factors, including hardware performance, model architecture,
and even some easily overlooked hyperparameters. Therefore,
this article primarily provides the training time and inference
time of our proposed method under different architectures. All
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TABLE VI
TRAINING TIME AND INFERENCE TIME AT 50 TRAINING EPOCH

code was written in Python using the PyTorch framework. The
main hardware devices include an NVIDIA GeForce RTX 4090
GPU, an Intel Core i7-13700KF CPU, and 32 GB RAM. The
running time of our method is shown in Table VI. The results
reported in Table VI are based on a training epoch setting of 50.
Based on Table VI, MGAVG significantly increases the training
time because it requires data segmentation and generation at
multiple time scales. On the other hand, the introduction of
MCCL and EKGM has a relatively minor impact on training
time, while the runtime of the EKGM module also depends on
the utilization of labeled data. Additionally, both training and
inference times are influenced by the length and the number of
time-series samples. This is also the reason for the difference
in inference times between the ISDB dataset and the CWRU
dataset.

VI. CONCLUSION

This article presents a debiased feature learning framework
for industrial time-series that can be deployed in industrial
fault detection scenarios. The key idea is to improve the SSCL
framework by incorporating MGAVG, MCCL, and EKGM.
MGAVG retains the advantages of existing data augmentation
methods and provides additional multigranularity views. MCCL
introduces an explicit debiased contrastive learning framework
based on clustering and pseudolabel generation, which alleviates
the sampling bias issue. EKGM integrates expert knowledge
during the model training stage to guide the weight update of the
feature extraction model. This ensures that the extracted features
are directly relevant to the downstream tasks and helps reduce
the representation bias problem. Experiments conducted on two
datasets have demonstrated the effectiveness of the proposed
method.

We outline two directions worthy of further investigation.
1) Integrating inductive biases into time-series representation
learning frameworks enhances their efficacy. Although many
fault detection techniques predominantly rely on a data-driven
modeling approach, the incorporation of reasonable inductive
biases or priors proves beneficial for deep neural network-based

fault detection models. While purely data-driven models are
versatile across different tasks, they demand substantial training
data. 2) Exploring adversarial attacks and robust analysis in
data-driven fault detection models has gained attention. With the
widespread use of deep neural networks in industrial fault de-
tection, the susceptibility of these models to adversarial samples
is garnering increasing attention. Studying adversarial attacks
and defenses in data-driven fault detection is promising, yet
current literature on this topic is sparse. Most existing research
is concentrated in the domain of computer vision and natural
language processing. The ramifications of adversarial attacks
on industrial intelligence systems are still unclear.
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