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Abstract— LiDAR panoptic segmentation (LPS) performs
semantic and instance segmentation for things (foreground
objects) and stuff (background elements), essential for scene
perception and remote sensing. While most existing methods
separate these tasks using distinct branches (i.e., semantic and
instance), recent approaches have unified LPS through a query-
based paradigm. However, the distinct spatial distributions of
foreground objects and background elements in large-scale out-
door scenes pose challenges. This article presents DQFormer,
a novel framework for unified LPS that employs a decoupled
query workflow to adapt to the characteristics of things and
stuff in outdoor scenes. It first utilizes a feature encoder to
extract multiscale voxel-wise, point-wise, and bird’s eye view
(BEV) features. Then, a decoupled query generator proposes
informative queries by localizing things/stuff positions and fusing
multilevel BEV embeddings. A query-oriented mask decoder uses
masked cross-attention to decode segmentation masks, which
are combined with query semantics to produce panoptic results.
Extensive experiments on large-scale outdoor scenes, including
the vehicular datasets nuScenes and SemanticKITTI, as well
as the aerial point cloud dataset DALES, show that DQFormer
outperforms superior methods by +1.8%, +0.9%, and +3.5%
in panoptic quality (PQ), respectively. Code is available at
https://github.com/yuyang-cloud/DQFormer

Index Terms— Decoupled queries, large-scale outdoor scenes,
LiDAR panoptic segmentation (LPS), point cloud segmentation.

I. INTRODUCTION

SCENE perception and understanding are fundamental in
geoscience and remote sensing. With advancements in

3-D data acquisition techniques, LiDAR point clouds have
become the primary resource for collecting large-scale geospa-
tial data, revealing detailed geometric structures of real-world
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3-D environments. As a key task in scene perception, LiDAR
segmentation involves point-level predictions to interpret the
entire scene. Among these tasks, LiDAR panoptic segmenta-
tion (LPS) predicts not only point-wise semantic labels for
stuff classes (e.g., roads and vegetation) but also labels and
instance IDs for thing classes (e.g., cars and people). By uni-
fying semantic and instance segmentation within a single
architecture, LPS plays a crucial role in scene understanding
and has a wide range of applications, such as autonomous
driving, urban modeling, and remote sensing.

Most existing LPS methods [1], [2], [3], [4], [5] explicitly
separate semantic and instance segmentation tasks, utilizing
two branches to implement panoptic segmentation. As illus-
trated in Fig. 1(c), the semantic branch predicts semantic labels
for each point, while the instance branch employs detection
or clustering techniques to assign instance IDs. Inspired by
the recent success of query-based methods in the 2-D seg-
mentation domain [6], [7], [8], [9], [10], MaskPLS [11] and
PUPS [12] propose using a set of learnable queries to achieve
unified LPS. This approach predicts a set of nonoverlapping
binary masks and semantic classes for either a stuff class or
a potential object, as illustrated in Fig. 1(d).

However, directly applying standard query-based methods to
LPS overlooks the significant distinctions between things and
stuff in outdoor scenes, particularly in large-scale aerial point
clouds under remote sensing scenarios, as shown in Fig. 1(a)
and (b).

1) Disparate spatial distributions: Stuff, i.e., background
elements, are typically distributed throughout the scene
(e.g., roads and vegetation) and constitute a larger
proportion of the point cloud. In contrast, foreground
objects are significantly smaller and concentrated in
specific local regions.

2) Different geometric features: Various stuff classes
exhibit distinct geometric attributes (e.g., flat road
surfaces versus uneven vegetation points), which can
serve as valuable distinguishing features for seman-
tic segmentation. In contrast, instances of the same
category share similar geometric properties and lack
distinctive textures or colors, complicating instance
segmentation.

Due to the distinctions between things and stuff in point
clouds, vanilla query-based methods face significant
challenges in large-scale outdoor scenes.
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Fig. 1. (a) and (b) Distinction between things and stuff in vehicular and aerial LiDAR scenes: instances with similar geometries are typically concentrated
in local regions, whereas distributed stuff exhibits distinct geometries. (c) Existing semantic/instance separation paradigm. (d) Existing learnable query-based
methods ignore these distinctions. (e) We propose a decoupled-query workflow to mitigate competition between classification and segmentation.

1) Mutual competition between things and stuff using
unified queries: Standard query-based methods utilize
unified queries to segment both things and stuff simulta-
neously. This approach often prioritizes larger areas (i.e.,
stuff) for high recall, making it challenging to segment
multiple small instances.

2) Unbalanced proportion for mask supervision: Stuff
classes typically constitute a large proportion of the point
cloud, while things consist of a limited number of points.
This extreme imbalance between positive and negative
samples creates challenges for binary mask supervision
in query-based methods.

3) Ambiguity between classification and segmentation:
Vanilla query-based methods employ learnable queries
to simultaneously predict semantic classes and binary
masks, leading to ambiguity among instances. Classi-
fication supervision causes query features to become
more similar among different objects within the same
category, complicating the distinction between distinct
instances.

Based on these observations, we propose decoupling queries
(DQs) into things and stuff queries according to their
individual properties. As illustrated in Fig. 1(e), we design a
query generator that produces two types of queries and their
corresponding semantics by localizing and classifying objects
in bird’s eye view (BEV). Our key insights are: 1) localizing
foreground objects in BEV allows for efficiently generating
distinct queries for each instance; 2) aggregating background
features in BEV maintain a large receptive field while
incurring minimal computational overhead; and 3) classifying
objects in BEV provides semantic labels for queries that can
be used solely for segmentation decoding.

Specifically, we propose a novel framework termed
DQFormer, which adopts a decoupled-query paradigm for uni-
fied LPS. DQFormer consists of a multiscale feature encoder,
a decoupled query generator, and a query-oriented mask
decoder. The feature encoder extracts voxel-wise features and
point-wise embeddings, while multiresolution BEV features
are generated through the voxel-to-BEV (V2B) operation.
The query generator localizes and classifies objects in BEV,
extracting multilevel BEV features from their corresponding
positions and integrating them into informative queries. Once
object-featured queries are obtained, a query-oriented mask

decoder predicts the segmentation masks using a masked
cross-attention mechanism guided by the queries. These masks
are combined with the semantic classes associated with the
queries to generate panoptic results.

We evaluate our method on large-scale outdoor
scenes, including vehicular datasets nuScenes [13] and
SemanticKITTI [14], as well as the aerial dataset DALES [15],
which shows that DQFormer outperforms previous superior
methods by +1.8%, +0.9%, and +3.5% in panoptic quality
(PQ), respectively, demonstrating the effectiveness of our
method for autonomous driving and remote sensing. Our
main contributions are as follows.

1) We propose a framework called DQFormer that intro-
duces a novel decoupled-query paradigm to reduce
mutual competition for unified LPS.

2) We design a multiscale query generator that generates
semantic-aware queries by localizing thing/stuff posi-
tions and fusing multilevel BEV embeddings.

3) We propose a query-oriented mask decoder that uses
informative queries to guide the segmentation process
via a masked cross-attention mechanism.

II. RELATED WORK

A. LiDAR Panoptic Segmentation

Most existing LPS methods can be classified into four
types of frameworks: detection-based, clustering-based, center-
based, and query-based. The first three are semantic/instance
separation paradigms, while the last represents a unified
paradigm.

1) Detection-Based Methods: [16], [17], and [18] directly
assign a unique ID to the points classified as the foreground
thing classes within a 3-D bounding box to generate instance
masks, whereas other methods [2], [19] propose using the
point-box index and bounding box feature to refine the seg-
mentation result further. While these methods predict instance
positions and sizes, the semantic branch remains essential for
point extraction.

2) Clustering-Based Methods: [1], [3], [4], [10], [20], [21],
[22], [23], [24], [25], [26], [27], [28], and [29] use heuristic
clustering algorithms to assign instance IDs. These methods
mainly focus on enhancing clustering by improving the
accuracy of center regression or clustering embeddings.
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However, they typically treat semantic and instance
segmentation separately, while our DQFormer provides a
unified approach for predicting both object and stuff classes.

3) Center-Based Method: [5] utilizes object centers as
queries to segment instances, eliminating detection or clus-
tering processes. However, semantic segmentation remains
indispensable for retrieving object centers in this method,
while DQFormer directly proposes things queries from the
BEV space.

4) Query-Based Methods: [11], [12], and [30] use learn-
able queries for unified LPS, predicting nonoverlapping binary
masks and semantic classes for both stuff and potential objects.
MaskRange [30] and MaskPLS [11] focus on range-based
and point-based segmentation, while PUPS [12] employs
point-level classifiers for semantic masks and instance groups.
P3Former [31] introduces a mixed-parameterized positional
embedding for iterative mask prediction and query updates.
However, these methods overlook the distinction between
things and stuff in 3-D scenes, leading to mutual competition.
In contrast, our DQFormer decouples things and stuff queries
based on their characteristics, allowing separate decoding to
alleviate competition.

B. Query-Based 2-D/3-D Segmentation

Following the success of DETR [32], [33] in 2-D detection,
query-based segmentation methods [34], [35], [36] have
emerged to enhance segmentation accuracy and efficiency,
such as Panoptic-FCN [6], K-Net [9], MaskFormer [7],
Mask2Former [8], and Panoptic SegFormer [10]. These
methods use queries to guide segmentation and incorporate
techniques like kernel updates and masked attention.

Based on these 2-D advancements, some methods adapt the
query-based paradigm for 3-D segmentation [37], [38], [39],
[40]. DyCo3D [41], [42] and DKNet [43] use 1-D kernels for
3-D instance mask decoding, while CenterLPS [5] proposes
instance queries based on object centers. Mask4D [44] and
Mask4Former [45] extend 3-D panoptic segmentation to 4-D
by reusing queries from previous scans. Our DQFormer pre-
serves the intrinsic properties of point clouds within a unified
query-based framework.

C. Large-Scale Scene Segmentation and Remote Sensing

Large-scale scene segmentation is challenging due to the
complexity and diversity of real-world 3-D scenes and their
fundamental role in remote sensing. 3-D scene segmentation
tasks mainly consist of semantic segmentation, instance
segmentation, and panoptic segmentation. The semantic
segmentation methods [46], [47], [48] primarily utilize
airborne LiDAR point clouds to predict point-wise labels for
both foregrounds (e.g., car and building) and background items
(e.g., road and vegetation), but do not distinguish between
various instances. Some methods [49] explore multimodal
semantic segmentation using point clouds and images. Instance
segmentation methods [50] solely provide object-centric seg-
mentation results, such as distinguishing individual buildings.
In this work, we focus on the LPS task, which not only predicts
point-wise semantic labels for both things and stuff, but also

distinguishes different foreground objects, providing a more
comprehensive understanding of scenes for remote sensing.

III. METHOD

A. Overview

As illustrated in Fig. 2, DQFormer consists of three key
modules: a multiscale feature encoder, a decoupled query
generator, and a query-oriented mask decoder. Specifically,

1) The feature encoder (Section III-B) extracts voxel-wise
features and point-wise embeddings at multiple
resolutions.

2) The query generator (Section III-C) is designed to
produce informative thing/stuff queries that are assigned
semantics based on their positions and embeddings in
BEV space.

3) The mask decoder (Section III-D) decodes segmentation
masks by performing masked cross-attention between
queries and point embeddings. Finally, the decoded
masks are combined with the semantics of queries to
produce the panoptic results.

In this section, we elaborate on the above components as well
as the training scheme.

B. Multiscale Feature Encoder

We introduce a sparse backbone to encode input point
clouds, extracting multiscale voxel-wise and point-wise
features.

Specifically, given an input point cloud P ∈ RNp×4 (coor-
dinates and intensity), we perform 3-D grid voxelization
to obtain the voxel-point indices. Then, voxel features are
extracted by feeding point representations f p (which com-
bine coordinates, intensity, and offsets to the voxel center)
within the same voxel into MLPs and applying max-pooling.
Consequently, we obtain sparse voxel features Fv

∈ RNv×32

with a dense spatial resolution of H × W × D, where Nv

is the number of sparse voxels, H , W , and D represent the
length, width, and height of the voxelized space, respectively.

Furthermore, we use a UNet-like architecture to extract
multiresolution voxel features. Each resolution leveli includes
an encoder to aggregate long-range information using radial
window self-attention [51], a down-sampling module for
sub-voxel features extraction, and a decoder to up-sample
and integrate voxel features at resolution leveli . In practice,
we implement a four-layer feature extractor to encode
multiscale voxel features (Fv

1 , Fv
2 , Fv

3 , Fv
4 ). These voxel

features are interpolated to the original point cloud using
a k-nearest-neighbor weighted summation, denoted as
voxel-to-point (V2P) operation. This operation produces
multiscale point-wise embeddings (F p

1 , F p
2 , F p

3 , F p
4 ) that

capture multiscale contextual and geometric information.

C. Decoupled Query Generator

Due to the sparsity of point clouds, generating informative
queries for decoding corresponding segmentation masks
is crucial. In this work, we generate query proposals that
encapsulate the features of instances/stuff based on their
positions and embeddings in the BEV space.
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Fig. 2. Overview of DQFormer. (a) Feature encoder is applied to extract voxel features and point embeddings at multiresolutions. (b) Query generator is
designed to produce informative things/stuff queries assigned with semantics according to their positions and embeddings in BEV space. (c) Mask decoder
performs masked cross-attention between queries and multilevel point embeddings to decode segmentation masks. Finally, the decoded masks are combined
with the semantics of the queries to produce the panoptic result. Details of the decoder block are illustrated in Fig. 4.

Decoupled Query Proposal: We propose a query proposal
network that generates things/stuff queries from BEV embed-
dings of different resolutions to explicitly localize instances
while enlarging the receptive field for background elements.

1) BEV Embedding Extraction: We project voxel features
along the z-axis to generate BEV features through the V2B
operation. For a voxel feature Fv

i at leveli with spatial resolu-
tion Hi × Wi × Di , we concatenate the height dimension Di

with the feature dimension Ci and use stacks of 2-D CNNs
with channel-wise and spatial attention to encode the BEV
embedding Fbev

i ∈ RCe×Hi ×Wi , where Ce represents the feature
dimension in the embedding space. This BEV embedding
serves as the shared feature map for locating and classifying
objects.

2) BEV Heatmap Prediction: Following [6], we use object
centers to indicate the positions of potential instances and
stuff regions for background elements. As illustrated in Fig. 3,
we introduce an object center head, consisting of 2-D convo-
lutions, to predict the object center heatmap M th

i ∈ RNth×Hi ×Wi

at leveli , where Nth is the number of foreground object
categories. Each channel represents potential centers for one
class, and different channels denote different semantic classes.
Additionally, a stuff region head that uses shallow 2-D trans-
former decoder layers [10] predicts the stuff region map M st

i ∈

RNst×Hi ×Wi , with Nst denoting the number of stuff categories.
Each channel represents the regions of a stuff class from the
BEV perspective. The M th and M st serve as heatmaps for
localizing and classifying foreground objects and background
elements, providing priors of locations and semantic categories
for query generation.

Fig. 3. Details of query proposal generation. Things queries are extracted
from the BEV embedding at the corresponding positions. Stuff queries
are generated using the learnable-query approach within the BEV space.
(a) Things query generation. (b) Stuff query generation.

3) Query Proposals Generation: Next, we generate infor-
mative things/stuff queries based on heatmaps M th

i and M st
i ,

along with the BEV embedding Fbev
i .

For things queries, we apply the argmax function along the
Nth dimension of M th to obtain the semantic category and
corresponding confidence score for each position on the BEV,
as illustrated in Fig. 3(a). A position with a high score indicates
a potential instance location; therefore, we extract embeddings
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from Fbev
i at the positions with top-Nq scores to represent the

query weights and assign the corresponding semantic classes
to represent the query categories. For example, assuming a
candidate position (xc, yc) in the cth channel of M th

i , the
embedding Fbev

i [:, xc, yc] ∈ RCe×1×1 serves as the query
weight for this instance, with the semantic class assigned as c.
This results in things query proposals at leveli , denoted as
Qth

i ∈ RNq×Ce with predicted semantic categories O th
i , where

Nq is the number of query proposals.
For stuff queries, since stuff points are widely distributed,

it is crucial to incorporate global context. As depicted in
Fig. 3(b), we initialize class-fixed learnable queries Qlearn

∈

RNst×Ce , where Nst is the number of stuff categories. These
queries perform cross-attention with BEV features to predict
stuff region maps M st

∈ RNst×H×W , where each channel rep-
resents the regions of a stuff class from the BEV perspective.
This establishes correspondences between each stuff query and
BEV positions, which are used to extract and fuse the relative
BEV embeddings to update the query weight. This process is
formulated as follows:

Ast
=

φq(Qlearn) · φk
(

Fbev
i

)
√

Ce
(1)

M st
i = φmap(Ast), Qst

i = φquery
[
σ(Ast) · φv

(
Fbev

i

)]
. (2)

Here, φ∗ represents linear layers, σ denotes the softmax
function, and Ast

∈ RNst×Hi Wi are the attention maps. The
stuff query proposals at leveli are denoted as Qst

i ∈ RNst×Ce ,
associated with their semantic categories Ost

i . This formulation
effectively enables stuff queries to capture more scene infor-
mation while maintaining limited computational overhead in
BEV.

Decoupled Query Fusion: With the queries generated from
various BEV resolutions, we further design a query fusion
module to merge multiscale query proposals effectively.

1) Things query proposals fusion: We merge object queries
at similar positions from multiscale BEV embeddings to
enhance individual instance representations. To maintain
intra-semantic consistency, we only fuse queries that
share the same semantics. Specifically, we employ aver-
age pooling to fuse queries whose positions are within
the same small window in the BEV and whose cosine
similarities between their embeddings exceed a given
threshold θth. This approach ensures that the window
constrains the geometric-consistency while cosine sim-
ilarity maintains instance-awareness in the embedding
space. This results in fusing the multiscale query pro-
posals into an integral set of things queries Qth

∈ RNt ×Ce

with predicted semantic categories O th
∈ RNt , where

Nt represents the predicted number of objects.
2) Stuff query proposals fusion: We merge queries with the

same semantics to integrate multiscale global context
for each stuff class. We first identify the presence of
each stuff class based on the stuff region maps, where
response scores on M st of a class exceeding a threshold
θst indicate the existence of corresponding background
elements. We then fuse existing stuff queries with the
same semantic categories using average summation,
enhancing each query with global receptive fields while

Fig. 4. Detailed pipeline of the decoder block consisting of masked
cross-attention, self-attention, and an FFN.

maintaining semantic consistency. This yields the set of
stuff queries Qst

∈ RNs×Ce and their semantic categories
Ost

∈ RNs , where Ns represents the number of existing
stuff classes.

D. Query-Oriented Mask Decoder

Given decoupled queries for objects and backgrounds
that encapsulate informative features, we introduce a query-
oriented mask decoder to predict segmentation masks through
multilevel masked cross-attention.

As depicted in Fig. 4, our mask decoder comprises multiple
blocks, each consisting of masked cross-attention at a spe-
cific resolution, followed by self-attention and a feed-forward
network (FFN). Specifically, in the decoder block at leveli ,
we perform masked cross-attention between the concatenated
queries Q ∈ R(Nt +Ns )×Ce and point embeddings F p

i ∈ RNp×Ce .
The mask map Mi ∈ R(Nt +Ns )×Np , indicating the noteworthy
key points, is generated from the previous block. A self-
attention layer is utilized to establish context between queries,
and the FFN is employed to enhance the query representations.
Finally, the segmentation mask is generated via the dot product
between the output queries and point-wise mask embeddings
E ∈ RNp×Ce , along with the sigmoid activation function. The
mask decoding process is expressed as follows:

Q′
= σ

[
φq(Q) · φk

(
F p

i

)T

√
Ce

⊙ Mi−1

]
· φv

(
F p

i

)
+ Q (3)

Q′′
= FFN

[
σ

(
ϕq(Q′) · ϕk(Q′)T

√
Ce

)
· ϕv(Q′) + Q′

]
(4)

Mi = Sigmoid(Q′′
· ET ) (5)

where φ∗ and ϕ∗ represent linear layers, ⊙ denotes the
Hadamard product, and σ represents the softmax function. For
simplicity, we omit LayerNorm in the formula. It is worth not-
ing that the mask embedding E is composed of the summation
of full-resolution point features F p

4 and point-wise positional
encoding [52] Pe ∈ RNp×Ce , defined as E = F p

4 + Pe.
Deep supervision is applied to the multilevel mask pre-

dictions {M1, M2, . . . , ML} during training. In the inference
phase, we utilize the masks from the last decoder block and
apply the mask fusion module [5] to integrate duplicate masks.
These binary masks are combined with the query semantics
{O th, Ost

} to generate the panoptic results.
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E. Loss Function

In training, we supervise the object center and stuff region
heatmaps for the localization and classification of objects and
background regions

Lhm =

∑
i

FL
(

M th
i , Y th

i

)/
Nq +

∑
i

FL
(

M st
i , Y st

i

)/
Hi Wi

(6)

where FL(·, ·) denotes the focal loss [53], Y th
i and Y st

i represent
the ground truth for M th

i and M st
i , respectively. Following [6]

and [54], we assign the center of an instance with semantic
category c to the cth channel of Y th

i using a Gaussian kernel.
Y st

i is generated by interpolating the one-hot semantic label in
the BEV space to the corresponding sizes.

Meanwhile, we also supervise the mask predictions for
segmentation using binary cross-entropy and dice loss

Lmask =

∑
i

BCE(Mi , Y ) +

∑
i

Dice(Mi , Y ) (7)

where Y represents the ground truth masks matched with
predictions. Specifically, instance masks are matched with
ground truth through the BEV positions, while stuff masks
are matched in a one-to-one manner.

To enhance the point-wise embeddings, we also add an
auxiliary MLP head to F p

4 and employ a semantic loss Lsem
to guide the class distribution of points. Overall, DQFormer
can be trained end-to-end with the above loss

L = λhm · Lhm + λmask · Lmask + λsem · Lsem (8)

where λhm, λmask, and λsem are factors to balance various loss
items, and they are set to 1, 5, and 2, respectively.

IV. EXPERIMENTS

We first present the datasets, including vehicular and
aerial LiDAR datasets, along with the evaluation metrics
(Section IV-A). Next, we provide implementation details
(Section IV-B), followed by our main results and anal-
ysis (Section IV-C), qualitative results and discussions
(Section IV-D), ablation studies (Section IV-E), and detailed
benchmark results (Section IV-F).

A. Datasets and Metrics

nuScenes [13] dataset is a comprehensive urban driving
dataset comprising 1000 LiDAR scenes, each spanning a
duration of 20 s, captured using a 32-beam LiDAR sen-
sor. It includes 850 scenes for training and validation, with
150 scenes for testing. The LPS task features 16 annotated
point-wise labels, comprising ten thing categories and six stuff
categories.

SemanticKITTI [14] is derived from the KITTI [75]
odometry dataset, featuring 22 LiDAR sequences captured
with a Velodyne HDL-64 laser scanner. It allocates ten
sequences for training, one for validation, and 11 for testing.
The dataset includes 19 annotated point-wise labels for LPS,
comprising eight thing classes and 11 stuff classes.

DALES [15] is a large-scale aerial LiDAR dataset with over
500 million points spanning an area of 10 km2. DALES is

one of the newest large-scale aerial laser scanner (ALS)
benchmarks, significantly larger than traditional ALS bench-
marks, such as ISPRS [76]. The dataset consists of 40 tiles,
each covering about 0.5 km2, which are randomly split into
29 training tiles and 11 testing tiles. The thing classes are
buildings, cars, trucks, power lines, fences, and poles, while
ground and vegetation are classified as stuff classes.

Metrics: The metrics [77] for LiDAR-based panoptic
segmentation include PQ, segmentation quality (SQ), and
recognition quality (RQ), which are formulated as

PQ =

∑
TP IoU
|TP|︸ ︷︷ ︸

SQ

×
|TP|

|TP| +
1
2 |TN| +

1
2 |FP|︸ ︷︷ ︸

RQ

. (9)

These metrics are also calculated separately for thing and stuff
classes indicated by PQTh, SQTh, RQTh and PQSt, SQSt, RQSt.
In addition, we also report PQ†, as defined in [78], which
utilizes SQ as PQ for stuff classes.

B. Implementation Details

For the voxelization process, we discretize the 3-D
space within [[±51.2], [±51.2], [−4, 2.4 m]] into voxels
with a resolution of [0.05, 0.05, 0.05 m]. Multiscale voxel
features Fv

i are obtained at resolutions corresponding to
{(1/8), (1/4), (1/2), 1} of the original dense resolutions.
We set the number of instance queries per scan (Nq ) to
150. The thresholds θth = 0.85 and θst = 0.5 are used
to discriminate cosine similarities for things queries and to
indicate the existence of stuff regions, respectively. The mask
decoder consists of Nl = 3 decoder blocks, each employing
point embeddings interpolated from voxel features with res-
olutions of {(1/8), (1/4), (1/2)}. The models are trained for
80 epochs using the AdamW optimizer [79] on 8 NVIDIA
RTX A6000 GPUs, with an initial learning rate of 1e−4,
decayed by a factor of 10 at epoch 60.

C. Comparison With the State of the Art

Results on nuScenes: Tables I and II present the compari-
son results between our DQFormer and other state-of-the-art
methods on the nuScenes [13] test and validation sets.

1) Compared With Detection-Based Methods: DQFormer
shows significant improvements over single-architecture meth-
ods, outperforming EfficientLPS [2] and AOPNet [17] by
+17.2% and +7.4% in PQTh. This underscores the effec-
tiveness of our query generator in localizing and classifying
instances without the need for bounding box predictions.
Compared to two-architecture methods (semantic segmenta-
tion models + 3-D detection method), DQFormer exceeds
them in SQTh by +2.2% and 0.8%. We assert that our
query-oriented mask decoder leverages informative queries to
establish affinities with all points, resulting in more precise
segmentation masks than those derived solely from bounding
box predictions.

2) Compared With Clustering-Based Methods: These
methods [1], [3], [4], [20], [22] typically utilize separate
semantic and instance branches. In contrast, DQFormer
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TABLE I
COMPARISON OF LPS PERFORMANCE ON THE TEST SET OF nuScenes. ALL RESULTS IN [%]

TABLE II
COMPARISON OF LPS PERFORMANCE ON THE VALIDATION SET OF nuScenes. ALL RESULTS IN [%]

achieves superior results through a unified query-based seg-
mentation approach, demonstrating a substantial gain of 3.8%
in PQTh. We note that these methods often rely on heuristic
clustering algorithms to group instance points, which can
lead to incomplete masks, particularly for large objects with
scattered points. In contrast, DQFormer establishes affinities
between queries and point features in the embedding space,
remaining unaffected by the geometric locations of points.

3) Compared With Query-Based Methods: Compared to
P3Former, which uses a mixed-parameterized positional
embedding to distinguish various instances, DQFormer
improves performance for both things and stuff, achieving
gains of +1.0% on PQTh and +2.1% on PQSt. This demon-
strates that the query generator effectively extracts practical
queries for both things and stuff through two decoupled
branches, validating the effectiveness of our query decoupling
strategy.

Results on SemanticKITTI: We validate our method’s
effectiveness and generalization on the SemanticKITTI [14]
test and validation sets, as shown in Tables III and IV.

DQFormer outperforms all detection-based and clustering-
based methods, achieving 5.7% higher PQ than Effi-
cientLPS [2] and 1.6% higher than Panoptic-PHNet [4]. It also
surpasses the recent center-based method CenterLPS [5],
which uses object queries for instance segmentation, by 1.5%
in PQ. We explain that while the center-based method shares a
similar approach with DQFormer by predicting object queries

TABLE III
COMPARISON OF LPS PERFORMANCE ON THE TEST SET

OF SemanticKITTI [14]. ALL RESULTS IN [%]

based on BEV position to generate masks, DQFormer further
integrates this method for stuff classes and provides more
global receptive fields for stuff queries, resulting in more
complete masks.

Compared to query-based methods, DQFormer demon-
strates notable improvements in PQ over MaskPLS and PUPS,
with gains of 4.9% and 0.9% on the test split, respectively.
Although it slightly lags behind PUPS in RQ due to PUPS’s
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TABLE IV
COMPARISON OF LPS PERFORMANCE ON THE VALIDATION SET OF
SemanticKITTI [14]. BOLD AND UNDERLINED INDICATE THE BEST

AND SECOND-BEST PERFORMANCES. ALL RESULTS IN [%]

TABLE V
COMPARISON OF LIDAR SEGMENTATION PERFORMANCE ON THE TEST

SET OF DALES [15]. mIoUth , MIOUst , AND MIOUall REPRESENT
mIoU VALUES FOR THINGS, STUFF, AND ALL CATEGORIES,

RESPECTIVELY. ALL RESULTS IN [%]

use of a CutMix strategy for data augmentation, DQFormer
still enhances SQ by 0.8% and 0.2% on the test and validation
sets. This underscores DQFormer’s effectiveness in decoupling
things and stuff queries to reduce competition between clas-
sification and segmentation, a factor overlooked by previous
query-based methods, thereby promoting SQ.

Results on DALES: In Table V, we compare the semantic
and panoptic segmentation performances of various methods
on the DALES test set [15]. For semantic segmentation,
we report the mIoU metric for things (mIoUth), stuff (mIoUst),
and all categories (mIoUall). Our DQFormer achieves a com-
parable performance of a mIoUall of 82.2% compared to
MCTNet [74], which specifically focuses on the semantic
segmentation task.

In panoptic segmentation, DQFormer outperforms the pre-
vious SoTA method, SuperCluster [71], achieving a notable
improvement with a 3.5% boost in PQ and a 3.4% increase
in SQ. This improvement is attributed to the localize-then-
segmentation paradigm of DQFormer, which first localizes
objects on the BEV and then predicts segmentation masks,
resulting in more complete and cohesive results. In con-
trast, SuperCluster relies on clustering algorithms to group

Fig. 5. Qualitative comparisons of panoptic segmentation between DQFormer
with DSNet [1] and Panoptic-PolarNet [3], on SemanticKITTI test split.

Fig. 6. Qualitative comparisons of mask predictions across different decoder
blocks on the SemanticKITTI test split.

instance points, which are widely scattered and can lead to the
problem of over-segmentation in large-scale outdoor scenes.

D. Qualitative Results and Discussion

This section presents visualization results, including quali-
tative results in vehicular and aerial scenes, mask predictions
across decoder blocks, object center predictions, and attention
maps for things and stuff queries.

1) Panoptic Segmentation in Vehicular Scenes: Fig. 5
provides qualitative comparisons of our DQFormer with
DSNet and Panoptic-PolarNet using the SemanticKITTI test
set. The first two rows highlight DQFormer’s superior ability
to segment small instances in local regions. In contrast, DSNet
and Panoptic-PolarNet struggle with under-segmentation,
particularly for adjacent instances with similar geometries.
This demonstrates the effectiveness of our query generator in
distinguishing individual objects. In the third row, DQFormer
efficiently segments large objects like buses and trucks, while
the other methods face over-segmentation issues with sparse
instances. The last row illustrates DQFormer’s accuracy in
identifying rare objects, such as trolleys, and its proficiency
in distinguishing widely distributed stuff points based on their
attributes.

2) Comparisons Across Decoder Blocks: Fig. 6 visualizes
mask predictions from different decoder blocks. Shallow
blocks struggle with the under-segmentation of adjacent small
objects and produce fragmented masks for large targets.
In contrast, deeper blocks generate more precise masks for
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Fig. 7. Qualitative results in aerial LiDAR point cloud, including semantic
segmentation and panoptic segmentation on the DALES test split.

Fig. 8. Visualization of object centers extracted from the BEV heatmap,
after the query fusion module, alongside the corresponding ground truth.

both objects and background elements, demonstrating the
effectiveness of the masked cross-attention mechanism, which
helps queries focus on key points for improved segmentation
accuracy.

3) Panoptic Segmentation in Aerial Scenes: Fig. 7 presents
qualitative results from the DALES [15] test set, a large-scale
aerial scan dataset collected by an airborne LiDAR system.
This demonstrates that our method predicts accurate seman-
tic and panoptic results, underscoring the generalizability of
DQFormer in large-scale outdoor scenes. Notably, our method
distinguishes adjacent instances with similar geometries, such
as cars and buildings, demonstrating the effectiveness of
DQFormer in aerial remote sensing.

4) Visualization of the Object Centers: Fig. 8 shows pre-
dicted object centers from the query fusion module alongside
their ground truth, using distinct colors for different categories.
Comparing the first two columns reveals the efficiency of our
query fusion module in merging duplicated queries, resulting
in compact queries that align closely with the ground truth.

The first two rows demonstrate our query generator’s ability
to localize adjacent small instances and effectively fuse their
queries through geometric consistency and feature similarity
constraints. The third and fourth rows highlight the generator’s
capability to distinguish adjacent instances with similar geo-
metric attributes. In the last row, a failure case is noted where

Fig. 9. Visualization of attention maps between queries and points cloud.

TABLE VI
ABLATION ON THE NETWORK COMPONENTS ON SemanticKITTI

VALIDATION SET. ALL SCORES ARE IN [%]

all queries for a truck are not fused into a single embedding,
emphasizing the critical role of the mask fusion process.

5) Visualization of Attention Maps: In Fig. 9, we explore
the relationship between queries and the point cloud, with
red indicating high correlations and blue indicating low cor-
relations. The visualization shows that things queries align
with locally concentrated points, while stuff queries focus
on points distributed throughout the scene. This highlights
the effectiveness of query embeddings in capturing relevant
features, facilitating precise segmentation mask generation
through the masked-attention mechanism.

E. Ablation Study

1) Effects of Network Components: Table VI presents the
ablation results of our proposed components.

1) Baselines: We establish a clustering-based baseline
(line 1) that integrates the dynamic shift module [1], and
two query-based baselines (lines 2 and 3) that utilize a
vanilla mask decoder. Results indicate that query-based
methods outperform the clustering method (line 1 versus
line 2), and incorporating masking embedding further
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Fig. 10. Ablation on the number of decoder blocks and things queries on the SemanticKITTI validation set, along with the latency of mask decoding.
(a) Ablation on the number of decoder blocks. (b) Ablation on the output of different decoder blocks. (c) Ablation on the number of things queries.

TABLE VII
ABLATION ON THE DECOUPLING STRATEGY ON SemanticKITTI
VALIDATION SET, WITH DQ, HM, AND DC CLS.&SEG. WE DO

NOT USE THE MASK FUSION FOR A FAIR COMPARISON.
ALL SCORES ARE IN [%]

TABLE VIII
PER-CLASS PQ RESULTS OF SMALL INSTANCES ON THE SemanticKITTI

VALIDATION SET. ALL SCORES ARE IN [%]

TABLE IX
ABLATION ON QUERY FUSION USING POSITIONAL INFORMATION AND

COSINE SIMILARITY ON THE SemanticKITTI VALIDATION SET

TABLE X
ABLATION ON THE SIMILARITY THRESHOLDS θth FOR THINGS QUERIES

FUSION ON THE SemanticKITTI VALIDATION SET.
SEMANTIC-AWARE DENOTES ONLY FUSING

QUERIES WITH THE SAME SEMANTICS.
ALL SCORES ARE IN [%]

enhances performance (line 2 versus line 3) by integrat-
ing positional information.

2) Effects of the Query Generator: Lines 4 and 5 introduce
the query generator for stuff and things, both achieving

TABLE XI
ABLATION ON QUERY FUSION AND MASK FUSION MODULES ON THE

SemanticKITTI VALIDATION SET. ALL SCORES ARE IN [%]

TABLE XII
ABLATION ON THE NUMBER OF SAMPLE POINTS IN MASK LOSS ON THE

nuScenes VALIDATION SET. ALL SCORES ARE IN [%]

TABLE XIII
ABLATION ON THE MASK LOSS FUNCTIONS ON THE nuScenes

VALIDATION SET. BCE DENOTES THE BINARY CROSS-ENTROPY
LOSS. ALL SCORES ARE IN [%]

PQ gains. Specifically, the query generator for stuff
enhances PQSt by 0.3% (line 3 versus line 4), while the
generator for things boosts PQTh by 2.7% (line 3 versus.
line 5), demonstrating its effectiveness in generating
practical query proposals. Additionally, including the
query fusion module (line 6) improves PQ, highlighting
the advantages of multiscale query fusion.

3) Effects of the Mask Decoder: Line 7 replaces the query-
oriented mask decoder with a single-layer transformer
decoder, leading to a 5% decrease in SQ compared to
line 6. This underscores the importance of the multilevel
masked cross-attention mechanism.

4) Effects of the Mask Fusion: Line 8 employs the mask
fusion module, yielding a 1.0% improvement in PQTh
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TABLE XIV
ABLATION ON MODEL SETTINGS AND EFFICIENCY BETWEEN DQFormer AND EXISTING METHODS. HERE, NL REPRESENTS THE NUMBER OF

DECODER BLOCKS, Nq DENOTES THE INSTANCE QUERY NUMBER, AND Ce INDICATES THE FEATURE DIMENSION. ALL EXPERIMENTS
ARE CONDUCTED ON THE nuScenes VALIDATION SPLIT. † INDICATES THAT WE MEASURE THE LATENCY ON OUR

HARDWARE USING THE OFFICIALLY RELEASED CODES

over line 6 by merging duplicated instance masks, which
enhances SQ.

2) Effects of Decoupling Strategy: Table VII validates
the effectiveness of our decoupling strategy, which includes
decoupling things and stuff queries, as well as disentangling
classification and segmentation.

1) Effects of DQs: The baseline employs coupled queries
with Hungarian matching (HM), achieving a PQ of
61.3%. Variant 1, using independent learnable queries,
shows only marginal improvements due to limited initial
query information, making it less effective in outdoor
scenarios. In Variant 4, decoupled queries based on BEV
positions and embeddings achieve significant gains of
1.8% in PQ and 4.1% in PQTh. This improvement results
from better alignment of queries with their properties,
enabling the model to focus on specific areas and extract
relevant features.

2) Effects of decoupling classification/segmentation (DC
Cls.&Seg.): Variants 2 and 3 assign semantic classes to
queries based on BEV prediction, resulting in increases
of 0.3% and 1.0% in PQ over Variant 1. This approach
reduces similarities between different objects of the
same class, enhancing instance distinction.

3) Effects on Segmenting Small Instances: Table VIII com-
pares the PQ of small instances between DQFormer and the
baseline model, showing significant improvements. This con-
firms that our decoupling strategy effectively reduces mutual
competition between objects and large background elements,
enhancing the segmentation of smaller instances.

4) Effects of the Decoder Blocks and Things Queries:
Fig. 10 compares mask decoder block settings and object
queries, highlighting latency on an RTX A6000 GPU.
In Fig. 10(a), more decoder blocks enhance PQ and PQTh

due to the masked cross-attention mechanism and deep
supervision. Fig. 10(b) indicates that deeper blocks yield
better performance, showing gradual convergence to keypoints.
Fig. 10(c) assesses object queries Nq , with optimal perfor-
mance at Nq = 150; too few queries miss difficult objects,
while too many cause over-segmentation and higher costs.

5) Effects of Fusion Constraints: Table IX examines
the impact of query fusion constraints based on posi-
tional information and cosine similarities. Both constraints
enhance performance, with their combination achieving opti-
mal results. The positional constraint fuses geometrically

Fig. 11. Comparison of query fusion with and without cosine similarity. The
red balls represent person queries, while the blue balls indicate car queries.
(a) w/o cosine similarity. (b) w/ cosine similarity.

close queries, while the cosine similarity constraint integrates
characteristically similar ones. This combination ensures both
geometric-consistency and instance-awareness. Fig. 11 shows
that the cosine similarity constraint effectively differentiates
adjacent individuals by highlighting gaps in their feature
similarity.

6) Effects of Query Fusion and Mask Fusion: Table X
shows that the optimal similarity threshold for fusing things
queries is θth = 0.85 with semantic-aware fusion, while
semantic-agnostic fusion results in a 6.8% decrease in SQTh

due to the risk of merging instances of different semantics.
Additionally, Table XI compares our query fusion module
with the mask fusion module from [5]. These modules
integrate queries and merge duplicated instance masks, respec-
tively, with results indicating that combining both techniques
achieves optimal performance.

7) Effects of Mask Loss: Instances are usually concentrated
in local regions, resulting in an imbalance between positive
and negative samples for mask supervision. To mitigate this,
we randomly sample Sth points from objects and Sall points
from the scene for mask loss calculation to ensure balanced
supervision. Ablation studies in Table XII demonstrate that
this sub-sampling strategy significantly enhances SQ (SQTh)
and PQ (PQTh). Additionally, Table XIII shows that combining
binary cross-entropy and dice loss yields the best performance
for mask supervision.

8) Effects of Model Settings and Efficiency: Table XIV eval-
uates the performance and efficiency of our DQFormer against
three types of methods: detection-based, clustering-based, and
query-based methods, all tested on an NVIDIA RTX A6000
GPU using the nuScenes validation set. The results show
that DQFormer significantly outperforms previous methods
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TABLE XV
DETAILED PER-CLASS RESULTS ON THE SemanticKITTI VALIDATION SET, WHICH INCLUDE BOTH SEMANTIC SEGMENTATION

AND PANOPTIC SEGMENTATION. BLUE NUMBERS INDICATE THE BEST RESULTS, WHILE BOLD NUMBERS INDICATE THE
SECOND-BEST RESULTS. ALL RESULTS IN [%]

TABLE XVI
DETAILED PER-CLASS RESULTS ON THE nuScenes VALIDATION SET, WHICH INCLUDE BOTH SEMANTIC SEGMENTATION AND PANOPTIC

SEGMENTATION. BOLD NUMBERS INDICATE THE BEST RESULTS. ALL RESULTS IN [%]

while maintaining faster speeds than detection and clustering
approaches and comparable speeds to MaskPLS. This high-
lights the efficiency of our unified workflow, which avoids
time-consuming detection and clustering processes.

F. Detailed Benchmarks

The class-wise performance of our DQFormer on the
SemanticKITTI and nuScenes datasets is detailed in Tables XV
and XVI. The results indicate that DQFormer excels in the RQ
metric, showcasing its effectiveness in locating and recogniz-
ing objects in large-scale scenes. It also performs comparably
on the SQ metrics and sets a new state of the art in overall PQ.
These findings highlight the success of our decoupled-query
paradigm in distinguishing objects and achieving precise
segmentation, advancing scene understanding.

V. CONCLUSION

We propose a novel framework named DQFormer using
a decoupled query paradigm for unified LPS, aiming to
address the challenges posed by foreground objects and back-
ground elements in large-scale outdoor scenes. Specifically,

we introduce a multiscale query generator that generates
semantic-aware queries based on the positions and embeddings
of things and stuff in BEV space. Moreover, we design a query
fusion module to integrate queries from multiple BEV resolu-
tions. Finally, we propose a query-oriented mask decoder by
utilizing informative queries to guide the segmentation pro-
cess. Comprehensive experiments on both vehicular and aerial
point cloud datasets demonstrate that our DQFormer achieves
state-of-the-art performance. Extensive ablation studies and
visualization results further demonstrate the effectiveness of
our method.

REFERENCES

[1] F. Hong, H. Zhou, X. Zhu, H. Li, and Z. Liu, “LiDAR-based panoptic
segmentation via dynamic shifting network,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 13085–13094.

[2] K. Sirohi, R. Mohan, D. Büscher, W. Burgard, and A. Valada, “Effi-
cientLPS: Efficient LiDAR panoptic segmentation,” IEEE Trans. Robot.,
vol. 38, no. 3, pp. 1894–1914, Jun. 2022.

[3] Z. Zhou, Y. Zhang, and H. Foroosh, “Panoptic-PolarNet: Proposal-free
LiDAR point cloud panoptic segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 13189–13198.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 14,2025 at 03:39:25 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: DQFormer: TOWARD UNIFIED LPS WITH DECOUPLED QUERIES FOR LARGE-SCALE OUTDOOR SCENES 5702515

[4] J. Li, X. He, Y. Wen, Y. Gao, X. Cheng, and D. Zhang, “Panoptic-PHNet:
Towards real-time and high-precision LiDAR panoptic segmentation via
clustering pseudo heatmap,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 11799–11808.

[5] J. Mei et al., “CenterLPS: Segment instances by centers for LiDAR
panoptic segmentation,” in Proc. 31st ACM Int. Conf. Multimedia,
Oct. 2023, pp. 1884–1894.

[6] Y. Li et al., “Fully convolutional networks for panoptic segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2021,
pp. 214–223.

[7] B. Cheng, A. G. Schwing, and A. Kirillov, “Per-pixel classification is
not all you need for semantic segmentation,” in Proc. NIPS, Dec. 2021,
pp. 17864–17875.

[8] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2022, pp. 1290–1299.

[9] W. Zhang, J. Pang, K. Chen, and C. C. Loy, “K-Net: Towards unified
image segmentation,” in Proc. NIPS, 2021, pp. 10326–10338.

[10] Z. Li et al., “Panoptic SegFormer: Delving deeper into panoptic seg-
mentation with transformers,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2022, pp. 1280–1289.

[11] R. Marcuzzi, L. Nunes, L. Wiesmann, J. Behley, and C. Stachniss,
“Mask-based panoptic LiDAR segmentation for autonomous driving,”
IEEE Robot. Autom. Lett., vol. 8, no. 2, pp. 1141–1148, Feb. 2023.

[12] S. Su et al., “PUPS: Point cloud unified panoptic segmentation,” 2023,
arXiv:2302.06185.

[13] H. Caesar et al., “NuScenes: A multimodal dataset for autonomous
driving,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 11621–11631.

[14] J. Behley et al., “SemanticKITTI: A dataset for semantic scene under-
standing of LiDAR sequences,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 9297–9307.

[15] N. Varney, V. K. Asari, and Q. Graehling, “DALES: A large-scale
aerial LiDAR data set for semantic segmentation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020,
pp. 717–726.

[16] J. Valeria Hurtado, R. Mohan, W. Burgard, and A. Valada, “MOPT:
Multi-object panoptic tracking,” 2020, arXiv:2004.08189.

[17] Y. Xu, H. Fazlali, Y. Ren, and B. Liu, “AOP-net: All-in-one percep-
tion network for LiDAR-based joint 3D object detection and panoptic
segmentation,” in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2023,
pp. 1–7.

[18] A. Agarwalla et al., “LiDAR panoptic segmentation and tracking without
bells and whistles,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Oct. 2023, pp. 7667–7674.

[19] D. Ye et al., “LiDARMultiNet: Towards a unified multi-task network
for LiDAR perception,” 2022, arXiv:2209.09385.

[20] A. Milioto, J. Behley, C. McCool, and C. Stachniss, “LiDAR panoptic
segmentation for autonomous driving,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2020, pp. 8505–8512.

[21] E. Li, R. Razani, Y. Xu, and B. Liu, “SMAC-seg: LiDAR panoptic
segmentation via sparse multi-directional attention clustering,” in Proc.
Int. Conf. Robot. Autom. (ICRA), May 2022, pp. 9207–9213.

[22] S. Gasperini, M. N. Mahani, A. Marcos-Ramiro, N. Navab, and
F. Tombari, “Panoster: End-to-end panoptic segmentation of LiDAR
point clouds,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 3216–3223,
Apr. 2021.

[23] X. Li, G. Zhang, B. Wang, Y. Hu, and B. Yin, “Center focusing network
for real-time LiDAR panoptic segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 13425–13434.

[24] J. Mei, Y. Yang, M. Wang, X. Hou, L. Li, and Y. Liu, “PANet: LiDAR
panoptic segmentation with sparse instance proposal and aggregation,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2023,
pp. 7726–7733.

[25] L. Nunes et al., “Unsupervised class-agnostic instance segmentation of
3D LiDAR data for autonomous vehicles,” IEEE Robot. Autom. Lett.,
vol. 7, no. 4, pp. 8713–8720, Oct. 2022.

[26] Y. Zhao, X. Zhang, and X. Huang, “A divide-and-merge point cloud
clustering algorithm for LiDAR panoptic segmentation,” in Proc. Int.
Conf. Robot. Autom. (ICRA), May 2022, pp. 7029–7035.

[27] Z. Zhang, Z. Zhang, Q. Yu, R. Yi, Y. Xie, and L. Ma, “LiDAR-camera
panoptic segmentation via geometry-consistent and semantic-aware
alignment,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2023, pp. 3662–3671.

[28] G. Xian et al., “Location-guided LiDAR-based panoptic segmentation
for autonomous driving,” IEEE Trans. Intell. Vehicles, vol. 8, no. 2,
pp. 1473–1483, Feb. 2023.

[29] F. Hong, L. Kong, H. Zhou, X. Zhu, H. Li, and Z. Liu, “Unified 3D and
4D panoptic segmentation via dynamic shifting networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 46, no. 5, pp. 3480–3495, May 2024.

[30] Y. Gu, Y. Huang, C. Xu, and H. Kong, “MaskRange: A mask-
classification model for range-view based LiDAR segmentation,” 2022,
arXiv:2206.12073.

[31] Z. Xiao, W. Zhang, T. Wang, C. C. Loy, D. Lin, and J. Pang, “Position-
guided point cloud panoptic segmentation transformer,” Int. J. Comput.
Vis., vol. 133, no. 1, pp. 275–290, Jan. 2025.

[32] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in Proc.
Eur. Conf. Comput. Vis., Glasgow, U.K. Cham, Switzerland: Springer,
2020, pp. 213–229.

[33] Z. Zong, G. Song, and Y. Liu, “DETRs with collaborative hybrid
assignments training,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
Jun. 2023, pp. 6748–6758.

[34] A. Petrovai and S. Nedevschi, “Semantic cameras for 360-degree envi-
ronment perception in automated urban driving,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 10, pp. 17271–17283, Oct. 2022.

[35] J. Mei, M. Wang, Y. Lin, Y. Yuan, and Y. Liu, “TransVOS: Video object
segmentation with transformers,” 2021, arXiv:2106.00588.

[36] J. Mei, M. Wang, Y. Yang, Z. Li, and Y. Liu, “Learning spatiotemporal
relationships with a unified framework for video object segmentation,”
Int. J. Speech Technol., vol. 54, no. 8, pp. 6138–6153, Apr. 2024.

[37] Y. Liu et al., “Multi-space alignments towards universal LiDAR seg-
mentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2024, pp. 14648–14661.

[38] A. Athar, E. Li, S. Casas, and R. Urtasun, “4D-former: Multimodal
4D panoptic segmentation,” in Proc. Conf. Robot Learn., Jan. 2023,
pp. 2151–2164.

[39] J. Zhao et al., “SemanticFlow: Semantic segmentation of sequential
LiDAR point clouds from sparse frame annotations,” IEEE Trans.
Geosci. Remote Sens., vol. 61, 2023, Art. no. 5701611.

[40] Y. Yang et al., “Driving in the occupancy world: Vision-centric 4D
occupancy forecasting and planning via world models for autonomous
driving,” 2024, arXiv:2408.14197.

[41] T. He, C. Shen, and A. van den Hengel, “DyCo3D: Robust instance
segmentation of 3D point clouds through dynamic convolution,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 354–363.

[42] T. He, C. Shen, and A. van den Hengel, “Dynamic convolution for 3D
point cloud instance segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 45, no. 5, pp. 5697–5711, May 2023.

[43] Y. Wu, M. Shi, S. Du, H. Lu, Z. Cao, and W. Zhong, “3D instances as
1D kernels,” in Proc. 17th Eur. Conf. Comput. Vision, Tel Aviv, Israel.
Cham, Switzerland: Springer, Jan. 2022, pp. 235–252.

[44] R. Marcuzzi, L. Nunes, L. Wiesmann, E. Marks, J. Behley, and
C. Stachniss, “Mask4D: End-to-end mask-based 4D panoptic segmen-
tation for LiDAR sequences,” IEEE Robot. Autom. Lett., vol. 8, no. 11,
pp. 7487–7494, Nov. 2023.

[45] K. Yilmaz, J. Schult, A. Nekrasov, and B. Leibe, “Mask4Former: Mask
transformer for 4D panoptic segmentation,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2024, pp. 9418–9425.

[46] Z. Zeng, H. Qiu, J. Zhou, Z. Dong, J. Xiao, and B. Li, “PointNAT:
Large-scale point cloud semantic segmentation via neighbor aggregation
with transformer,” IEEE Trans. Geosci. Remote Sens., vol. 62, 2024,
Art. no. 5704618.

[47] L. He, J. Shan, and D. Aliaga, “Generative building feature estimation
from satellite images,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 4700613.

[48] Z. Luo, Z. Zeng, W. Tang, J. Wan, Z. Xie, and Y. Xu, “Dense
dual-branch cross attention network for semantic segmentation of large-
scale point clouds,” IEEE Trans. Geosci. Remote Sens., vol. 62, 2024,
Art. no. 5700216.

[49] Z. Guo, R. Xu, C.-C. Feng, and Z. Zeng, “PIF-Net: A deep point-image
fusion network for multimodality semantic segmentation of very high-
resolution imagery and aerial point cloud,” IEEE Trans. Geosci. Remote
Sens., vol. 62, 2024, Art. no. 5700615.

[50] W. Yang, Y. Zhang, X. Liu, and B. Gao, “Scene adaptive building indi-
vidual segmentation based on large-scale airborne LiDAR point clouds,”
IEEE Trans. Geosci. Remote Sens., vol. 62, 2024, Art. no. 5706015.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 14,2025 at 03:39:25 UTC from IEEE Xplore.  Restrictions apply. 



5702515 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

[51] X. Lai, Y. Chen, F. Lu, J. Liu, and J. Jia, “Spherical transformer for
LiDAR-based 3D recognition,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2023, pp. 17545–17555.

[52] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, Jun. 2017, pp. 5998–6008.

[53] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 2980–2988.

[54] Z. Zhou, X. Zhao, Y. Wang, P. Wang, and H. Foroosh, “CenterFormer:
Center-based transformer for 3D object detection,” in Proc. 17th Eur.
Conf. Comput. Vis., Tel Aviv, Israel. Cham, Switzerland: Springer,
Oct. 2022, pp. 496–513.

[55] H. Tang et al., “Searching efficient 3D architectures with sparse point-
voxel convolution,” in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2020, pp. 685–702.

[56] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3D object detection
and tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 11784–11793.

[57] X. Zhu et al., “Cylindrical and asymmetrical 3D convolution networks
for LiDAR segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 9939–9948.

[58] R. Cheng, R. Razani, E. Taghavi, E. Li, and B. Liu, “(AF)2-S3Net:
Attentive feature fusion with adaptive feature selection for sparse
semantic segmentation network,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 12542–12551.

[59] Q. Chen, S. Vora, and O. Beijbom, “PolarStream: Streaming object
detection and segmentation with polar pillars,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 34, May 2021, pp. 26871–26883.

[60] E. Li, R. Razani, Y. Xu, and B. Liu, “CPSeg: Cluster-free panoptic
segmentation of 3D LiDAR point clouds,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2023, pp. 8239–8245.

[61] R. Razani, R. Cheng, E. Li, E. Taghavi, Y. Ren, and L. Bingbing,
“GP-S3Net: Graph-based panoptic sparse semantic segmentation net-
work,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 16056–16065.

[62] M. Liu et al., “Prototype-voxel contrastive learning for LiDAR point
cloud panoptic segmentation,” in Proc. Int. Conf. Robot. Autom. (ICRA),
May 2022, pp. 9243–9250.

[63] S. Xu, R. Wan, M. Ye, X. Zou, and T. Cao, “Sparse cross-scale attention
network for efficient LiDAR panoptic segmentation,” in Proc. AAAI
Conf. Artif. Intell., Jan. 2022, pp. 2920–2928.

[64] A. Ošep, T. Meinhardt, F. Ferroni, N. Peri, D. Ramanan, and L. Leal-
Taixé, “Better call SAL: Towards learning to segment anything in
LiDAR,” 2024, arXiv:2403.13129.

[65] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “RangeNet++: Fast and
accurate LiDAR semantic segmentation,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Nov. 2019, pp. 4213–4220.

[66] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“PointPillars: Fast encoders for object detection from point clouds,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 12697–12705.

[67] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. J. Guibas, “KPConv: Flexible and deformable convolution for point
clouds,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6411–6420.

[68] E. Li, R. Razani, Y. Xu, and B. Liu, “CPSeg: Cluster-free panoptic
segmentation of 3D LiDAR point clouds,” 2021, arXiv:2111.01723.

[69] A. Boulch, “ConvPoint: Continuous convolutions for point cloud pro-
cessing,” Comput. Graph., vol. 88, pp. 24–34, May 2020.

[70] C. R. Qi, Y. Li, H. Su, and L. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 30, Jan. 2017, pp. 1–18.

[71] D. Robert, H. Raguet, and L. Landrieu, “Scalable 3D panoptic segmen-
tation as superpoint graph clustering,” in Proc. Int. Conf. 3D Vis. (3DV),
Mar. 2024, pp. 179–189.

[72] D. Robert, H. Raguet, and L. Landrieu, “Efficient 3D semantic seg-
mentation with superpoint transformer,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2023, pp. 17195–17204.

[73] H. Dai, X. Hu, J. Zhang, Z. Shu, J. Xu, and J. Du, “Large-scale
ALS point cloud segmentation via projection-based context embedding,”
IEEE Trans. Geosci. Remote Sens., vol. 62, 2024, Art. no. 5704216.

[74] B. Guo, L. Deng, R. Wang, W. Guo, A. H.-M. Ng, and W. Bai,
“MCTNet: Multiscale cross-attention-based transformer network for
semantic segmentation of large-scale point cloud,” IEEE Trans. Geosci.
Remote Sens., vol. 61, 2023, Art. no. 5704720.

[75] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2012, pp. 3354–3361.

[76] J. Niemeyer, F. Rottensteiner, and U. Soergel, “Contextual classification
of LiDAR data and building object detection in urban areas,” ISPRS J.
Photogramm. Remote Sens., vol. 87, pp. 152–165, Jan. 2014.

[77] J. Behley, A. Milioto, and C. Stachniss, “A benchmark for LiDAR-based
panoptic segmentation based on KITTI,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2021, pp. 13596–13603.

[78] L. Porzi, S. R. Bulo, A. Colovic, and P. Kontschieder, “Seamless scene
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 8277–8286.

[79] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2017, arXiv:1711.05101.

[80] Y. Zhang et al., “PolarNet: An improved grid representation for online
LiDAR point clouds semantic segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 9601–9610.

[81] T. Cortinhal, G. Tzelepis, and E. E. Aksoy, “SalsaNext: Fast, uncertainty-
aware semantic segmentation of LiDAR point clouds,” in Proc. Int.
Symp. Visual Comput., San Diego, CA, USA. Cham, Switzerland:
Springer, Oct. 2020, pp. 207–222.

[82] A. Ando, S. Gidaris, A. Bursuc, G. Puy, A. Boulch, and R. Marlet,
“RangeViT: Towards vision transformers for 3D semantic segmentation
in autonomous driving,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2023, pp. 5240–5250.

[83] V. E. Liong, T. N. T. Nguyen, S. Widjaja, D. Sharma, and Z. J. Chong,
“AMVNet: Assertion-based multi-view fusion network for LiDAR
semantic segmentation,” 2020, arXiv:2012.04934.

[84] X. He, X. Li, P. Ni, W. Xu, Q. Xu, and X. Liu, “Radial transformer for
large-scale outdoor LiDAR point cloud semantic segmentation,” IEEE
Trans. Geosci. Remote Sens., vol. 62, 2024, Art. no. 5708012.

Yu Yang received the B.S. degree in control
science and engineering from China University
of Geosciences, Wuhan, Hubei, China, in 2021.
He is currently pursuing the Ph.D. degree with the
Laboratory of Advanced Perception on Robotics and
Intelligent Learning, College of Control Science and
Engineering, Zhejiang University, Hangzhou, China.

His research interests include 3-D perception,
generative models, and autonomous driving.

Jianbiao Mei received the B.S. degree in control
science and engineering from Zhejiang University,
Hangzhou, Zhejiang, China, in 2021, where he is
currently pursuing the Ph.D. degree with the Lab-
oratory of Advanced Perception on Robotics and
Intelligent Learning, College of Control Science and
Engineering.

His research interests include video segmentation,
3-D perception, and autonomous driving.

Siliang Du received the Ph.D. degree in photogram-
metry and remote sensing from Wuhan University,
Wuhan, Hubei, China, in 2018.

Currently, he is a Researcher with Huawei Tech-
nologies Company Ltd., Wuhan. His research inter-
ests include 3-D reconstruction, visual location,
autonomous driving, and AI infra.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 14,2025 at 03:39:25 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: DQFormer: TOWARD UNIFIED LPS WITH DECOUPLED QUERIES FOR LARGE-SCALE OUTDOOR SCENES 5702515

Yilin Xiao received the bachelor’s degree from
Dalian University of Technology, Dalian, China,
in 2019, and the master’s degree from Wuhan Uni-
versity, Wuhan, China, in 2022. He is currently
pursuing the Ph.D. degree in computer science
with The Hong Kong Polytechnic University, Hong
Kong.

From 2022 to 2024, he was with Huawei Tech-
nologies Company Ltd., Wuhan, with a focus on
3-D vision. His research interests include computer
vision, large-language models, and graph neural
networks.

Huifeng Wu (Member, IEEE) received the Ph.D.
degree in computer science and technology from
Zhejiang University, Hangzhou, China, in 2006.

He is currently a Professor with the Institute
of Intelligent and Software Technology, Hangzhou
Dianzi University, Hangzhou. His research interests
include software development methods and tools,
software architecture, embedded systems, intelligent
control and automation, and the industrial Internet
of Things.

Xiao Xu is currently an Associate Researcher with
the Institute of Industrial Technology Research,
Zhejiang University, Hangzhou, China. He is also
the Deputy Director of the Institute of Technology
Transfer, Zhejiang University. His research interests
include intelligent control and automation, industrial
control systems, and the transfer of scientific and
technological achievements.

Yong Liu (Member, IEEE) received the B.S. degree
in computer science and engineering and the Ph.D.
degree in computer science from Zhejiang Univer-
sity, Hangzhou, Zhejiang, China, in 2001 and 2007,
respectively.

He is currently a Professor with the Institute of
Cyber-Systems and Control, Zhejiang University.
His main research interests include robot perception
and vision, deep learning, big data analysis, mul-
tisensor fusion, machine learning, computer vision,
information fusion, and robotics.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 14,2025 at 03:39:25 UTC from IEEE Xplore.  Restrictions apply. 


