
1

Pose Estimation for Ground Robots: On Manifold Representation,
Integration, Re-Parameterization, and Optimization
Mingming Zhang1†, Xingxing Zuo1,2†, Yiming Chen1, Yong Liu2 and Mingyang Li1‡

1Alibaba Group
{ mingmingzhang, xingzuo, yimingchen, mingyangli }@alibaba-inc.com

2Institute of Cyber-System and Control, Zhejiang University, China
yongliu@iipc.zju.edu.cn

Abstract—In this paper, we focus on motion estimation ded-
icated for non-holonomic ground robots, by probabilistically
fusing measurements from the wheel odometer and exteroceptive
sensors. For ground robots, the wheel odometer is widely used
in pose estimation tasks, especially in applications under planar-
scene based environments. However, since the wheel odometer
only provides 2D motion estimates, it is extremely challenging
to use that for performing accurate full 6D pose (3D position
and 3D orientation) estimation. Traditional methods on 6D pose
estimation either approximate sensor or motion models, at the
cost of accuracy reduction, or rely on other sensors, e.g., inertial
measurement unit (IMU), to provide complementary measure-
ments. By contrast, in this paper, we propose a novel method to
utilize the wheel odometer for 6D pose estimation, by modeling
and utilizing motion manifold for ground robots. Our approach is
probabilistically formulated and only requires the wheel odome-
ter and an exteroceptive sensor (e.g., a camera). Specifically,
our method i) formulates the motion manifold of ground robots
by parametric representation, ii) performs manifold based 6D
integration with the wheel odometer measurements only, and iii)
re-parameterizes manifold equations periodically for error re-
duction. To demonstrate the effectiveness and applicability of the
proposed algorithmic modules, we integrate that into a sliding-
window pose estimator by using measurements from the wheel
odometer and a monocular camera. By conducting extensive
simulated and real-world experiments, we show that the proposed
algorithm outperforms competing state-of-the-art algorithms by
a significant margin in pose estimation accuracy, especially when
deployed in complex large-scale real-world environments.

I. INTRODUCTION

The pose (position and orientation) estimation problem for
ground robots has been under active research and development
for a couple of decades [1]–[8]. The most mature technique of
computing poses for ground robots in large-scale environments
is the one that relies on high-quality global positioning and
inertial navigation systems (GPS-INS) together with 3D laser
range-finders [3], [9]–[11]. This design is widely used in
autonomous driving vehicles to provide precise pose estimates
for scene understanding, path planning, and decision mak-
ing [11]. However, those systems are at high manufacturing
and maintenance costs, requiring thousands or even tens or
hundreds of thousands of dollars, which inevitably prevent
their wide applications. Alternatively, low-cost pose estimation
approaches have gained increased interests in recent years,
especially the ones that rely on cameras [4], [12]. Camera’s

†Mingming Zhang and Xingxing Zuo are joint first authors with equal
contribution to this work.

‡Mingyang Li is the corresponding author.

size, low cost, and 3D sensing capability make itself a popular
sensor. Another widely used sensor is IMU, which provides
high-frequency estimates on rotational velocity and specific
force of a moving platform. Since IMU and camera sensors
have complementary characteristics, when used together with
an IMU, the accuracy and robustness of vision-based pose
estimation can be significantly improved [13]–[19]. In fact,
camera-IMU pose estimation1 is widely used in real commer-
cial applications, e.g., smart drones, augmented and virtual
reality headsets, or mobile phones.

However, all methods mentioned above are not optimized
for ground robots. Although visual-inertial pose estimation
generally performs better than camera only algorithms by re-
solving the ambiguities in estimating scale, roll, and pitch [13],
[15], [22], it has its own limitations when used for ground
robots. Firstly, there are a couple of degenerate cases that can
result in large errors when performing motion estimation, e.g.,
static motion, zero rotational velocity motion, constant local
linear acceleration motion, and so on [13], [23], [24]. The
likelihood of encountering those degenerate cases on ground
robots is significantly larger than that on hand-held mobile
devices. Secondly, unlike drones or smart headset devices that
move freely in 3D space, ground robots can only move on
a manifold (e.g., ground surfaces) due to the nature of their
mechanical design. This makes it possible to use additional
low-cost sensors and derive extra mathematical constraints for
improving the estimation performance [6], [23].

When looking into the literature and applications of ground
robot pose estimation, wheel odometer is a widely used
sensor system, for providing 2D linear and rotational veloc-
ities. Compared to IMUs, wheel odometer has two major
advantageous factors in pose estimation. On the one hand,
wheel odometer provides linear velocity directly, while IMU
measures gravity affected linear accelerations. Integrating IMU
measurements to obtain velocity estimates will inevitably
suffer from measurement errors, integration errors, and state
estimation errors (especially about roll and pitch). On the
other hand, errors in positional and rotational estimates by
integrating IMU measurements are typically a function of
time. Therefore, integrating IMU measurements for a long-
time period will inevitably lead to unreliable pose estimates,
regardless of the robot’s motion. However, when a robot moves

1Camera-IMU pose estimation can also be termed as visual-inertial lo-
calization [20], vision-aided inertial navigation [21], visual-inertial odometry
(VIO) [13], or visual-inertial navigation system (VINS) [14] in other papers.

ar
X

iv
:1

90
9.

03
42

3v
3

 [
cs

.R
O

]
 1

2
O

ct
 2

02
0

2

slowly or keeps static, long-time pose integration is not a
significant problem by using the wheel odometer system, due
to its nature of generating measurements by counting the wheel
rotating impulse.

However, the majority of existing work that uses wheel
odometer for pose estimation focus on ‘planar surface’ ap-
plications, which are typically true only for indoor environ-
ments [6], [23], [25]. While there are a couple of approaches
for performing 6D pose estimation using wheel odometer
measurements, the information utilization in those methods
appears to be sub-optimal. Those methods either approximate
motion model or wheel odometer measurements at the cost
of accuracy reduction [26], or rely on other complementary
sensors, e.g., an IMU [27]. The latter type of methods typically
requires downgrading (by sub-sampling or partially removing)
the usage of wheel odometer measurements, which will also
lead to information loss and eventual accuracy loss. To the best
of the authors’ knowledge, the problem of fully probabilisti-
cally using wheel odometer measurements for high-accuracy
6D pose estimation remains unsolved.

To this end, in this paper, we design pose estimation al-
gorithmic modules dedicated to ground robots by considering
both the motion and sensor characteristics. In addition, our
methods are fully probabilistic and generally applicable, which
can be integrated into different pose estimation frameworks.
To achieve our goal, the key design factors and contributions
are as follows. Firstly, we propose a parametric representation
method for the motion manifold on which the ground robot
moves. Specifically, we choose to use second-order polynomial
equations since lower-order representation is unable to repre-
sent 6D motion. Secondly, we design a method for performing
manifold based 6D pose integration with wheel odometer
measurements in closed form, without extra approximation
and information reduction. In addition, we analyze the pose
estimation errors caused by the manifold representation and
present an approach for re-parameterizing manifold equations
periodically for the sake of estimation accuracy. Moreover,
we propose a complete pose estimation system inside on a
manifold-assisted sliding-window estimator, which is tailored
for ground robots by fully exploiting the manifold constraints
and fusing measurements from both wheel odometer and a
monocular camera. Measurements from an IMU can also be
optionally integrated into the proposed algorithm to further
improve the accuracy.

To demonstrate the effectiveness of our method, we con-
ducted extensive simulated and real-world experiments on
multiple platforms equipped with the wheel odometer and
a monocular camera2. Our results show that the proposed
method outperforms other state-of-the-art algorithms in pose
estimation accuracy, specifically [13], [14], [23], [26], by a
significant margin.

2Other exteroceptive sensors, e.g., 3D laser range-finders, can also be
used in combination with the wheel odometer via the proposed method.
However, providing detailed estimator formulation and experimental results
using alternative exteroceptive sensors is beyond the scope of this work.

II. RELATED WORK

In this work, we focus on pose estimation for ground robots
by probabilistically utilizing manifold constraints. Therefore,
we group the related work into three categories: camera-
based pose estimation, pose estimation for ground robots, and
physical constraints assisted methods.

A. Pose Estimation using Cameras

In general, there are two families of camera-based pose
estimation algorithms: the ones that rely on cameras only [28]–
[31] or the ones which fuse measurements from both cam-
eras and other sensors [13], [32]–[34]. Typically, camera-
only methods require building a local map incrementally, and
computing camera poses by minimizing the errors computed
from projecting the local map onto new incoming images. The
errors used for optimization can be either under geometrical
form [28], [31] or photometric form [29], [30]. On the other
hand, cameras can also be used in combination with other
types of sensors for pose estimation, and the common choices
include IMU [13], [32], [35], GPS [36], and laser range
finders [37]. Once other sensors are used for aiding camera-
based pose estimation, the step of building a local map
becomes not necessary since pose to pose prior estimates can
be computed with other sensors [13], [32], [37]. Based on that,
computationally light-weighted estimators can be formulated
by partially or completely marginalizing all visual features to
generate stochastic constraints [13], [22].

In terms of estimator design for camera-based pose es-
timation, there are three popular types: filter-based meth-
ods [13], [22], [38], iterative optimization-based methods [30],
[34], [39], and finally learning-based methods [40], [41]. The
filter-based methods are typically used in computationally-
constrained platforms for achieving real-time pose estima-
tion [38]. To further improve the pose estimation accuracy,
recent work [30], [34] introduced iterative optimization-based
methods to re-linearize states used for computing both residual
vectors and Jacobian matrices. By doing this, linearization
errors can be reduced, and the final estimation accuracy can
be improved. Inspired by recent success in designing deep
neural networks for image classification [42], learning-based
methods for pose estimation are also under active research
and development [40], [41], which in general seek to learn
scene geometry representation instead of relying on an explicit
parametric formulation.

B. Pose Estimation for Ground Robots

Pose estimation for ground robots has been under active
research for the past decades [43]–[48]. The work of [43] is
one of the well-known methods, which uses stereo camera
for ground robot pose estimation. For ground robot pose
estimation, laser range finders (LRF) are also widely used. A
number of algorithms were proposed by using different types
of LRFs [8], [11], [46], [47], e.g., a 3D LRF [8], [11], a 2D
LRF [47], or a self-rotating 2D LRF [46]. Additionally, radar
sensors are of small size and low cost, and thus also suitable
for a wide range of autonomous navigation tasks [49]–[51].

3

Similar to other tasks, learning-based methods were also
proposed for ground robots. Chen et al. [52] proposed a bi-
directional LSTM deep neural network for IMU integration by
assuming zero change along the z-axis. This method is able
to estimate the pose of ground robot in indoor environments
with higher accuracy compared to traditional IMU integration.
In [53], an inertial aided pose estimation method for wheeled
robots is introduced, which relies on detecting situations of
interests (e.g., zero velocity event) and utilizing an invariant
extended Kalman filter [54] for state estimation. Lu et al. [45]
proposed an approach to compute a 2-dimensional semantic
occupancy grid map directly from front-view RGB images,
via a variational encoder-decoder neural network. Compared
to the traditional approach, this method does not need the use
of an IMU to compute roll and pitch and project front-view
segmentation results onto a plane. Roll and pitch information
is calculated implicitly from the network.

In recent years, there are a couple of low-cost pose esti-
mation methods designed for ground robots by incorporating
the usage of wheel odometer measurements [6], [23], [25].
Specifically, Wu et al. [23] proposed to introduce planar-
motion constraints to visual-inertial pose estimation system,
and also add wheel odometer measurements for stochastic
optimization. The proposed method is shown to improve
overall performance in indoor environments. Similarly, Quan
et al. [25] designed a complete framework for visual-odometer
SLAM, in which IMU measurements and wheel odometer
measurements were used together for pose integration. Ad-
ditionally, to better utilize wheel odometer measurements, the
intrinsic parameters of wheel odometer can also be calibrated
online for performance enhancement [6]. However, [6], [23],
[25] only focus on robotic navigation on a single piece of
planar surface. While this is typically true for most indoor
environments, applying those algorithms in complex outdoor
3D environments (e.g., urban streets) is highly risky.

To enable 6D pose estimation for ground robots, Lee
et al. [55] proposed to estimate robot poses as well as
ground plane parameters jointly. The ground plane is modelled
by polynomial parameters, and the estimation is performed
by classifying the ground region from images and using
sparse geometric points within those regions. However, this
algorithm is not probabilistically formulated, which might
cause accuracy reduction. Our previous work [26] went to
a similar direction by modeling the manifold parameters,
while with an approximate maximum-a-posteriori estimator.
Specifically, we modelled the manifold parameters as part
of the state vector and used an iterative optimization-based
sliding-window estimator for pose estimation [26]. However,
to perform 6D pose integration, the work of [26] requires
using an IMU and approximating wheel odometer integration
equations, which will inevitably result in information loss and
accuracy reduction. In this paper, we significantly extend the
work of [26], by introducing manifold based probabilistic pose
integration in closed form, removing the mandatory needs of
using an IMU, and formulating manifold re-parameterization
equations. We show that the proposed algorithm achieves
significantly better performance compared to our previous
work and other competing state-of-the-art vision-based pose

∇�

�

�

�

� ��
�

�

�
{}

{}

{}

Fig. 1: Conceptual representation of a ground robot moving on
a manifold. The global reference frame {G}, wheel odometer
frame {O}, and the camera frame {C} are in black, green and
blue colors, respectively. The manifold gradient vector ∇M
is also shown in red.

estimation methods for ground robots.

C. Physical Constraints Assisted Methods

In addition, since robots are deployed and tested in real envi-
ronments and the corresponding physical quantities vary along
with applications and scenarios, additional constraints can also
be used for enhancing estimation performance. Representative
constraints can be derived from water pressure [56], [57], air
pressure [58], [59], contact force [60], propulsion force [19]
and so on.

To utilize the physical constraints, there are two main
types of algorithms: by using sensors to directly measure the
corresponding physical quantities [56]–[60] and by indirectly
formulating cost functions without sensing capabilities [19].
On one hand, measurements from sensors (e.g., pressure
sensors) can be used to formulate probabilistic equations by
relating system state and measured values, which can be
integrated into a sequential Bayesian estimation framework as
extra terms [57], [58], [60]. On the other hand, if a physical
model is given while sensing capability is not complete, one
can also explicitly consider the corresponding uncertainties to
allow accurate estimation [19]. The manifold constraint used
in this paper belongs to the second category since the motion
manifold is not directly measurable by sensors.

III. NOTATIONS AND SENSOR MODELS

A. Notations

In this work, we assume a ground robot navigating with
respect to a global reference frame, {G}, whose wheels are
always in contact with the road surface. We use {O} to
denote the wheel odometer reference frames. The reference
frame of the exteroceptive sensor, i.e. a monocular camera, is
denoted by {C}. The center of frame {O} locates at the center
of the robot wheels, with its x-axis pointing forward and z-
axis pointing up (see Fig. 1 for details). Additionally, we use
ApB and A

Bq̄ to represent the position and unit quaternion
orientation of frame B with respect to the frame A. A

BR is the
rotation matrix corresponding to A

Bq̄. We use â, ã, aT , ȧ, and
||a|| to represent the estimate, error, transpose, time derivative,
and Euclidean norm of the variable a. Finally, ei is a 3 × 1
vector, with the ith element to be 1 and other elements to be
0, and eij = [ei, ej] ∈ R3×2.

4

B. Wheel Odometer Measurement Model

Similar to [1], [6], [23], at time t, the measurements for an
intrinsically calibrated wheel odometer system are given by:

uo(t) =

[
vo(t)
ωo(t)

]
=

[
eT1 · O(t)v + nvo
eT3 · O(t)ω + nωo

]
(1)

where O(t)v and O(t)ω are the linear velocity and rotational
velocity of the center of frame O expressed in the frame O
at time t, and nvo and nωo are the white noises in mea-
surements, whose vector forms are nv =

[
nvo 0 0

]>
and

nω =
[
0 0 nωo

]>
. Eq. (1) clearly demonstrates that wheel

odometer measurements only provide 2D motion information,
i.e., forward linear velocity and rotational velocity about yaw.
Therefore, by using measurements only from Eq. (1), it is
theoretically possible to conduct planar-surface based pose
integration, while infeasible to perform 6D pose integration.

IV. METHODOLOGY WITH MOTION MANIFOLD

A. Manifold Representation and Induced 6D Integration

1) Mathematical Representation of Motion Manifold: In
order to utilize wheel odometer measurements for 6D pose
integration, the motion manifolds where ground robots navi-
gate need to be mathematically modeled and integrated into
the propagation process. To this end, we model the motion
manifold by parametric equations. Specifically, we choose to
approximate the motion manifold around any 3D location p
by a quadratic polynomial:

M(p) = z + c+ BT

[
x
y

]
+

1

2

[
x
y

]T
A

[
x
y

]
= 0,p =

xy
z

(2)

with

B =

[
b1
b2

]
, A =

[
a1 a2
a2 a3

]
. (3)

The manifold parameters are:

m =
[
c b1 b2 a1 a2 a3

]>
. (4)

We note that traditional methods [1], [6], [23] that assume
planar-surface environments are mathematically equivalent to
model the manifold by parameter m = [c, 0, 0, 0, 0, 0]T or
m = [c, b1, b2, 0, 0, 0]T . Their design choices fail to represent
the general condition of the outdoor road surface, and thus
not suitable for high-accuracy estimation in complex large-
scale environments. It is important to point out that compared
to the zeroth or first order representation, the second order
one we use in Eq. (2) is not to simply add parameters. In
fact, only second or higher order representation is able to
allow 6D motion. If zeroth or first order representation is
used, motion along the normal direction of the surface can
never be properly characterized, leading to reduced precision.
To show this statistically, different choices of polynomial
representation are also compared in the experimental section
(see Sec. VII-A).

2) Analysis On 6D Integration: To date, existing methods
on probabilistically consuming wheel odometer measurements
can only perform 3D pose estimation [6], [23], and it is diffi-
cult to extend the capability into 6D space. This is primarily
due to the fact that odometer only provides 2D measurement
(see Eq. (1)). However, with the manifold representation
defined, i.e., Eq. (4), 6D pose integration becomes feasible. To
show this, we first analyze the conditions required for 6D pose
integration, and subsequently discuss the intuitive motivation
of our method. In the next sub-section, detailed derivations of
our method is provided.

To perform 6D pose integration in an estimator, the corre-
sponding derivative terms, i.e., rotational and linear velocities,
need to be represented by functions of estimator states and
sensor measurements. For example, in IMU based integration,
rotational velocity is provided by gyroscope measurements,
and linear velocity can be propagated by estimator state
and accelerometer measurements [16]. Therefore, to allow
6D integration, it is required to formulate 6 independent
constraints from both estimator state and sensor measurements,
for rotational and linear velocities respectively.

As we have mentioned, the odometer measurements, i.e.
Eq. (1), explicitly provide 2 independent constraints for ro-
tational and linear velocities respectively. To seek for the
other 4 additional equations, we first utilize the non-holonomic
constraint3, which eliminates two additional degrees of free-
dom (DoF) on linear velocity term. Under non-holonomic
constraint, local velocity of a robot is only non-zero in its x-
axis, i.e. eT2 ·Ov = 0 and eT3 ·Ov = 0. The remaining required
2 DoFs are those for rotational velocity, which we find are
implicitly represented by the motion manifold. Specifically,
as shown by Fig. 1, the motion manifold of each location
determines roll and pitch angles of the ground robot (by
the manifold gradient), and manifold across space defines
how those angles evolve. Therefore, by combining odometer
measurements, non-holonomic model, and the manifold rep-
resentation, 6D pose integration can be performed.

3) Manifold-Aided Integration: In this section, we present
the detailed equations for pose integration. To begin with, we
first note that the kinematic equation for orientation term can
be expressed by:

G
O(t)Ṙ = G

O(t)R · bO(t)ωc (5)

where

bωc =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 , ω =

ωxωy
ωz

 (6)

To perform orientation integration, O(t)ω needs to be known.
However, it is clear that the odometer measurement only
provides the third element of O(t)ω, as described in Eq. (1).
To obtain the first two elements of O(t)ω, information about
the manifold representation needs to be used. To derive the
equations, we first write:⌊(

G
O(t)R · e3

)⌋
12
· ∇M

(
GpO(t)

)
= 0 (7)

3Robots equipped with Mecanum wheels are not under this constraint,
and the process must be re-designed. However, this type of wheels is not
commonly used in low-cost commercial outdoor robots and vehicles.

5

where bac12 are the first two rows of the cross-product matrix
bac The above equation reveals the fact that, the motion
manifold M has explicitly defined roll and pitch of a ground
robot, which should be consistent with the rotation matrix
G
O(t)R. In other words, the manifold gradient vector should
be parallel to GzO, GzO = G

O(t)R · e3 (see Fig. 1). Taking
time derivative of Eq. (7) leads to:⌊

G
O(t)Ṙe3

⌋
∇M

(
GpO(t)

)
+
⌊
G
O(t)Re3

⌋
˙∇M
(
GpO(t)

)
= 0

(8)

By using M(t) = M
(
GpO(t)

)
for abbreviation, and substi-

tuting Eq. (7) into Eq. (8), we obtain:⌊
G
O(t)RbO(t)ωce3

⌋
∇M(t) +

⌊
G
O(t)R · e3

⌋
˙∇M(t) = 0

(9)

⇒
⌊
G
O(t)R

T∇M(t)
⌋
bO(t)ωce3 +

⌊
G
O(t)R

T ˙∇M(t)
⌋
e3 = 0

(10)

⇒
⌊
G
O(t)R

T∇M(t)
⌋
be3cO(t)ω =

⌊
G
O(t)R

T ˙∇M(t)
⌋
e3 (11)

Eq. (11) contains 3 linear equations for O(t)ω, in which
however the number of linearly independent equations is only
2. Specifically, the un-identified variable corresponds to the
third element in O(t)ω, since O(t)ω is left multiplied by be3c:

be3c =

0 −1 0
1 0 0
0 0 0

 , (12)

On the other hand, the third element in O(t)ω can be directly
available from the wheel odometer measurement (see Eq. (1)).
Those observations verify our design motivation of combining
wheel odometer measurement and manifold representation
together, to rely on their complementary properties for per-
forming 6D pose integration.

To complete our derivation, we seek to obtain the first and
second elements of O(t)ω from Eq. (11). To do this, we first
write the following equation based on Eq. (7):

∇M(t) = ‖∇M(t)‖ ·GO(t) R · e3 (13)

As a result, Eq. (11) becomes:

‖∇M(t)‖ be3cbe3cO(t)ω =
⌊(

G
O(t)R

T · ˙∇M(t)
)⌋

e3

(14)

⇒‖∇M(t)‖O(t)ω12 = eT12
⌊
e3

⌋(
G
O(t)R

T · ˙∇M(t)
)

(15)

⇒O(t)ω12 =
1

‖∇M(t)‖e
T
12

⌊
e3

⌋(
G
O(t)R

T · ˙∇M(t)
)

(16)

where O(t)ω12 = eT12
O(t)ω. We note that, in Eq. (14), we

have used the equality:

⌊
e3

⌋⌊
e3

⌋
= −

1 0 0
0 1 0
0 0 0

 (17)

By considering odometer measurements, we have:

O(t)ω =

[
1

‖∇M(t)‖e
T
12

⌊
e3

⌋(
G
O(t)R

T · ˙∇M(t)
)

ωo(t)− nωo

]
(18)

By integrating Eq. (18), 3D orientation estimates can be
computed. Once orientation is computed, we compute position
by integrating:

GṗO(t) = GvO(t) = G
O(t)R · O(t)v, O(t)v =

vo − nvo0
0

(19)

It is important to point out that the above equation is formu-
lated by combining the information provided from both the
wheel odometer measurement (first row of O(t)v) and non-
holonomic constraint (second and third row of O(t)v).

We also note that our manifold representation, i.e., Eq. (2),
implicitly defines a motion model that the integrated position
must satisfy, M(GpO(t)) = 0. Actually, the representation of
Eq. (19) exactly satisfies the manifold constraint. To show the
details, we note that:

M(GpO(t)) = 0⇒∂M(GpO(t))

∂t
= 0

⇒∇M(GpO(t))
T · GvO(t) = 0 (20)

Since O(t)
G RTe3 is collinear with ∇M(GpO(t)), it leads to:

eT3 · O(t)
G R · GvO(t) = 0 (21)

The expression of GvO(t) in Eq. (19) clearly satisfies Eq. (21)
deduced from the manifold constraint.

With Eq. (18) and (19) being defined, we are able to perform
odometer based 6D pose integration on a manifold. The entire
process does not include an IMU. Instead, by combining
the information provided by the odometer measurement, non-
holonomic model, and manifold equations, the integration
requirement is fulfilled. We emphasize that our method allows
the use of odometer measurements for probabilistically 6D
integration, which is not feasible in previous literature.

B. State and Error-State Prediction

In this section, we describe the details of using the proposed
manifold representation for performing state and error-state
propagation, which is a necessary prerequisite for formulating
probabilistic estimators [61]. Since the integration process
requires explicit representations of both poses (position and
orientation vectors) and manifold parameters, we define the
state vector as follows:

x =
[
Gp>O

G
Oq> m>

]>
(22)

The time evolution of the state vector can be described by:
GṗO(t) = G

O(t)R
O(t)v (23)

G
O(t)q̇ =

1

2
G
O(t)q ·Ω(O(t)ω) (24)

˙m(t) = 0 (25)

where

Ω(ω) =

[
−bωc ω
−ωT 0

]
(26)

We point out that, during the prediction stage, our previous
work [26] utilizes ˙m(t) = nwm instead of Eq. (25) for

6

describing the kinematics of the motion manifold, where nwm
is a zero mean Gaussian vector. The design of ˙m(t) = nwm
is under the consideration that time prediction is typically
performed for small time windows in which well-constructed
road surfaces are smooth and of slow changes. Those changes
can be captured via uncertainty propagation by nwm. However,
the characterization of ˙m(t) = nwm becomes inaccurate
sometimes, especially in complex environments. To ensure
robust pose estimation, we utilize Eq. (25) and additional
algorithmic modules, which are illustrated in details in Sec. V.
Based on Eqs. (23)-(25), the dynamics of the estimated poses
can be written as:

G ˆ̇pO(t) = G
O(t)R̂

[
vo(t) 0 0

]T
(27)

G
O(t)

ˆ̇q =
1

2
G
O(t)q̂ ·Ω(O(t)ω̂) (28)

ˆ̇
m(t) = 0 (29)

where

O(t)ω̂ =

[
1

‖∇M̂(t)‖e
T
12

⌊
e3

⌋(
G
O(t)R̂

T · ˆ̇∇M(t)
)

ωo(t)

]
(30)

Eqs. (27) to (29) can be integrated with wheel odometer
measurement via numerical integration methods (e.g., Runge-
Kutta).

To describe the details of error-state propagation, we first
employ first order approximation of Taylor series expansion
on Eq. (18), to obtain:

O(t)ω = O(t)ω̂ + O(t)ω̃ = O(t)ω̂ + Jxx̃+ Jnn (31)

where

n =
[
nvo nωo

]>
(32)

and

Jx =
∂O(t)ω

∂x
, Jn =

∂O(t)ω

∂n
(33)

To derive orientation error-state equation, we first define
orientation error vector. Specifically, we employ small error
approximation to represent a local orientation error δθ by [61]:

O
GR ' (I− bδθc) O

GR̂ (34)

By linearizing Eqs. (27) to (29), we are able to write:
˙δθ = −bO(t)ω̂cδθ + Jxx̃+ Jnn (35)

The detailed derivation of Eq. (35) is shown in Appendix A-B.
Since δθ is part of x̃, the first two terms in Eq. (35) can be
combined for formulating:

˙δθ = J̄xx̃+ Jnn (36)

In terms of position, based on Eq. (19), it is straightforward
to obtain:

G ˙̃pO(t) = G
O(t)R̂ (I + bδθc)

vo − nvo0
0

− G
O(t)R̂

vo0
0

(37)

= −G
O(t)R̂

vo0
0

 δθ − G
O(t)R̂

nvo0
0

 (38)

For the manifold parameters we have:

˙̃m = 0 (39)

With Eqs. (35), (38), (39) being defined, we are able to
perform error-state integration in 6D. To put all equations in
the vector form, we have the error state equation as:

˙̃x = Fc · x̃+ Gc · n, x̃ =
[
δθT Gp̃TO m̃T

]T
(40)

where

Fc =

03×3 −G
OR̂bOvc 03×6

03×3 −bOω̂c 03×6
06×3 06×3 06×6

+

03×12
Jx

06×12

 (41)

and

Gc =

−
(

G
OR̂

)
[:,1]

03×1

(Jn)[:,1] (Jn)[:,2]
06×1 06×1

 (42)

with (·)[:,i] representing the ith column of a matrix. We
note that Fc and Gc are continuous-time error-state transition
matrix and noise Jacobian matrix. To implement a discrete-
time probabilistic estimator, discrete-time error state transition
matrix Φ(t, τ) is required. This can be achieved by integrating

Φ̇(t, τ) = Fc(t)Φ(t, τ), Φ(τ, τ) = I12×12 (43)

using numerical integration methods. The detailed implemen-
tation of numerical integration and the remaining steps are
standard ones for discrete-time estimators, which can be found
at [13], [61].

V. MANIFOLD RE-PARAMETERIZATION

A. Challenges in Manifold Parameterization

Eq. (2) defines a motion manifold in global reference
frame, which can be probabilistically integrated for pose
6D estimation. However, further investigation reveals that
this representation itself is unable to accurately capture the
kinematics of manifold parameters since real-world motion
manifold changes over space. [26] simply uses ṁ = nωm,
with nωm being a zero-mean Gaussian noise vector. However,
this method has limitations for large-scale deployment and
is unable to approximate the dynamics of complex motion
manifold parameters.

To identify the problem and reveal the necessity of introduc-
ing additional algorithmic design, let’s look at the following
equation as an example trajectory:

y =

{
0 x < 1000
1
4 (x− 1000)2 x ≥ 1000

(44)

This equation is also plotted in Fig. 2. In fact, Eq. (44) can
be considered as a two-dimensional manifold. If a quadratic
two-dimensional manifold is represented in general by:

y = c+ bx+ ax2 (45)

7

850 1000
0

200

400

600

Fig. 2: Example of a two-dimensional manifold, concatenated
by a zeroth order and a second order polynomial equation.

Eq. (44) is in fact a piecewise quadratic two-dimensional
manifold, whose parameters in piecewise form are:{

c=0, b=0, a=0 x<1000

c=2.5 · 105, b=−500, a=0.25 x≥1000
(46)

Clearly, there will be ‘significant’ jumps in the manifold
parameters at x = 1000,

δm=[δa, δb, δc]=[2.5 · 105,−500, 0.25], ||δm|| ≈ 2.5 · 105

(47)

due to our choice of quadratic representation to model a
locally non-quadratic equation. If we were able to use an
infinite number of polynomials for manifold approximation,
this problem should not have been caused. However, this is
computationally infeasible.

In fact, to probabilistically characterize this behavior in the
existing formulation, it requires the covariance of nωm, from
the manifold kinematic equation ṁ = nωm, to cover the
significant changes of δm. In that case, the convergence of
manifold parameter m will become problematic in stochastic
estimators. If the covariance of nωm is set to be small, it is then
unable to characterize such significant changes. Since manifold
parameters are represented by joint probability distribution
along with poses in our state vector, ill-formulated manifold
parameters will inevitably lead to reduced pose estimation
accuracy.

Motivated by the concept of local feature parameterization
in computer vision community [62], to tackle this problem,
we propose to parameterize manifold equation locally. Specif-
ically, if Eq. (45) is parameterized at a local point xo, the
corresponding equation in our example can be modified as:

y = cnew + bnew(x− xo) + anew(x− xo)2 (48)

where xo is a fixed constant parameter. By applying Eq. (48)
back in the example of Fig. 2, the manifold parameters in
piecewise form are:
cnew=0,

bnew=0,

anew=0, x<1000

cnew=2.5 · 105+bnewxo−anewx2o,
bnew=−500+2anewxo,

anew=0.25, x≥1000

(49)

which makes the ‘jump’ in the manifold parameter estimates
as functions of xo:

δm = [0.25(xo − 1000)2, 0.5(xo−1000), 0.25] (50)

For the given example, we observe that the ‘jumps’ in manifold
parameters will be decreased if xo is close to 1000. Assuming
the manifold equation is re-parametrized at xo = 999.9, we
obtain the new manifold parameters

cnew = 0.0025, bnew = 0.05, anew = 0.25 (51)

As a result, the changes of manifold parameters become much
smaller and smoother.

In the given example, the manifold parameters only change
at x = 1000, and thus parameterizing xo around 1000 is
enough. However, when a robot traverses complex trajecto-
ries in real scenarios, there is a great probability that the
corresponding manifold parameters vary at every possible
location. Therefore, it is preferable to always re-parameterize
the manifold equation at the latest position. Additionally, since
obtaining 100% precise value of latest position is an infeasible
task for stochastic estimators, it is a reasonable choice to use
the position estimate for xo, and 999.9 is a representative
estimated value in our previous example.

B. Analytical Solution

After illustrating our motivation and high-level concept
by the above example, we introduce our formal math-
ematical equation of the ‘local’ manifold representation
and re-parameterization. By assuming the previous re-
parameterization step is performed at time tk and the next
one is triggered at tk+1, we have

m(tk+1)=

1 δpT γT

0 δRT Ξ
0 0 Ψ

︸ ︷︷ ︸

Λ(tk)

m(tk), with δR = RoR
−1
1

δp = Ro(p1−po)

(52)

In above equation, Ro and po are the fixed re-parameterization
points for m(tk), and R1 and p1 are those for m(tk+1)
respectively. γ, Ξ, and Ψ are all functions of δR and δp.
As mentioned earlier, the natural way of choosing po and p1
is to let them equal to GpO(tk) and GpO(tk+1) respectively.
Since obtaining ground truth values for those two variables
is infeasible, we utilize estimated states from our estimator
as replacement. Additionally, since we use sliding-window
iterative estimator to compute robot poses as proposed in
the next section, different estimates for the same pose will
be obtained at each iteration and at each overlapped sliding
window. To avoid re-parameterizing manifold state multiple
times for the same pose, we pick and fix po and p1 using
the state estimates at the 0th iteration during sliding-window
iterative optimization once GpO(tk) and GpO(tk+1) firstly
show up in the sliding window. The detailed derivation of
Eq. (52) and discussion about parameter choices of Ro and
R1 can be found in Appendix C.

Therefore, by employing Eq. (52), we are able to re-
parameterize manifold representation around any time t, for

8

both state estimates and their corresponding uncertainties. We
note that this is similar to re-parameterize SLAM features with
inverse depth parameterization [16], [38]. It is important to
point out that, during our re-parameterization process, Ro, po,
R1, p1 are regarded as fixed vectors and matrices, instead of
random variables. This removes the needs of computing the
corresponding Jacobians with respect to them, which is also
widely used in SLAM feature re-parameterization [16], [38].

Once re-parameterization is introduced, the manifold stored
in the state vector at time tk+1 becomes m(tk+1). It is
important to note that the manifold-based pose integration
equations as described in Sec. IV-B does not assume the
existence of re-parameterization step, and the corresponding
Jacobians are all computed with respect to the one manifold
representation m (which can be termed the ‘global’ or ‘ini-
tial’ representation), e.g., ∂Oω

∂m . To allow correct prediction
process, we should either derive the corresponding equations
using re-parameterized manifold parameters at each instance
(e.g., directly computing ∂Oω

∂m(tk+1)
), or utilize chain rule for

calculation (e.g., computing ∂Oω
∂m(tk+1)

= ∂Oω
∂m

∂m
∂m(tk+1)

). In
this work, we adopt the second method, relying on relation
between m and m(tk+1):

m(tk+1)=Λ(tk)m(tk) (53)

=Λ(tk)Λ(tk−1)m(tk−1)= · · ·=
k∏
i=0

Λ(ti)m (54)

To this end, the chain rule calculation can be performed via
constant matrix Λ̄

−1
k :

m = Λ̄
−1
k ·m(tk), Λ̄k =

k∏
i=0

Λ(ti) (55)

With the manifold re-parameterization process defined, we
revisit the the problem of characterizing the dynamics of the
motion manifold. Since the actual manifold on which a ground
robot navigates changes over time, this fact must be explicitly
modeled for accurate pose estimation. Specifically, we take
this into account during the re-parameterization process as:

m(tk+1) = Λ(tk)m(tk) + nwm (56)

eTi nwm ∼ N (0, σ2
i,wm) with i = 1, · · · , 6

where N (0, σ2
i,wm) represents Gaussian distribution with

mean 0 and variance σ2
i,wm. Specifically, σi,wm is defined by:

σi,wm = αi,p||δp||+αi,q||δR|| (57)

where αi,p and αi,q are the scalars weighting the trans-
lation and orientation. It is important to point out in our
proposed formulation, the manifold uncertainties (i.e., σi,wm)
are functions of spatial displacement as Eq. (57). This is
different from standard noise propagation equations in VIO
literatures [13], [32], in which noises are characterized by
functions of time. Since the motion manifold is a ‘spatial’
concept instead of a ‘temporal’ concept, this design choice
better fits our estimation problem in real-world applications.
Consequently, after the uncertainty of the motion manifold is
characterized and incorporated in m(tk+1), the corresponding
uncertainty terms are automatically converted via Eq. (55).

Algorithm 1 Pipeline of the Proposed Manifold Based 6D
Pose Estimation System for Ground Robots.

Propagation: Propagate state vector using wheel odometer
readings as well as current estimated manifold parameters
(Sec. IV-B).

Update: When a new keyframe is allocated,
1: Image Processing: Extracting and matching features.
2: Iterative Optimization: Performing statistical optimization

using cost functions of odometry propagation, camera
observations, prior term, manifold constraint (Sec. VI-A).
IMU integration term can also be leveraged optionally.

3: State Marginalization: Marginalizing estimated features,
oldest keyframes, and pose integration constraints. If an
IMU is available, we also marginalize IMU velocities and
biases that are not corresponding to the latest keyframe.

4: Manifold Re-Parameterization: Re-parameterizing motion
manifold using the estimated poses and also performing
uncertainty propagation (Sec. V).

VI. MANIFOLD ASSISTED POSE ESTIMATION

The core contribution of this paper is to improve the pose es-
timation of the ground robot by probabilistically modeling the
motion manifold and utilizing wheel odometer measurements
for pose estimation. After proposing the detailed algorithmic
modules in the previous section, we here demonstrate how they
can be seamlessly integrated into state-of-the-art pose estima-
tors. Specifically, we present a sliding-window pose estimation
framework tailored for ground robots by using the proposed
algorithmic modules and also fusing measurements from a
monocular camera, wheel odometer, and optionally an IMU.
The proposed method builds a state vector consisting of both
motion manifold parameters and other variables of interests,
performs 6D integration with the assist of the manifold, and
minimizes the cost functions originating from both the raw
sensor measurements and manifold constraints. The minimal
sensor set required by the proposed method only includes a
monocular camera and the wheel odometer. By adding an extra
IMU sensor into the proposed framework, accuracy can be
further improved.

In this paper, we assume that the wheel odometer and
camera share the same time clock, which is ensured by the
hardware design, and all the sensors are rigidly connected
to the robot. Since measurements received from different
sensors are not at identical timestamps, we linearly interpolate
odometer measurements (also for IMU measurements if they
are available) at image timestamps.

A. State Vector and Cost Functions

To illustrate the 6DoF pose estimation algorithm, we first
introduce the state vector. At timestamp tk, the state vector
is 4:

yk =
[
Ok

T xTk
]T
, (58)

4For simpler representation, we ignore sensor extrinsic parameters in our
presentation in this section. However, in some of our real world experiments
when offline sensor extrinsic calibration is not of high accuracy, those
parameters are explicitly modeled in our formulation and used in optimization.

9

where x is defined in Eq. (22) and Ok denotes the poses in
the sliding-window at timestamp k:

Ok=
[
ζTOk–N+1

· · · ζTOk–1

]T
, ζOi

=
[
GpTOi

G
Oi

q̄T
]T

(59)

for i = k −N + 1, · · · , k − 1.
Once a new image is received, keyframe selection, pose

integration (see Sec. IV), and image processing (with FAST
feature [63] and FREAK [64] descriptor) are conducted in
sequential order. Since they are standard steps for sliding-
window pose estimation [14], [26], we omit the details here.
Subsequently, we minimize the following cost function to
refine our state:

Ck+1(yk,xk+1) = 2ηTk (yk − ŷk) + ||yk − ŷk||Σk

+
∑

i,j∈Si,j

γi,j +

k+1∑
i=k−N+1

ψi + β(xk,xk+1) (60)

where ηk and Σk are estimated prior information vector and
matrix, which can be obtained from marginalizing states and
measurements to probabilistically maintain bounded compu-
tational cost. For marginalization details please refer to [14],
[32]. Furthermore, in the above equation, ||a||Σ is computed
by aTΣa. Besides, γi,j is the computed camera reprojection
residuals; β corresponds to the prediction cost by odometer
measurements between time tk and tk+1, as described in
Sec. IV-B; and ψi is the residual corresponding to the motion
manifold which will be illustrated in the Sec. VI-B.

Specifically, the image induced cost function is:

γi,j =
∥∥zij − h(ζOi

, fj
)∥∥

ΣC
(61)

where zij represents camera measurement corresponding to
the pose i and visual landmark fj . Moreover, Si,j represents
the set of pairs between keyframes and observed features. ΣC

is the measurement information matrix, and the function h(·)
is the model of a calibrated perspective camera [22]. To deal
with landmark state fj , we choose to perform multiple-view
triangulation, optimization, and then stochastic marginaliza-
tion [13], [21] to keep a relatively low computational cost.

Since IMU is also a widely used low-cost sensor, we can
also use measurements from an additional IMU to further
improve the estimation accuracy. Specifically, when an IMU
is used in combination with wheel odometer and a monocular
camera, the state vector of our algorithm (see Eq. (58))
becomes:

y′k =
[
Ok

T xTk µTk
]T
,µk =

[
GvTIk bTak

bTgk

]T
(62)

where GvIk is IMU’s velocity expressed in global frame, and
bak

and bgk
are accelerometer and gyroscope biases respec-

tively. Once a new image is received and a new keyframe is
determined, we optimize the IMU-assisted cost function:

C′k+1(y′k,xk+1,µk+1) = Ck+1(yk,xk+1)

+ κ(ζOk
, ζOk+1

,µk,µk+1) (63)

Compared to Eq. (60) when IMU is not used, Eq. (63)
only introduce an additional IMU cost κ(·). Since IMU cost
functions are mature and described in a variety of existing

literatures [13], [32], [34], we here omit the discussion on
detailed formulation of κ(·). Overall, the work flow of the
system can be summarized in Alg. 1.

B. Manifold Constraints

In the system, in addition to the manifold based predic-
tion cost β, we also introduce additional cost term ψ into
Eq. (60), which provides explicitly kinematic constraints for
multiple poses in the sliding window based on the motion
manifold [26].

Specifically, if a local motion manifold is perfectly paramet-
rically characterized at around GpOk

, the following equation
holds:

M(GpOi
) = 0, for all i that ||GpOk

− GpOi
|| < ε (64)

where ε is a distance threshold, representing the region size
that the local manifold spans. Since modeling errors are
inevitable for manifold representation, we model Eq. (64) as
a stochastic constraint. Specifically, we define the manifold
constraint residual as ψi = rpi + rqi , with

rpi =
1

σ2
p

(
M
(
GpOi

))2
(65)

and σ2
p is the corresponding noise variance. Additionally, we

apply an orientation cost which origins from the fact that the
orientation of the ground robot is affected by the manifold
profile, as shown in Fig. (1) and Eq. (7):

rqi =

∥∥∥∥∥bGOi
R · e3c12 ·

∂ M
∂ p

∣∣∣∣
p=GpOi

∥∥∥∥∥
Ωq

(66)

where Ωq is the measurement noise information matrix, and

∇M
(
GpOi

)
= ∂ M

∂ p

∣∣∣∣
p=GpOi

.

We point out that, the manifold parameters used in prop-
agation can be considered as implicit constraints, providing
frame-to-frame motion information. On the other hand, ψi
can be treated as explicit multi-frame constraints for state
optimization. Theoretically, the implicit constraints compute
Jacobians with respect to manifold parameters, which allow
for probabilistic updates. However, we find that by imposing
the additional explicit constraints, the corresponding states can
be better estimated. Thus, we incorporate ψi into the cost
functions in estimator formulation.

Furthermore, we also take the operations in Eq. (56) to
make the manifold parameters adapted to the changes of
the manifold, as the method described in Sec. V to re-
parametrize the manifold parameters at each step after the
state marginalization. This step is applied to both the estimated
manifold parameters and the corresponding prior information
matrix. We also note that in Eq. (2) we choose to fix the
coefficient of z to be a constant number of 1, which means
that our manifold representation is not for generic motion in
3D space. However, this perfectly fits our applications, since
most ground robots can not climb vertical walls.

The last algorithmic component that needs to be described
is manifold initialization. In this work, we adopt a simple
solution for the initialization of the manifold parameters.

10

0

10

5

1200

y (m)

0 1000

200

800

x (m)

z
 (

m
)

600-5
400

Simulation Manifold

200
-10 0

400

-50

200

100

y (m)

0

-100 800
600

x (m)

400

0

200-200

z
 (

m
)

0

50

Fig. 3: Motion manifold used in simulation tests with red solid
line trajectory. Top: Motion manifold constructed by piecewise
quadratic polynomials. Bottom: Motion manifold constructed
by sinusoidal and cosusoidal functions.

Specifically, in the odometer-camera system, the initial global
frame is defined to be aligned with the initial odometer frame.
The initial motion manifold is defined to be the tangent plane
corresponding to the odometer frame, i.e., the planar surface
defined by the x and y axes of the odometer frame. On the
other hand, we assume zero values for the second-order terms
in the initial guess of the manifold parameter vector, and
allocate initial information matrix to capture the corresponding
uncertainties.

VII. EXPERIMENTS

In this section, we show results from both simulation tests
and real-world experiments to demonstrate the performance of
the proposed methods.

A. Simulation Tests

In the simulation tests, we assumed a ground robot moving
on a manifold, whose gradient vectors are continuous in R3.
Specifically, we generated two types of manifold profile for
simulations, shown in Fig. 3. The first type of motion manifold
(top one in Fig. 3) is generated by the piecewise polyno-
mial function, and the corresponding manifold parameters
are plotted in Fig. 4. Although the manifold visualized in
Fig. 3 seems smooth, we note that the corresponding global
parameters change significantly (see Fig. 4). By simulating
motion manifold in this setup, the overall performance of the
proposed algorithm and the capability of handling changes of

-0 200 400 600 800 1000 1200

-10000

0

10000

c

Global ground truth manifold parameters

0 200 400 600 800 1000 1200

-20

0

20

b
1

0 200 400 600 800 1000 1200

x (m)

-0.04

-0.02

0

0.02

0.04

a
1

Fig. 4: Ground truth global manifold parameters used for
generating simulation trajectory shown in the upper plot of
Fig. 3. Only non-zero elements are plotted, while b2, a2, and
a3 are constantly zero in this piecewise polynomial test.

motion manifold can be evaluated. The second type (bottom
one in Fig. 3) of manifold is generated by planar and sinusoidal
functions. This is to simulate the fact that in real-world scenar-
ios ‘quadratic’ equations are basically ‘local’ approximations,
which in general cannot perfectly characterize all road condi-
tions. With this simulated environment, we are able to test the
performance of the proposed method for approximating road
conditions with locally quadratic equations.

In the tests, simulated odometer, IMU, and camera measure-
ments were generated at 100 Hz, 100 Hz, and 10 Hz, respec-
tively. Extrinsic parameters between sensors are assumed to be
rigidly fixed, and intrinsic parameters of sensors are assumed
to be perfectly calibrated. To obtain camera measurements
efficiently, we directly generated feature measurements for
each image, with simulated 3D feature positions and known
data association. We generated 400 feature points per image
on average, and the averaged feature track length is about 5.1
frames. During the simulations, the robot moves forward with
a constant local velocity at 3.5m/s. To make the simulation
tests more realistic, the sensor noise distribution used to
generate measurements are characterized by the real sensors
used in our experiments (see Sec. VII-B3). Specifically, we
assume zero-mean Gaussian distribution for all sensor noises,
and the corresponding standard deviations are as follow: 0.8
pixel per feature observation for image, 9 · 10−4rad/s0.5 for
gyroscope measurement5, 1·10−4rad/s1.5 for gyroscope bias,
1·10−2m/s1.5 for accelerometer measurement, 1·10−4m/s2.5

for accelerometer biases, and finally 3% percentage error for
wheel encoder readings with 9.8cm wheel radius and 38cm
left-to-right wheel baseline.

1) Pose Integration Tests: The first test is to demonstrate
the theoretical performance of the 6-DoF pose integration by
using the proposed method, with known initial conditions.
Specifically, we compared the proposed manifold-based in-
tegration methods against the widely used IMU-based pose
integration [13], [14] and traditional odometer-based inte-
gration [6], [23] which relies on planar surface assumption.
These tests are designed for forward pose integrations without

5Note, this is continuous-time IMU noise, see [61] for details.

11

TABLE I: Pose integration errors in simulated piecewise poly-
nomials scenario. Three methods are compared: IMU-based
integration (IMU method), traditional odometer integration
that relies on planar surface assumptions (Trad. Odom.), and
the proposed manifold based integration (Mani. Odom.).

Integ. Time 0.1 sec 1.0 sec 3.0 sec 5.0 sec 10.0 sec

Traj. Lengths 0.35 m 3.5 m 10.5 m 17.5 m 35.0 m

IMU method
pos. err. (m) 0.0027 0.0093 0.0544 0.1695 0.9329
rot. err. (deg.) 0.0249 0.0794 0.1450 0.1975 0.2863

Trad. Odom.
pos. err. (m) 0.0028 0.0260 0.1899 0.5116 2.1637
rot. err. (deg.) 0.0701 0.6856 1.9715 3.2468 6.8433

Mani. Odom.
pos. err. (m) 0.0026 0.0086 0.0225 0.0372 0.0688
rot. err. (deg.) 0.0205 0.0646 0.1221 0.1530 0.1621

constraints from visual sensors to demonstrate the integration
performance. The pose integration was performed for differ-
ent short periods from 0.1 to 10 seconds (corresponding to
trajectory lengths from 0.35 to 35 meters), in regions where
non-planar slopes exist in the top plot of Fig. 3. Additionally,
since we focused on pose integration in this test, the estimation
systems were assumed to be free of errors in initial conditions
and only subject to measurement errors. We assumed: 1) the
motion manifold is precisely known for the proposed method,
2) correspondingly, initial roll and pitch angles of the IMU
are free of errors in the IMU method, and 3) initial velocity is
known precisely for all methods. In real applications, all those
variables will be estimated online and subject to estimation
errors, and in the next section we will show the detailed
performance of integrated systems. Table I shows the averaged
position and orientation errors for different methods over
300 Monte-Carlo runs. Those results show that by explicitly
incorporating manifold equations into the odometer integration
process, the accuracy can be improved compared to the
traditional planar surface assumption. On the other hand, the
accuracy of short-term IMU integration is comparable with
our proposed method, while for long-term integration tasks,
the proposed method performs certainly better.

2) Pose Estimation Tests: The second test is to demonstrate
the pose estimation performance of the proposed method,
when integrated into a sliding-window estimator with mea-
surements from a monocular camera, wheel encoders, and
optionally an IMU. Specifically, we implemented nine al-
gorithms in this test. a) Mn : the traditional camera and
odometer fusion approach without manifold modeling [65].
Specifically, in traditional methods, linear and rotational ve-
locities measured by wheel encoders can be used directly
for an update. Alternatively, those velocity terms can be
integrated to compute 3D relative constraints and allocate
uncertainty terms in all 6D directions. In this work, we
adopt the second implementation; b) M0th: the proposed
method with zeroth order manifold model to fuse odometer
and camera measurements; c) M1st: the proposed method
with first order manifold model; d) M2nd: the proposed
method with second order manifold model; e) M2nd+Re:

the proposed method with second order manifold model and
utilize manifold re-parameterization. This is our theoretically
preferred method when IMU is not included; f) MSCKF
[16]: standard visual-inertial odometry; g) VINS-W [23]: the
method representing the current state-of-the-art technique for
fusing measurements from a monocular camera, the wheel
odometer, and an IMU; h) AM+IMU [26]: our previous work
of using wheel odometer, a monocular camera, and an IMU
for pose estimation, by approximating the manifold based
integration process. Specifically, compared to the proposed
method in this work, our previous work [26] utilizes planar
surface based odometry integration for predicting estimated
poses, assumes uncertainties in all 6D directions, and does not
introduce the manifold re-parameterization process; and finally
i) M2nd+Re+IMU: proposed second order manifold method
with re-parameterization using odometer, camera and IMU
measurements. For all different methods, we compute root-
mean-squared-errors (RMSEs) for both 3D position estimates
and 3D orientation estimates, which are shown in Table II.
Note that the five camera-odometer fusion approaches: Mn
, M0th, M1st, M2nd and M2nd+Re are colored with light
gray in Table II (as well as Table III and IV later), while those
IMU-integrated approaches: MSCKF [16], VINS-W [23],
AM+IMU [26] and M2nd+Re+IMU are in dark gray.

A couple of conclusions can be made from the results.
Firstly, our proposed method is able to obtain accurate estima-
tion results even without using IMUs. This is not achievable
by other competing methods. In fact, the accuracy of the
proposed method is even better than a couple of competing
methods that employ an IMU sensor. Secondly, when an IMU
is also used in the system, the proposed method yields the best
performance among algorithms tested. This result indicates
that the proposed method is the most preferred one for
conducting high-accuracy estimation. Thirdly, we also noticed
that when manifold re-parameterization is not used, the errors
increase significantly. This validates our theoretical analysis
in Sec. V that the re-parameterization is a necessary step
to ensure manifold propagation errors can be characterized
statistically. In addition, we find that if the motion manifold
is not properly parameterized, the estimation precision will
be significantly reduced. Specifically, both zeroth order and
first order assumptions do not allow for 6D motion and
inevitably lead to extra inaccuracy. On the other hand, the
proposed M2nd+Re is able to model 6D motion via manifold
representation, and yield good pose estimates. Finally, it is
also important to note that the proposed methods outperform
competing methods also under the sinusoidal manifold. This
is due to the fact that our quadratic representation of motion
manifold is effectively locally within each sliding window, and
thus it is able to approximate complex real-scenarios without
having large modeling errors. We also note that, when used
in the piecewise planar simulation environment, the estimation
errors of VIO are large. This is due to its theoretical drawback
of having extra un-observable space under constant-velocity
straight-line motion [13]. Since this type of motion is common
for the ground robots, adding the odometer sensor for pose
estimation becomes important.

Additionally, we also plotted the estimation errors and the

12

TABLE II: Simulation results: pose estimation errors for different methods.

Algorithm Mn M0th M1st M2nd M2nd+Re MSCKF [16] VINS-W [23] AM+IMU [26] M2nd+Re+IMU

w. IMU No No No No No Yes Yes Yes Yes

Piecewise Env.
Pos. err. (m) 8.073 39.031 18.926 11.321 1.043 16.400 5.622 0.673 0.323
Rot. err. (deg) 1.839 7.501 3.256 1.719 0.246 0.115 0.323 0.109 0.099

Sinusoidal Env.
Pos. err. (m) 56.391 291.032 176.329 78.335 0.663 18.695 13.097 0.422 0.389
Rot. err. (deg) 1.083 89.237 45.093 25.665 0.066 0.371 0.117 0.090 0.057

0 50 100 150 200 250 300 350
-2.0

0.0

2.0

m

Position

err. 3 sigma

0 50 100 150 200 250 300 350
-10.0

0.0

10.0

m

0 50 100 150 200 250 300 350

Time (sec)

-2.0

0.0

2.0

m

0 50 100 150 200 250 300 350
-2.0

0.0

2.0

d
e

g

Rotation

err. 3 sigma

0 50 100 150 200 250 300 350
-0.5

0.0

0.5

d
e

g

0 50 100 150 200 250 300 350

Time (sec)

-5.0

0.0

5.0

d
e

g

0 50 100 150 200 250 300 350
-2.0

0.0

2.0

c

Manifold

err. 3 sigma

0 50 100 150 200 250 300 350
-0.1

0.0

0.1

b
1

0 50 100 150 200 250 300 350
-0.1

0.0

0.1

b
2

0 50 100 150 200 250 300 350
-0.1

0.0

0.1

a
1

0 50 100 150 200 250 300 350
-0.1

0.0

0.1

a
2

0 50 100 150 200 250 300 350

Time (sec)

-1.0

0.0

1.0

a
3

Fig. 5: For the simulated test on the upper plot of Fig. 3, state estimation errors and the corresponding estimated ±3σ bounds
for M2nd+Re. The left subplots corresponds to 3D position (x, y, z from top to bottom), the middle ones to 3D orientation
(pith, roll, yaw from top to bottom), and the right ones to the motion manifold parameters.

corresponding 3σ uncertainty bounds for the 3D position, 3D
orientation, and manifold parameters of the proposed method
M2nd+Re in Fig. 5, which are from a representative run in the
upper plot of Fig. 3. The most important observation is that
the manifold parameters can be accurately estimated, and the
estimation errors are well characterized by their uncertainties
bounds. Additionally, we also noticed that there are two ‘cir-
cle’ style curves in the uncertainty bounds of the first axis of
orientation error. In fact, those are corresponding to the regions
when the ground robot was climbing by continuously varying
orientation in pitch. Consequently, manifold propagation and
re-parameterization compute the corresponding Jacobians and
lead to the changes happening in the uncertainty bounds.
Finally, we also point out that both positional and orienta-
tional estimates are well characterized by the corresponding
uncertainty bounds in the proposed methods.

B. Real-World Experiments

1) Testing Platforms and Environments: To evaluate the
performance of our proposed approach, we conducted experi-
ments by using datasets from both the ones that are publicly
available as well as our customized sensor platform.

We first carried out tests using dataset sequences from the
publicly available KAIST dataset [66], which was collected by
ground vehicles in different cities in South Korea. The sensors
used in our experiment were the left camera of the equipped
Pointgrey Flea3 stereo system, the Xsens MTi-300 IMU, and
the RLS LM13 wheel encoders. The measurements recorded

by those sensors were 10Hz, 100Hz, and 100Hz, respectively.
On the other hand, our customized sensor platform consists of
a stereo camera system with ON AR0144 imaging sensors, a
Bosch BMI 088 IMU, and wheel encoders. For our proposed
algorithms, only the left eye of the stereo camera system was
used. During our data collection, images were recorded at
10Hz with 640 × 400-pixels resolution, IMU measurements
were at 200Hz, and wheel odometer measurements were at
100Hz. Our datasets were all collected on the Yuquan campus
of Zhejiang University, Hangzhou, China. This campus is
located next to the West Lake in Hangzhou, embraced by
mountains on three sides. Therefore, the environments in our
datasets are complex, including frequent slope changes and
terrain condition changes.

In terms of performance evaluation, we used both the
final positional drift and RMSE to represent the estimation
accuracy. For the dataset collected by our platform, due to
lack of full-trajectory ground truth, we dedicatedly started and
ended our data collection process at exactly the same position,
which enables computing the final drift. On the other hand,
ground truth poses for the KAIST dataset [66] are available,
and we used that for qualitative performance evaluation by
computing RMSE.

2) Large-scale Urban Tests for Ground Vehicles: We first
conducted real-world tests on ground vehicles in large-scale
urban environments with KAIST dataset [66]. Representative
visualization of estimated trajectories on Google maps are
shown in Fig. 6, and representative figures recorded in those

13

TABLE III: Evaluations on highway scenarios: mean RMSE per 1-km for different algorithms in highway scenarios (urban18-
urban25 and urban35-urban37) of KAIST Urban dataset [66].

No. Len. (km) Mn M0th M1st M2nd M2nd+Re MSCKF [16] VINS-W [23] AM+IMU [26] M2nd+Re+IMU

w. IMU - No No No No No Yes Yes Yes Yes

u18 3.9 4.556 7.727 3.330 3.372 3.022 6.544 5.261 3.328 2.629

u19 3.0 4.551 5.903 4.915 4.543 5.323 8.298 6.367 7.375 3.797

u20 3.2 2.513 4.831 3.031 2.912 2.746 5.542 4.824 5.282 2.717

u21 3.7 3.444 4.747 3.791 3.262 4.255 6.511 6.014 4.347 2.787

u22 3.4 5.523 5.208 4.969 4.425 5.970 6.934 6.201 2.626 4.221

u23 3.4 6.285 12.936 4.607 3.442 3.823 7.466 5.452 3.678 2.684

u24 4.2 4.584 7.569 4.608 4.109 5.885 6.011 6.032 5.568 3.883

u25 2.5 7.695 11.593 6.546 9.367 1.870 6.394 5.921 2.019 6.680

u35 3.2 4.101 5.536 3.839 3.417 3.945 8.332 8.032 3.826 2.474

u36 9.0 6.354 7.713 4.663 4.760 5.500 7.565 7.608 5.311 3.887

u37 11.8 4.209 2.999 5.066 3.054 2.498 5.255 5.098 2.685 2.493

mean — 4.892 6.978 4.488 4.242 4.076 6.805 6.074 4.186 3.477

TABLE IV: Evaluations on city scenarios: mean RMSE per 1-km for different algorithms in city scenarios (urban26-
urban34, urban38 and urban39) of KAIST Urban dataset [66].

No. Len. (km) Mn M0th M1st M2nd M2nd+Re MSCKF [16] VINS-W [23] AM+IMU [26] M2nd+Re+IMU

w. IMU - No No No No No Yes Yes Yes Yes

u26 4.0 3.426 5.247 3.692 3.240 2.139 4.129 4.021 3.742 2.100

u27 5.4 4.285 5.403 4.767 2.973 2.449 5.321 4.913 2.597 2.439

u28 11.47 4.428 6.094 5.892 4.418 3.227 6.415 6.021 2.713 2.352

u29 3.6 3.011 3.421 2.253 2.814 2.135 3.714 3.214 1.989 2.057

u30 6.0 3.920 6.193 5.023 3.907 2.954 5.438 4.982 3.259 2.442

u31 11.4 4.370 6.264 6.225 4.374 3.710 7.002 6.319 3.890 3.546

u32 7.1 3.364 6.782 5.775 4.452 2.288 5.425 4.923 3.254 2.137

u33 7.6 3.312 5.754 4.140 3.455 2.461 5.837 5.291 3.533 2.582

u34 7.8 5.139 9.309 7.514 3.955 3.664 8.621 8.237 2.934 2.422

u38 11.4 3.093 7.869 5.537 3.213 2.502 5.255 5.032 2.741 2.519

u39 11.1 4.495 7.068 5.546 4.270 4.035 5.111 4.829 2.420 2.062

mean — 3.895 6.309 5.124 3.734 2.869 5.661 5.253 3.007 2.423

datasets are shown in Fig. 7.
Similar to the simulation tests, we implemented the same

nine competing algorithms in this tests, including Mn , M0th,
M1st, M2nd, M2nd+Re, MSCKF, VINS-W, AM+IMU, and
M2nd+Re+IMU. The RMSEs of different algorithms are
shown in Table III and IV for highway and city scenarios
in KAIST Urban dataset [66] respectively. We note that
different sequences have varied lengths which are listed in the
second column of each table. Additionally, since all competing
algorithms are performing open-loop estimation, the computed
errors are the mean of RMSEs over each 1-km segment.

This test demonstrates similar statistical results compared to
the simulation tests. First, from the first five light gray columns

in Table III and IV, by using ‘poor’ parameterization for the
motion manifold, the estimation accuracy will be limited. In
fact, when parameterized by zeroth order (M0th) or first order
(M1st) polynomials, using the motion manifold for estimation
will be worse than not using it (Mn), especially in the city
scenarios. This is due to the fact that the motion manifold
is typically complex outdoors and the simple representations
are not enough to model the manifold properly, which will
introduce invalid constraints and deteriorate the estimator.
However, when proper modeling (i.e. the proposed method
(M2nd)) is used, better estimation precision can be achieved,
which validates the most important assumption in our paper:
with properly designed motion manifold representation, the es-

14

−1750 −1500 −1250 −1000 −750 −500 −250 0
x [m]

−800

−600

−400

−200

0

200

y
[m

]

GroundTruth
MSCKF [16]
AM+IMU [26]
M2nd+Re+IMU

−750 −500 −250 0 250 500 750 1000
x [m]

−200

0

200

400

600

800

y
[m

]

GroundTruth
MSCKF [16]
AM+IMU [26]
M2nd+Re+IMU

Fig. 6: Ground truth and estimated trajectories of different ap-
proaches plotted on a Google map. The cyan dashed line cor-
responds to ground truth trajectory, orange dashed line to esti-
mated one from MSCKF [16], green dotted one to AM+IMU
[26], and finally blue dashed one to the proposed method. The
top figure shows the results on sequenceurban26-dongtan
and the bottom one on sequence urban39-pankyo.

Fig. 7: Representative images recorded from the left eye of
the PointGrey camera in KAIST dataset [66].

timation accuracy can be improved. In addition, by comparing
the estimation errors of M2nd and M2nd+Re in all sequences,
we noticed that when the manifold re-parameterization is
not used, the errors increase significantly. This validates our
theoretical analysis in Sec. V that the re-parameterization is
a necessary step to ensure manifold propagation errors can
be characterized statistically. Moreover, let us review the data
in four dark gray columns, corresponding to the competing
methods when an IMU sensor is used. In fact, pose estimates
from MSCKF [16], VINS-W [23] and AM+IMU [26] are
consistently worse than the proposed methods. All these facts
validate our theoretical analysis that by properly modeling and
using the motion manifold, the estimation errors can be clearly
reduced. We note that, there are also failure cases for the
proposed manifold representation, such as using it for robots
on an uneven farmland road. However, for urban applications
with well-constructed roads, our method can be widely used.

3) Ground Robot Tests in a University Campus: The next
experiment is to evaluate the overall pose estimation per-
formance of the proposed method, compared to computing
algorithms similar to previous tests, i.e., M2nd+Re, M2nd,
MSCKF, VINS-W, AM+IMU, and M2nd+Re+IMU. Since
methods of Mn, M0th, M1st in previous tests are mainly
used as ‘ablation study’ instead of demonstrating our core
contributions, those methods are omitted in this test to allow
readers to focus the ‘real’ competing methods. Evaluations
were conducted on five sequences, with selective images and
trajectories are shown in Fig. 8 and Fig. 9. The final positional
drift errors were computed as the metric for different methods.

Table V shows the final positional drift for all methods
and over all testing sequences. The proposed method clearly
achieves the best performance. In addition, similar to our
simulation tests, those results show that when an IMU is used
as an additional sensor for estimation, the performance of the
proposed algorithm can be further improved. We also note that,
the re-parametrization module introduced in Sec. V is critical
to guarantee accurate estimation performance for the system.

C. Runtime Analysis

In addition to the accuracy evaluation, we also try to
analyze the computational cost of the proposed algorithmic
modules. We will show that by integrating our modules,
the computational cost of sliding-window estimator remains
almost unchanged. The tests in this section were performed
on an Intel Core i7-4790 CPU running at 2.90GHz. Our
code was written in C++, and the sliding-window size of our
implementation was set to be 8.

Specifically, we evaluated the run time of each crit-
ical sub-modules in four algorithms: Mn, M2nd+Re,
M2nd+Re+IMU, and IMU Method. The last method is to use
the proposed sliding-window algorithm and implementation,
but with IMU and monocular camera measurements only.
Table VI shows results for four main sub-modules in a
single sliding window update cycle: feature extraction, feature
tracking, iterative optimization, and probabilistic marginaliza-
tion (in the proposed method, the re-parameterization time is
counted as part of the marginalization process). In Table VI,

15

Fig. 8: Representative visualization of outdoor experiment scenario.

TABLE V: Final positional drift for competing algorithms in Campus dataset.

No. Length(m) Final Positional Drift (m)
M2nd+Re+IMU M2nd+Re M2nd AM+IMU [26] VINS-W [23] MSCKF [16]

01 246.2 1.7804 1.9006 2.2940 1.1568 1.8643 1.9558

02 332.4 3.3028 5.7115 6.6152 3.8500 5.2419 5.4742

03 359.8 2.0334 2.8503 11.5017 2.7974 3.3949 3.4796

04 472.5 2.4266 3.6845 7.6708 2.9968 4.2351 4.2742

05 364.6 1.8863 3.5367 47.9063 2.7326 5.5932 5.8041

−100 −50 0 50 100 150
x [m]

−120

−100

−80

−60

−40

−20

0

20

40

y
[m

]

01
02
03
04
05

Fig. 9: The trajectories of the five sequences (01 to 05) with
different colors overlaid on the map of ZJU campus. The
identical starting position for all sequences is marked by a
red star.

the reported values for each module are computed by aver-
aging results from 2500 sliding-window update cycles. Those
results demonstrate that the runtime for all four methods are
similar. In fact, the computational costs of sliding-window
optimization are primarily determined by 1) image processing
time, 2) size of the sliding window, and 3) number and track
length of processed features [16]. By using our method, the
increased computational complexity is almost negligible.

VIII. CONCLUSIONS
In this paper, we proposed an accurate pose estimation

algorithm dedicatedly designed for non-holomonic ground

TABLE VI: Runtime statistics, i.e., mean and (standard devia-
tion), of the main sub-modules.

Modules Computation Time (ms)
Mn M2nd+Re M2nd+Re+IMU IMU M.

Feat. Detect. 9.02(1.18) 9.14(1.32) 9.15(1.26) 9.09(1.11)

Feat. Track. 3.64(0.72) 3.78(0.69) 3.73(0.67) 3.77(0.72)

Opt. 7.95(2.63) 9.12(2.99) 10.01(3.04) 9.77(3.01)

Marg. 1.70(0.49) 1.82(0.48) 2.38(0.49) 2.18(0.46)

robots with measurements from the wheel encoder and an
exteroceptive sensor. Since ground robots typically navigate
on a local motion manifold, it is possible to exploit this fact
to derive kinematic constraints and use proper low-cost sensors
in estimation algorithms. Specifically, we explicitly modelled
the motion manifold by continuously differentiable parametric
representation. Subsequently, we proposed a method for per-
forming full 6D pose integration using both wheel odometer
measurements and the motion manifold in closed-form. We
also analyzed the estimation errors caused by the manifold
representation and performed re-parameterization periodically
to achieve error reduction. Finally, we validate the proposed
method in an optimization-based sliding window estimator
for fusing measurements from a monocular camera, wheel
odometer, and optionally an IMU. By extensive experiments
conducted from both simulated and real-world data, we show
that the proposed method outperforms competing state-of-
the-art algorithms by a significant margin in pose estimation
accuracy.

16

APPENDIX A
DERIVATIVE OF ORIENTATION ERROR STATE

In this section, we describe the detailed derivation of the
orientation error state differential equation, i.e., Eq. (35). To
start with, we substitute Eq. (34) into Eq. (5), which leads to:

∂

(
G
OR̂ (I + bδθc)

)
∂t

= G
OR̂ (I + bδθc) bOωc (67)

⇒G
OR̂bOω̂c(I+bδθc)+G

OR̂b ˙δθc=G
OR̂ (I+bδθc)bOω̂+Oω̃c

(68)

⇒bOω̂c(I+bδθc)+b ˙δθc=(I+bδθc)bOω̂+Oω̃c (69)

By applying the quadratic error approximation bδθcbOω̃c '
0, the above equation can be written as:

b ˙δθc'(I+bδθc)bOω̂+Oω̃c − bOω̂c(I+bδθc) (70)

' bδθcbOω̂c − bOω̂cbδθc+ bOω̃c (71)

Finally, by using the property of skew-symmetric matrix:

bacbbc − bbcbac = baT − abT = bbacbc = −bbbcac
(72)

Eq. (71) becomes:

˙δθ = −bOω̂cδθ + Oω̃ (73)

and
Oω̃ = Jxx̃+ Jnnω (74)

This completes the derivation.

APPENDIX B
JACOBIAN OF THE INFERRED ANGULAR VELOCITY

In this section, we describe the detailed derivation of
Jacobians in Eq. (35). Recall the inferred local angular velocity
in Eq. (18):

O(t)ω̂ =

 1

‖∇M̂(t)‖e
T
12

⌊
e3

⌋(
G
O(t)R̂

T · ˆ̇∇M(t)
)

ωo(t)

 (75)

where ∇M̂(t) and ˆ̇∇M(t) represent the gradient and it time
derivative of the equality manifold constraint evaluated at
current state estimate. Based on Eq. (2), we can derive:

∇M =

A

[
GpOx

GpOy

]
+ B

1

 , ˙∇M =

A

[
Gvx
Gvy

]
0

 (76)

or equivalently:

∇M=ĀGpO+B̄+e3, ˙∇M=ĀGvO, Ā=

[
A 0

0T 0

]
, B̄=

[
B

0

]
(77)

By denoting E = eT12
⌊
e3

⌋
, D = O

GR · Ā ·OGRT and dropping
(t) for simplicity, we write Eq. (18) as:

Oω =

[
1

‖∇M‖ED
(
Ov − nv

)
ωo − nωo

]
(78)

To compute the state-transition matrix, we first note that:

∂||y||
∂y

=
y>

||y|| ,
∂ 1
||y||

∂y
= − y>

||y||3 , and

∂ k
||y||

∂y
= − kyT

||y||3 ,
∂ k
||y||

∂x
= − kyT

||y||3
∂y

∂x
(79)

By employing Eq. (79), we have:

∂Oω

∂GpO
=

−ED̂e1vo
∇M̂>

‖∇M̂‖3 Ā

0

 (80)

and

∂Oω

∂δθ
=

 E

‖∇M̂‖ ·
(
bD̂e1voc − D̂be1voc

)
0

 (81)

finally

∂Oω

∂m
=

−ED̂e1vo
∇M̂>

‖∇M̂‖3 Γ̂ + E

‖∇M̂‖
O
GR̂Υ̂

0

 (82)

with

Γ =

0 1 0 GpOx
GpOy

0

0 0 1 0 GpOx
GpOy

0 0 0 0 0 0

 (83)

and

Υ =

0 0 0 GvOx
GvOy

0

0 0 0 0 GvOx
GvOy

0 0 0 0 0 0

 (84)

To summarize the Jacobians with respect to the state, we have:

Jx =
[
∂Oω
∂GpO

∂Oω
∂δθ

∂Oω
∂m

]
(85)

On the other hand, Jn can be easily computed by taking

derivative with respect to n =
[
nvo nωo

]T
.

Jn = −
[

1

‖∇M̂‖ED̂e1 02×1

0 1

]
(86)

APPENDIX C
DERIVATION ON MANIFOLD RE-PARAMETERIZATION

In this section, we provide the detailed derivations of
Eq. (52). To simplify our analysis, we here use mo = m(tk)
and m1 = m(tk+1) for abbreviation. In our work, we define
the local manifold representation at tk and tk+1 as:

z+c+BT∆po+
1

2
∆pTo A∆po=0, ∆po=Ro

([
x

y

]
−
[
xo

yo

])
(87)

z+c+BT∆p1+
1

2
∆pT1 A∆p1 =0, ∆p1 =R1

([
x

y

]
−
[
x1

y1

])
(88)

where Ro,R1 ∈ R2×2 and the detailed formulation of A and
B can be found in Eq. (3) and Eq. (4). We further define

17

pTo =
[
xo yo

]
and pT1 =

[
x1 y1

]
with a slight abuse of

notation. We note that, Eqs. (87) - (88) should hold for all
p, and thus the corresponding coefficients for p should be
the same in both equations. Considering the equality on the
second order coefficients leads to:

RT
o ARo = RT

1 AnewR1 (89)

⇒Anew = δRTAδR, with δR = RoR
−1
1 (90)

and the first order ones:

BTRo − pTo RT
o ARo = BT

newR1 − pT1 RT
1 AnewR1

(91)

⇒BT
new=BT δR− pTo RT

o AδR + pT1 RT
o AδR (92)

⇒Bnew=δRTB+δRTAT δp, with δp=Ro (p1−po)
(93)

finally the constant value:

c−BTRopo +
1

2
pTo RT

o ARopo

= cnew −BT
newR1p1 +

1

2
pT1 RT

1 AnewR1p1 (94)

⇒cnew=c+BT δRR1p1+(p1−po)
TRT

o AδRR1p1−BTRopo

− 1

2
pT1 RT

o ARop1 +
1

2
pTo RT

o ARopo (95)

⇒cnew = c+ BT δp +
1

2
δpTAδp (96)

In matrix form representation, we have:

mnew =

1 δpT γT

0 δRT Ξ

0 0 Ψ

︸ ︷︷ ︸

Λ1

m (97)

with

γT =
[
0.5δx2 δxδy 0.5δy2

]
, Ξ = δRT

[
δx δy 0

0 δx δy

]
(98)

and

Ψ=

 δr21 2δr1δr3 δr23
δr1δr2 δr1δr4 + δr2δr3 δr3δr4

δr22 2δr2δr4 δr24

 , δR=

[
δr1 δr2

δr3 δr4

]
(99)

This completes our derivation.
We next discuss the choices of parameters in po, p1, Ro,

and R1. In this work, we choose the first estimate of GpO(tk)

for po and GpO(tk+1) for p1. Based on our theoretical analysis
in Sec. V and experimental results, we show that our parameter
choices of po and p1 are meaningful, resulting in significant
performance gains. However, for Ro and R1, we tried two sets
of choices, by extracting the corresponding elements in yaw of
the estimate of G

O(tk)
RT and G

O(tk+1)
RT and by simply setting

I2 matrices. The results show that the two choices have similar
performances. Thus for the experimental results reported in
this paper, we use I2 matrices as the orientation parameters
for the simplicity.

REFERENCES

[1] Teddy Yap, Mingyang Li, Anastasios I Mourikis, and Christian R
Shelton. A particle filter for monocular vision-aided odometry. In IEEE
International Conference on Robotics and Automation, 2011.

[2] Ji Zhang and Sanjiv Singh. Low-drift and real-time lidar odometry and
mapping. Autonomous Robots, 41(2):401–416, 2017.

[3] Jesse Levinson, Michael Montemerlo, and Sebastian Thrun. Map-
based precision vehicle localization in urban environments. In Robotics:
Science and Systems, volume 4, page 1, 2007.

[4] Ryan W Wolcott and Ryan M Eustice. Visual localization within
lidar maps for automated urban driving. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 176–183, 2014.

[5] Mingming Zhang, Yiming Chen, and Mingyang Li. SDF-loc: Signed
distance field based 2D relocalization and map update in dynamic
environments. In American Control Conference, 2019.

[6] Andrea Censi, Antonio Franchi, Luca Marchionni, and Giuseppe Oriolo.
Simultaneous calibration of odometry and sensor parameters for mobile
robots. IEEE Transactions on Robotics, 29(2):475–492, 2013.

[7] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scara-
muzza, José Neira, Ian Reid, and John J Leonard. Past, present, and
future of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Transactions on Robotics, 32(6):1309–1332, 2016.

[8] Xingxing Zuo, Patrick Geneva, Woosik Lee, Yong Liu, and Guoquan
Huang. Lic-fusion: Lidar-inertial-camera odometry. In Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems, Macau,
China, 2019.

[9] Guowei Wan, Xiaolong Yang, Renlan Cai, Hao Li, Yao Zhou, Hao Wang,
and Shiyu Song. Robust and precise vehicle localization based on multi-
sensor fusion in diverse city scenes. In IEEE International Conference
on Robotics and Automation, pages 4670–4677, 2018.

[10] Bryan Klingner, David Martin, and James Roseborough. Street view
motion-from-structure-from-motion. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 953–960, 2013.

[11] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held,
Soeren Kammel, J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt,
et al. Towards fully autonomous driving: Systems and algorithms. In
IEEE Intelligent Vehicles Symposium, pages 163–168, 2011.

[12] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos.
Orb-slam: a versatile and accurate monocular slam system. IEEE
Transactions on Robotics, 31(5):1147–1163, 2015.

[13] Mingyang Li and Anastasios I Mourikis. High-precision, consistent ekf-
based visual-inertial odometry. The International Journal of Robotics
Research, 32(6):690–711, 2013.

[14] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and
versatile monocular visual-inertial state estimator. IEEE Transactions
on Robotics, 34(4):1004–1020, 2018.

[15] Simon Lynen, Torsten Sattler, Michael Bosse, Joel A Hesch, Marc
Pollefeys, and Roland Siegwart. Get out of my lab: Large-scale, real-
time visual-inertial localization. In Robotics: Science and Systems,
volume 1, 2015.

[16] Mingyang Li and Anastasios I Mourikis. Optimization-based estimator
design for vision-aided inertial navigation. In Robotics: Science and
Systems, pages 241–248, 2013.

[17] Zheng Huai and Guoquan Huang. Robocentric visual-inertial odometry.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6319–6326, 2018.

[18] Haomin Liu, Mingyu Chen, Guofeng Zhang, Hujun Bao, and Yingze
Bao. ICE-BA: Incremental, consistent and efficient bundle adjustment
for visual-inertial SLAM. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1974–1982, 2018.

[19] Barza Nisar, Philipp Foehn, Davide Falanga, and Davide Scaramuzza.
Vimo: Simultaneous visual inertial model-based odometry and force
estimation. IEEE Robotics and Automation Letters, 2019.

[20] Joel A Hesch, Dimitrios G Kottas, Sean L Bowman, and Stergios I
Roumeliotis. Camera-imu-based localization: Observability analysis
and consistency improvement. The International Journal of Robotics
Research, 33(1):182–201, 2014.

[21] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint kalman
filter for vision-aided inertial navigation. In IEEE International Confer-
ence on Robotics and Automation, pages 3565–3572, 2007.

[22] Mingyang Li and Anastasios I Mourikis. Online temporal calibration for
camera–imu systems: Theory and algorithms. The International Journal
of Robotics Research, 33(7):947–964, 2014.

[23] Kejian J Wu, Chao X Guo, Georgios Georgiou, and Stergios I Roume-
liotis. VINS on wheels. In IEEE International Conference on Robotics
and Automation (ICRA), pages 5155–5162, 2017.

18

[24] Dimitrios G Kottas, Kejian J Wu, and Stergios I Roumeliotis. Detecting
and dealing with hovering maneuvers in vision-aided inertial navigation
systems. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3172–3179, 2013.

[25] Meixiang Quan, Songhao Piao, Minglang Tan, and Shi-Sheng Huang.
Tightly-coupled monocular visual-odometric slam using wheels and a
mems gyroscope. arXiv preprint arXiv:1804.04854, 2018.

[26] Mingming Zhang, Yiming Chen, and Mingyang Li. Vision-aided
localization for ground robots. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019.

[27] Jingang Yi, Junjie Zhang, Dezhen Song, and Suhada Jayasuriya. IMU-
based localization and slip estimation for skid-steered mobile robots. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2845–2850, 2007.

[28] T.C. Dong-Si and A. I. Mourikis. Consistency analysis for sliding-
window visual odometry. In IEEE International Conference on Robotics
and Automation (ICRA), pages 5202–5209, Minneapolis, MN, May
2012.

[29] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-
scale direct monocular slam. In European conference on computer
vision, pages 834–849, 2014.

[30] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odom-
etry. IEEE transactions on pattern analysis and machine intelligence,
40(3):611–625, 2017.

[31] Raul Mur-Artal and Juan D Tardós. ORB-SLAM2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Transactions on
Robotics, 33(5):1255–1262, 2017.

[32] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza.
On-manifold preintegration for real-time visual–inertial odometry. IEEE
Transactions on Robotics, 33(1):1–21, 2017.

[33] Thomas Schneider, Marcin Dymczyk, Marius Fehr, Kevin Egger, Simon
Lynen, Igor Gilitschenski, and Roland Siegwart. maplab: An open
framework for research in visual-inertial mapping and localization. IEEE
Robotics and Automation Letters, 3(3):1418–1425, 2018.

[34] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart,
and Paul Furgale. Keyframe-based visual–inertial odometry using
nonlinear optimization. The International Journal of Robotics Research,
34(3):314–334, 2015.

[35] Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang. Closed-form
preintegration methods for graph-based visual–inertial navigation. The
International Journal of Robotics Research, 38(5):563–586, 2019.

[36] Xiao Chen, Weidong Hu, Lefeng Zhang, Zhiguang Shi, and Maisi Li.
Integration of low-cost gnss and monocular cameras for simultaneous
localization and mapping. Sensors, 18(7):2193, 2018.

[37] Ji Zhang and Sanjiv Singh. Visual-lidar odometry and mapping: Low-
drift, robust, and fast. In IEEE International Conference on Robotics
and Automation (ICRA), pages 2174–2181, 2015.

[38] Mingyang Li and Anastasios I Mourikis. Vision-aided inertial navigation
for resource-constrained systems. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1057–1063, 2012.

[39] Thomas Schneider, Mingyang Li, Michael Burri, Juan Nieto, Roland
Siegwart, and Igor Gilitschenski. Visual-inertial self-calibration on
informative motion segments. In IEEE International Conference on
Robotics and Automation (ICRA), pages 6487–6494, 2017.

[40] Ronald Clark, Sen Wang, Andrew Markham, Niki Trigoni, and Hongkai
Wen. Vidloc: A deep spatio-temporal model for 6-dof video-clip
relocalization. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 6856–6864, 2017.

[41] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger,
and Andrew J Davison. Codeslam—learning a compact, optimisable
representation for dense visual slam. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2560–2568, 2018.

[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252,
2015.

[43] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry
for ground vehicle applications. Journal of Field Robotics, 23(1):3–20,
2006.

[44] F. Zheng and Y. Liu. Se(2)-constrained visual inertial fusion for ground
vehicles. IEEE Sensors Journal, Oct. 2018.

[45] Chenyang Lu, Gijs Dubbelman, and Marinus Jacobus Gerardus van de
Molengraft. Monocular semantic occupancy grid mapping with convo-
lutional variational auto-encoders. CoRR, 2018.

[46] Ji Zhang and Sanjiv Singh. Laser–visual–inertial odometry and map-
ping with high robustness and low drift. Journal of Field Robotics,
35(8):1242–1264, 2018.

[47] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-
time loop closure in 2d lidar slam. In IEEE International Conference
on Robotics and Automation (ICRA), pages 1271–1278, 2016.

[48] Xingxing Zuo, Mingming Zhang, Yiming Chen, Yong Liu, Guoquan
Huang, and Mingyang Li. Visual-inertial localization for skid-steering
robots with kinematic constraints. In International Symposium on
Robotics Research (ISRR), Hanoi, Vietnam, 2019.

[49] Paul Checchin, Franck Gérossier, Christophe Blanc, Roland Chapuis,
and Laurent Trassoudaine. Radar scan matching slam using the fourier-
mellin transform. In Field and Service Robotics, pages 151–161.
Springer, 2010.

[50] Martin Adams, Martin David Adams, and Ebi Jose. Robotic navigation
and mapping with radar. Artech House, 2012.

[51] Erik Ward and John Folkesson. Vehicle localization with low cost radar
sensors. In IEEE Intelligent Vehicles Symposium (IV), pages 864–870,
2016.

[52] Changhao Chen, Xiaoxuan Lu, Andrew Markham, and Niki Trigoni.
Ionet: Learning to cure the curse of drift in inertial odometry. CoRR,
abs/1802.02209, 2018.

[53] Martin Brossard, Axel Barrau, and Silvere Bonnabel. Rins-w: Robust
inertial navigation system on wheels. arXiv preprint arXiv:1903.02210,
2019.

[54] Axel Barrau and Silvère Bonnabel. The invariant extended kalman
filter as a stable observer. IEEE Transactions on Automatic Control,
62(4):1797–1812, 2016.

[55] Bhoram Lee, Kostas Daniilidis, and Daniel D Lee. Online self-
supervised monocular visual odometry for ground vehicles. In IEEE
International Conference on Robotics and Automation (ICRA), pages
5232–5238, Seattle, WA, May 2015.

[56] Peter Corke, Carrick Detweiler, Matthew Dunbabin, Michael Hamilton,
Daniela Rus, and Iuliu Vasilescu. Experiments with underwater robot
localization and tracking. In IEEE International Conference on Robotics
and Automation, pages 4556–4561, 2007.

[57] Florian Shkurti, Ioannis Rekleitis, Milena Scaccia, and Gregory Dudek.
State estimation of an underwater robot using visual and inertial infor-
mation. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5054–5060, 2011.

[58] Jakob Engel, Jürgen Sturm, and Daniel Cremers. Scale-aware navigation
of a low-cost quadrocopter with a monocular camera. Robotics and
Autonomous Systems, 62(11):1646–1656, 2014.

[59] Chengbin Chen, YaoYuan Tian, Liang Lin, SiFan Chen, HanWen Li,
YuXin Wang, and KaiXiong Su. Obtaining world coordinate information
of uav in gnss denied environments. Sensors, 20(8):2241, 2020.

[60] Ross Hartley, Maani Ghaffari, Ryan M Eustice, and Jessy W Grizzle.
Contact-aided invariant extended kalman filtering for robot state estima-
tion. The International Journal of Robotics Research, 39(4):402–430,
2020.

[61] Nikolas Trawny and Stergios I Roumeliotis. Indirect kalman filter for
3D attitude estimation. 2005.

[62] Javier Civera, Andrew J Davison, and JM Martinez Montiel. Inverse
depth parametrization for monocular slam. IEEE transactions on
robotics, 24(5):932–945, 2008.

[63] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A
machine learning approach to corner detection. IEEE transactions on
pattern analysis and machine intelligence, 32(1):105–119, 2008.

[64] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast
retina keypoint. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 510–517, 2012.

[65] F. Jesus and R. Ventura. Combining monocular and stereo vision in 6d-
slam for the localization of a tracked wheel robot. In IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), pages 1–6,
2012.

[66] Jinyong Jeong, Younggun Cho, Young-Sik Shin, Hyunchul Roh, and
Ayoung Kim. Complex urban dataset with multi-level sensors from
highly diverse urban environments. The International Journal of
Robotics Research, 38(6):642–657, 2019.

	I Introduction
	II Related Work
	II-A Pose Estimation using Cameras
	II-B Pose Estimation for Ground Robots
	II-C Physical Constraints Assisted Methods

	III Notations and Sensor Models
	III-A Notations
	III-B Wheel Odometer Measurement Model

	IV Methodology with Motion Manifold
	IV-A Manifold Representation and Induced 6D Integration
	IV-A1 Mathematical Representation of Motion Manifold
	IV-A2 Analysis On 6D Integration
	IV-A3 Manifold-Aided Integration

	IV-B State and Error-State Prediction

	V Manifold Re-Parameterization
	V-A Challenges in Manifold Parameterization
	V-B Analytical Solution

	VI Manifold Assisted Pose Estimation
	VI-A State Vector and Cost Functions
	VI-B Manifold Constraints

	VII EXPERIMENTS
	VII-A Simulation Tests
	VII-A1 Pose Integration Tests
	VII-A2 Pose Estimation Tests

	VII-B Real-World Experiments
	VII-B1 Testing Platforms and Environments
	VII-B2 Large-scale Urban Tests for Ground Vehicles
	VII-B3 Ground Robot Tests in a University Campus

	VII-C Runtime Analysis

	VIII CONCLUSIONS
	Appendix A: Derivative of Orientation Error State
	Appendix B: Jacobian of the Inferred Angular Velocity
	Appendix C: Derivation on Manifold Re-Parameterization
	References

