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Abstract— LiDAR panoptic segmentation (LPS) performs
semantic and instance segmentation for things (foreground
objects) and stuff (background elements), essential for scene
perception and remote sensing. While most existing methods
separate these tasks using distinct branches (i.e., semantic and
instance), recent approaches have unified LPS through a query-
based paradigm. However, the distinct spatial distributions of
foreground objects and background elements in large-scale out-
door scenes pose challenges. This article presents DQFormer,
a novel framework for unified LPS that employs a decoupled
query workflow to adapt to the characteristics of things and
stuff in outdoor scenes. It first utilizes a feature encoder to
extract multiscale voxel-wise, point-wise, and bird’s eye view
(BEV) features. Then, a decoupled query generator proposes
informative queries by localizing things/stuff positions and fusing
multilevel BEV embeddings. A query-oriented mask decoder uses
masked cross-attention to decode segmentation masks, which
are combined with query semantics to produce panoptic results.
Extensive experiments on large-scale outdoor scenes, including
the vehicular datasets nuScenes and SemanticKITTI, as well
as the aerial point cloud dataset DALES, show that DQFormer
outperforms superior methods by +1.8%, +0.9%, and +3.5%
in panoptic quality (PQ), respectively. Code is available at
https://github.com/yuyang-cloud/DQFormer

Index Terms— Decoupled queries, large-scale outdoor scenes,
LiDAR panoptic segmentation (LPS), point cloud segmentation.

I. INTRODUCTION
CENE perception and understanding are fundamental in
geoscience and remote sensing. With advancements in
3-D data acquisition techniques, LiDAR point clouds have
become the primary resource for collecting large-scale geospa-
tial data, revealing detailed geometric structures of real-world
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3-D environments. As a key task in scene perception, LIDAR
segmentation involves point-level predictions to interpret the
entire scene. Among these tasks, LIDAR panoptic segmenta-
tion (LPS) predicts not only point-wise semantic labels for
stuff classes (e.g., roads and vegetation) but also labels and
instance IDs for thing classes (e.g., cars and people). By uni-
fying semantic and instance segmentation within a single
architecture, LPS plays a crucial role in scene understanding
and has a wide range of applications, such as autonomous
driving, urban modeling, and remote sensing.

Most existing LPS methods [1], [2], [3], [4], [5] explicitly
separate semantic and instance segmentation tasks, utilizing
two branches to implement panoptic segmentation. As illus-
trated in Fig. 1(c), the semantic branch predicts semantic labels
for each point, while the instance branch employs detection
or clustering techniques to assign instance IDs. Inspired by
the recent success of query-based methods in the 2-D seg-
mentation domain [6], [7], [8], [9], [10], MaskPLS [11] and
PUPS [12] propose using a set of learnable queries to achieve
unified LPS. This approach predicts a set of nonoverlapping
binary masks and semantic classes for either a stuff class or
a potential object, as illustrated in Fig. 1(d).

However, directly applying standard query-based methods to
LPS overlooks the significant distinctions between things and
stuff in outdoor scenes, particularly in large-scale aerial point
clouds under remote sensing scenarios, as shown in Fig. 1(a)
and (b).

1) Disparate spatial distributions: Stuff, i.e., background
elements, are typically distributed throughout the scene
(e.g., roads and vegetation) and constitute a larger
proportion of the point cloud. In contrast, foreground
objects are significantly smaller and concentrated in
specific local regions.

Different geometric features: Various stuff classes
exhibit distinct geometric attributes (e.g., flat road
surfaces versus uneven vegetation points), which can
serve as valuable distinguishing features for seman-
tic segmentation. In contrast, instances of the same
category share similar geometric properties and lack
distinctive textures or colors, complicating instance
segmentation.

2)

Due to the distinctions between things and stuff in point
clouds, wvanilla query-based methods face significant
challenges in large-scale outdoor scenes.
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(a) and (b) Distinction between things and stuff in vehicular and aerial LiDAR scenes: instances with similar geometries are typically concentrated

in local regions, whereas distributed stuff exhibits distinct geometries. (c¢) Existing semantic/instance separation paradigm. (d) Existing learnable query-based
methods ignore these distinctions. (e) We propose a decoupled-query workflow to mitigate competition between classification and segmentation.

1) Mutual competition between things and stuff using
unified queries: Standard query-based methods utilize
unified queries to segment both things and stuff simulta-
neously. This approach often prioritizes larger areas (i.e.,
stuff) for high recall, making it challenging to segment
multiple small instances.

2) Unbalanced proportion for mask supervision: Stuff
classes typically constitute a large proportion of the point
cloud, while things consist of a limited number of points.
This extreme imbalance between positive and negative
samples creates challenges for binary mask supervision
in query-based methods.

3) Ambiguity between classification and segmentation:
Vanilla query-based methods employ learnable queries
to simultaneously predict semantic classes and binary
masks, leading to ambiguity among instances. Classi-
fication supervision causes query features to become
more similar among different objects within the same
category, complicating the distinction between distinct
instances.

Based on these observations, we propose decoupling queries
(DQs) into things and stuff queries according to their
individual properties. As illustrated in Fig. 1(e), we design a
query generator that produces two types of queries and their
corresponding semantics by localizing and classifying objects
in bird’s eye view (BEV). Our key insights are: 1) localizing
foreground objects in BEV allows for efficiently generating
distinct queries for each instance; 2) aggregating background
features in BEV maintain a large receptive field while
incurring minimal computational overhead; and 3) classifying
objects in BEV provides semantic labels for queries that can
be used solely for segmentation decoding.

Specifically, we propose a novel framework termed
DQFormer, which adopts a decoupled-query paradigm for uni-
fied LPS. DQFormer consists of a multiscale feature encoder,
a decoupled query generator, and a query-oriented mask
decoder. The feature encoder extracts voxel-wise features and
point-wise embeddings, while multiresolution BEV features
are generated through the voxel-to-BEV (V2B) operation.
The query generator localizes and classifies objects in BEYV,
extracting multilevel BEV features from their corresponding
positions and integrating them into informative queries. Once
object-featured queries are obtained, a query-oriented mask

decoder predicts the segmentation masks using a masked
cross-attention mechanism guided by the queries. These masks
are combined with the semantic classes associated with the
queries to generate panoptic results.

We evaluate our method on large-scale outdoor
scenes, including vehicular datasets nuScenes [13] and
SemanticKITTI [14], as well as the aerial dataset DALES [15],
which shows that DQFormer outperforms previous superior
methods by +1.8%, +0.9%, and +3.5% in panoptic quality
(PQ), respectively, demonstrating the effectiveness of our
method for autonomous driving and remote sensing. Our
main contributions are as follows.

1) We propose a framework called DQFormer that intro-
duces a novel decoupled-query paradigm to reduce
mutual competition for unified LPS.

2) We design a multiscale query generator that generates
semantic-aware queries by localizing thing/stuff posi-
tions and fusing multilevel BEV embeddings.

3) We propose a query-oriented mask decoder that uses
informative queries to guide the segmentation process
via a masked cross-attention mechanism.

II. RELATED WORK
A. LiDAR Panoptic Segmentation

Most existing LPS methods can be classified into four
types of frameworks: detection-based, clustering-based, center-
based, and query-based. The first three are semantic/instance
separation paradigms, while the last represents a unified
paradigm.

1) Detection-Based Methods: [16], [17], and [18] directly
assign a unique ID to the points classified as the foreground
thing classes within a 3-D bounding box to generate instance
masks, whereas other methods [2], [19] propose using the
point-box index and bounding box feature to refine the seg-
mentation result further. While these methods predict instance
positions and sizes, the semantic branch remains essential for
point extraction.

2) Clustering-Based Methods: [1], [3], [4], [10], [20], [21],
[22], [23], [24], [25], [26], [27], [28], and [29] use heuristic
clustering algorithms to assign instance IDs. These methods
mainly focus on enhancing clustering by improving the
accuracy of center regression or clustering embeddings.
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However, they typically treat semantic and instance
segmentation separately, while our DQFormer provides a
unified approach for predicting both object and stuff classes.

3) Center-Based Method: [5] utilizes object centers as
queries to segment instances, eliminating detection or clus-
tering processes. However, semantic segmentation remains
indispensable for retrieving object centers in this method,
while DQFormer directly proposes things queries from the
BEV space.

4) Query-Based Methods: [11], [12], and [30] use learn-
able queries for unified LPS, predicting nonoverlapping binary
masks and semantic classes for both stuff and potential objects.
MaskRange [30] and MaskPLS [11] focus on range-based
and point-based segmentation, while PUPS [12] employs
point-level classifiers for semantic masks and instance groups.
P3Former [31] introduces a mixed-parameterized positional
embedding for iterative mask prediction and query updates.
However, these methods overlook the distinction between
things and stuff in 3-D scenes, leading to mutual competition.
In contrast, our DQFormer decouples things and stuff queries
based on their characteristics, allowing separate decoding to
alleviate competition.

B. Query-Based 2-D/3-D Segmentation

Following the success of DETR [32], [33] in 2-D detection,
query-based segmentation methods [34], [35], [36] have
emerged to enhance segmentation accuracy and efficiency,
such as Panoptic-FCN [6], K-Net [9], MaskFormer [7],
Mask2Former [8], and Panoptic SegFormer [10]. These
methods use queries to guide segmentation and incorporate
techniques like kernel updates and masked attention.

Based on these 2-D advancements, some methods adapt the
query-based paradigm for 3-D segmentation [37], [38], [39],
[40]. DyCo3D [41], [42] and DKNet [43] use 1-D kernels for
3-D instance mask decoding, while CenterLPS [5] proposes
instance queries based on object centers. Mask4D [44] and
Mask4Former [45] extend 3-D panoptic segmentation to 4-D
by reusing queries from previous scans. Our DQFormer pre-
serves the intrinsic properties of point clouds within a unified
query-based framework.

C. Large-Scale Scene Segmentation and Remote Sensing

Large-scale scene segmentation is challenging due to the
complexity and diversity of real-world 3-D scenes and their
fundamental role in remote sensing. 3-D scene segmentation
tasks mainly consist of semantic segmentation, instance
segmentation, and panoptic segmentation. The semantic
segmentation methods [46], [47], [48] primarily utilize
airborne LiDAR point clouds to predict point-wise labels for
both foregrounds (e.g., car and building) and background items
(e.g., road and vegetation), but do not distinguish between
various instances. Some methods [49] explore multimodal
semantic segmentation using point clouds and images. Instance
segmentation methods [50] solely provide object-centric seg-
mentation results, such as distinguishing individual buildings.
In this work, we focus on the LPS task, which not only predicts
point-wise semantic labels for both things and stuff, but also
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distinguishes different foreground objects, providing a more
comprehensive understanding of scenes for remote sensing.

III. METHOD
A. Overview

As illustrated in Fig. 2, DQFormer consists of three key
modules: a multiscale feature encoder, a decoupled query
generator, and a query-oriented mask decoder. Specifically,

1) The feature encoder (Section III-B) extracts voxel-wise
features and point-wise embeddings at multiple
resolutions.

2) The query generator (Section III-C) is designed to
produce informative thing/stuff queries that are assigned
semantics based on their positions and embeddings in
BEV space.

3) The mask decoder (Section III-D) decodes segmentation
masks by performing masked cross-attention between
queries and point embeddings. Finally, the decoded
masks are combined with the semantics of queries to
produce the panoptic results.

In this section, we elaborate on the above components as well
as the training scheme.

B. Multiscale Feature Encoder

We introduce a sparse backbone to encode input point
clouds, extracting multiscale voxel-wise and point-wise
features.

Specifically, given an input point cloud P € RN»** (coor-
dinates and intensity), we perform 3-D grid voxelization
to obtain the voxel-point indices. Then, voxel features are
extracted by feeding point representations f, (which com-
bine coordinates, intensity, and offsets to the voxel center)
within the same voxel into MLPs and applying max-pooling.
Consequently, we obtain sparse voxel features F' e RNvx32
with a dense spatial resolution of H x W x D, where N,
is the number of sparse voxels, H, W, and D represent the
length, width, and height of the voxelized space, respectively.

Furthermore, we use a UNet-like architecture to extract
multiresolution voxel features. Each resolution level; includes
an encoder to aggregate long-range information using radial
window self-attention [51], a down-sampling module for
sub-voxel features extraction, and a decoder to up-sample
and integrate voxel features at resolution level;. In practice,
we implement a four-layer feature extractor to encode
multiscale voxel features (F[, Fy, Fy, Fy). These voxel
features are interpolated to the original point cloud using
a k-nearest-neighbor weighted summation, denoted as
voxel-to-point (V2P) operation. This operation produces
multiscale point-wise embeddings (F/, Fy, FY, F) that
capture multiscale contextual and geometric information.

C. Decoupled Query Generator

Due to the sparsity of point clouds, generating informative
queries for decoding corresponding segmentation masks
is crucial. In this work, we generate query proposals that
encapsulate the features of instances/stuff based on their
positions and embeddings in the BEV space.
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Fig. 2. Overview of DQFormer. (a) Feature encoder is applied to extract voxel features and point embeddings at multiresolutions. (b) Query generator is

designed to produce informative things/stuff queries assigned with semantics according to their positions and embeddings in BEV space. (c) Mask decoder
performs masked cross-attention between queries and multilevel point embeddings to decode segmentation masks. Finally, the decoded masks are combined
with the semantics of the queries to produce the panoptic result. Details of the decoder block are illustrated in Fig. 4.

Decoupled Query Proposal: We propose a query proposal
network that generates things/stuff queries from BEV embed-
dings of different resolutions to explicitly localize instances
while enlarging the receptive field for background elements.

1) BEV Embedding Extraction: We project voxel features
along the z-axis to generate BEV features through the V2B
operation. For a voxel feature F” at level; with spatial resolu-
tion H; x W; x D;, we concatenate the height dimension D;
with the feature dimension C; and use stacks of 2-D CNNs
with channel-wise and spatial attention to encode the BEV
embedding F®' € RC*H>W: "where C, represents the feature
dimension in the embedding space. This BEV embedding
serves as the shared feature map for locating and classifying
objects.

2) BEV Heatmap Prediction: Following [6], we use object
centers to indicate the positions of potential instances and
stuff regions for background elements. As illustrated in Fig. 3,
we introduce an object center head, consisting of 2-D convo-
lutions, to predict the object center heatmap M € RNwxHixWi
at level;, where Ny, is the number of foreground object
categories. Each channel represents potential centers for one
class, and different channels denote different semantic classes.
Additionally, a stuff region head that uses shallow 2-D trans-
former decoder layers [10] predicts the stuff region map M} €
RN« HixWi " with Ny denoting the number of stuff categories.
Each channel represents the regions of a stuff class from the
BEV perspective. The M"™ and M* serve as heatmaps for
localizing and classifying foreground objects and background
elements, providing priors of locations and semantic categories
for query generation.
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Fig. 3. Details of query proposal generation. Things queries are extracted
from the BEV embedding at the corresponding positions. Stuff queries
are generated using the learnable-query approach within the BEV space.
(a) Things query generation. (b) Stuff query generation.

3) Query Proposals Generation: Next, we generate infor-
mative things/stuff queries based on heatmaps M and M,
along with the BEV embedding F?®".

For things queries, we apply the argmax function along the
Ny, dimension of M™ to obtain the semantic category and
corresponding confidence score for each position on the BEV,
as illustrated in Fig. 3(a). A position with a high score indicates
a potential instance location; therefore, we extract embeddings
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from F"® at the positions with top-N, scores to represent the
query weights and assign the corresponding semantic classes
to represent the query categories. For example, assuming a
candidate position (x., y.) in the cth channel of M}h, the
embedding F*'[:, x., y.] € RE*!*! gserves as the query
weight for this instance, with the semantic class assigned as c.
This results in things query proposals at level;, denoted as
O € RN*C with predicted semantic categories O", where
N, is the number of query proposals.

For stuff queries, since stuff points are widely distributed,
it is crucial to incorporate global context. As depicted in
Fig. 3(b), we initialize class-fixed learnable queries Q'**™ ¢
RN«xCe  where N, is the number of stuff categories. These
queries perform cross-attention with BEV features to predict
stuff region maps M*t € RV*">*W "\where each channel rep-
resents the regions of a stuff class from the BEV perspective.
This establishes correspondences between each stuff query and
BEV positions, which are used to extract and fuse the relative
BEV embeddings to update the query weight. This process is
formulated as follows:

(@) - gy (FP) (1)
- VCe
M} = Gap(AY), 05 = fauery [0 (A™) - ¢ (F)]. (@)

Here, ¢, represents linear layers, o denotes the softmax
function, and A% € RM>*HWi are the attention maps. The
stuff query proposals at level; are denoted as Qf' € RVsxCe,
associated with their semantic categories O;". This formulation
effectively enables stuff queries to capture more scene infor-
mation while maintaining limited computational overhead in
BEV.

Decoupled Query Fusion: With the queries generated from
various BEV resolutions, we further design a query fusion
module to merge multiscale query proposals effectively.

AS[

1) Things query proposals fusion: We merge object queries
at similar positions from multiscale BEV embeddings to
enhance individual instance representations. To maintain
intra-semantic consistency, we only fuse queries that
share the same semantics. Specifically, we employ aver-
age pooling to fuse queries whose positions are within
the same small window in the BEV and whose cosine
similarities between their embeddings exceed a given
threshold 6. This approach ensures that the window
constrains the geometric-consistency while cosine sim-
ilarity maintains instance-awareness in the embedding
space. This results in fusing the multiscale query pro-
posals into an integral set of things queries Q™ € RV*Ce
with predicted semantic categories O™ e RM, where
N, represents the predicted number of objects.

2) Stuff query proposals fusion: We merge queries with the
same semantics to integrate multiscale global context
for each stuff class. We first identify the presence of
each stuff class based on the stuff region maps, where
response scores on M*' of a class exceeding a threshold
O indicate the existence of corresponding background
elements. We then fuse existing stuff queries with the
same semantic categories using average summation,
enhancing each query with global receptive fields while
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Fig. 4. Detailed pipeline of the decoder block consisting of masked
cross-attention, self-attention, and an FFN.

maintaining semantic consistency. This yields the set of
stuff queries Q% € RV*C and their semantic categories
Ot € R, where N represents the number of existing
stuff classes.

D. Query-Oriented Mask Decoder

Given decoupled queries for objects and backgrounds
that encapsulate informative features, we introduce a query-
oriented mask decoder to predict segmentation masks through
multilevel masked cross-attention.

As depicted in Fig. 4, our mask decoder comprises multiple
blocks, each consisting of masked cross-attention at a spe-
cific resolution, followed by self-attention and a feed-forward
network (FFN). Specifically, in the decoder block at level;,
we perform masked cross-attention between the concatenated
queries Q € RMHTN)xCe and point embeddings F € RN»*Ce,
The mask map M; € R™+N)xN, indicating the noteworthy
key points, is generated from the previous block. A self-
attention layer is utilized to establish context between queries,
and the FFN is employed to enhance the query representations.
Finally, the segmentation mask is generated via the dot product
between the output queries and point-wise mask embeddings
E € RN»-*C along with the sigmoid activation function. The
mask decoding process is expressed as follows:

o (FI\T
0 =0 W@Mil G(F)+Q 3
N NT
0" = FEN [a (W) L0.(0) + Q/] (4)
M; = Sigmoid(Q” - ET) (5)

where ¢, and ¢, represent linear layers, © denotes the
Hadamard product, and o represents the softmax function. For
simplicity, we omit LayerNorm in the formula. It is worth not-
ing that the mask embedding E is composed of the summation
of full-resolution point features F; and point-wise positional
encoding [52] P, € RN»*C defined as E = F} + P,.

Deep supervision is applied to the multilevel mask pre-
dictions {M,, M;, ..., My} during training. In the inference
phase, we utilize the masks from the last decoder block and
apply the mask fusion module [5] to integrate duplicate masks.
These binary masks are combined with the query semantics
{O™, 0%} to generate the panoptic results.
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E. Loss Function

In training, we supervise the object center and stuff region
heatmaps for the localization and classification of objects and
background regions

Lo = S FL(MP, 1) /N, + 3D EL(ME, V) /W,

(6)

where FL(-, -) denotes the focal loss [53], Y and Y} represent
the ground truth for M™ and M}', respectively. Following [6]
and [54], we assign the center of an instance with semantic
category c to the cth channel of ¥/" using a Gaussian kernel.
Y is generated by interpolating the one-hot semantic label in
the BEV space to the corresponding sizes.

Meanwhile, we also supervise the mask predictions for
segmentation using binary cross-entropy and dice loss

Luas = Y _BCE(M;,Y)+ Y Dice(M;,¥)  (7)
1 l

where Y represents the ground truth masks matched with

predictions. Specifically, instance masks are matched with

ground truth through the BEV positions, while stuff masks

are matched in a one-to-one manner.

To enhance the point-wise embeddings, we also add an
auxiliary MLP head to Ff and employ a semantic loss L
to guide the class distribution of points. Overall, DQFormer
can be trained end-to-end with the above loss

L= }Lhm . ['hm + lmask : Lmask + lsem : Esem (8)

where Anm, Amask, and Agem are factors to balance various loss
items, and they are set to 1, 5, and 2, respectively.

IV. EXPERIMENTS

We first present the datasets, including vehicular and
aerial LiDAR datasets, along with the evaluation metrics
(Section IV-A). Next, we provide implementation details
(Section IV-B), followed by our main results and anal-
ysis (Section IV-C), qualitative results and discussions
(Section IV-D), ablation studies (Section IV-E), and detailed
benchmark results (Section IV-F).

A. Datasets and Metrics

nuScenes [13] dataset is a comprehensive urban driving
dataset comprising 1000 LiDAR scenes, each spanning a
duration of 20 s, captured using a 32-beam LiDAR sen-
sor. It includes 850 scenes for training and validation, with
150 scenes for testing. The LPS task features 16 annotated
point-wise labels, comprising ten thing categories and six stuff
categories.

SemanticKITTI [14] is derived from the KITTI [75]
odometry dataset, featuring 22 LiDAR sequences captured
with a Velodyne HDL-64 laser scanner. It allocates ten
sequences for training, one for validation, and 11 for testing.
The dataset includes 19 annotated point-wise labels for LPS,
comprising eight thing classes and 11 stuff classes.

DALES [15] is a large-scale aerial LIDAR dataset with over
500 million points spanning an area of 10 km?. DALES is

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

one of the newest large-scale aerial laser scanner (ALS)
benchmarks, significantly larger than traditional ALS bench-
marks, such as ISPRS [76]. The dataset consists of 40 tiles,
each covering about 0.5 km?, which are randomly split into
29 training tiles and 11 testing tiles. The thing classes are
buildings, cars, trucks, power lines, fences, and poles, while
ground and vegetation are classified as stuff classes.
Metrics: The metrics [77] for LiDAR-based panoptic
segmentation include PQ, segmentation quality (SQ), and
recognition quality (RQ), which are formulated as

ToU TP
pq = ZmloU 1 — o
TPl |TP|+ L|TN| + L|FP|
SQ

RQ

These metrics are also calculated separately for thing and stuff
classes indicated by PQ™, SQ™, RQ™ and PQ%, SQ%, RQ®.
In addition, we also report PQf, as defined in [78], which
utilizes SQ as PQ for stuff classes.

B. Implementation Details

For the voxelization process, we discretize the 3-D
space within [[£51.2], [£51.2],[—4,2.4 m]] into voxels
with a resolution of [0.05,0.05,0.05 m]. Multiscale voxel
features F; are obtained at resolutions corresponding to
{(1/8), (1/4), (1/2),1} of the original dense resolutions.
We set the number of instance queries per scan (N,;) to
150. The thresholds 6, = 0.85 and 6y = 0.5 are used
to discriminate cosine similarities for things queries and to
indicate the existence of stuff regions, respectively. The mask
decoder consists of N; = 3 decoder blocks, each employing
point embeddings interpolated from voxel features with res-
olutions of {(1/8), (1/4), (1/2)}. The models are trained for
80 epochs using the AdamW optimizer [79] on 8§ NVIDIA
RTX A6000 GPUs, with an initial learning rate of le ™,
decayed by a factor of 10 at epoch 60.

C. Comparison With the State of the Art

Results on nuScenes: Tables 1 and II present the compari-
son results between our DQFormer and other state-of-the-art
methods on the nuScenes [13] test and validation sets.

1) Compared With Detection-Based Methods: DQFormer
shows significant improvements over single-architecture meth-
ods, outperforming EfficientLPS [2] and AOPNet [17] by
+17.2% and +7.4% in PQ™. This underscores the effec-
tiveness of our query generator in localizing and classifying
instances without the need for bounding box predictions.
Compared to two-architecture methods (semantic segmenta-
tion models + 3-D detection method), DQFormer exceeds
them in SQ™ by +2.2% and 0.8%. We assert that our
query-oriented mask decoder leverages informative queries to
establish affinities with all points, resulting in more precise
segmentation masks than those derived solely from bounding
box predictions.

2) Compared With Clustering-Based Methods: These
methods [1], [3], [4], [20], [22] typically utilize separate
semantic and instance branches. In contrast, DQFormer
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TABLE I
COMPARISON OF LPS PERFORMANCE ON THE TEST SET OF nuScenes. ALL RESULTS IN [%]
Type Method | PQ | PQT RQ SQ | PQ™ RQ™ sQ™ | PQSt RQS SQM
PanopticTrackNet [16] 51.6 | 56.1 633 804 | 459 56.1 814 | 61.0 754 79.0
EfficientLPS [2] 624 | 660 741 837 | 572 682 836 | 71.1 840 83.8
Detection- AOP-Net [17] 68.3 - 782 869 | 673 756 88.6 | 69.8 826 84.0
based SPVNAS [55] + CenterPoint [S6] | 722 | 76.0 812 885 | 71.7 794 897 | 732 842 86.4
Cylinder3D++ [57] + CenterPoint [56] | 76.5 | 79.4 850 89.6 | 76.8 840 91.1 | 76.0 86.6 87.2
(AF)2-S3Net [58] + CenterPoint [56] | 76.8 | 80.6 854 89.5| 79.8 868 91.8 | 71.8 83.0 857
Panoptic-PolarNet [3] 63.6 | 67.1 75.1 843 | 590 698 843 | 71.3 839 842
Clustering- PolarStream [59] 709 | 744 81.7 859 | 703 80.3 86.7 | 71.7 842 844
based LCPS(LiDAR) [27] 72.8 | 76.3 81.7 88.6 | 724 800 902 | 73.5 846 86.1
CPSeg [60] 732 | 763 827 881 | 729 813 892 | 740 850 86.3
Query-based | MaskPLS [11] 61.1 | 643 685 868 | 543 588 878 | 724 634 851
y-bas DQFormer (Ours) 739 | 76.8 824 89.6 | 744 807 919 | 782 850 858
TABLE II
COMPARISON OF LPS PERFORMANCE ON THE VALIDATION SET OF nuScenes. ALL RESULTS IN [%]
Type | Method | PQ | PQT RQ sQ | PQ™ RQ™ sQ™ | PQS RQS sQM
Detection- | PanopticTrackNet [16] | 51.4 | 56.2 633 80.2 | 458 55.9 81.4 604 755 783
based EfficientLPS [2] 62.0 | 656 739 834 | 56.8 68.0 83.2 70.6 836 83.8
DS-Net [1] 425 | 51.0 503 836 | 325 383 831 | 592 703 844
GP-S3Net [61] 61.0 | 67.5 72.0 84.1 | 56.0 65.2 85.3 66.0 78.7 829
Clustering- | Panoptic-PolarNet [3] | 63.4 | 672 753 839 | 592 703 841 | 704 835 836
based PVCL [62] 649 | 67.8 779 81.6 | 59.2 72.5 79.7 67.6 79.1 773
SCAN [63] 65.1 | 689 753 857 | 60.6 70.2 85.7 72.5 838 857
Panoptic-PHNet [4] 74.7 | 777 842 882 | 74.0 82.5 89.0 759 869  86.8
MaskPLS-M [11] 57.7 | 60.2 66.0 71.8 | 644 73.3 84.8 522 607 624
Query- SAL [64] 705 | - 808 859 | 794 - - 61.7 - -
basez PUPS [12] 74.7 | 773 833 894 | 754 81.9 91.8 73.6 856 85.6
P3Former [31] 759 | 789 847 89.7 | 768 833 920 | 754 871 86.0
DQFormer (Ours) 777 | 795 89.2 868 | 77.8 89.5 86.7 775 88.6 87.0
achieves superior results through a unified query-based seg- TABLE III
mentation approach, demonstrating a substantial gain of 3.8% COMPARISON OF LPS PERFORMANCE ON THE TEST SET
in PQ™. We note that these methods often rely on heuristic OF SemanticKITTI [14]. ALL RESULTS IN [%]
clustering algorithms to group instance points, which can Type Method | PQ [PQT RQ SQ
lead to 1ncomplete masks, particularly for 1arg§ objects \.N.lth Detection. | RangeNets+ [65] + PointPillars [66][ 37.1[45.9 47.0 75.9
scattered points. In contrast, DQFormer establishes affinities KPConv [67] + PointPillars [66] |44.5]52.5 54.4 80.0
: : : : based EfficientLPS [2 574|632 68.7 83.0
between queries and point features in the embedding space, cientLPS [2] +199.2 087 ©5.
remaining unaffected by the geometric locations of points. LPSAD [20] 38.0|47.0 48.2 76.5
3 C d ith Based Methods: C d Panoster [22] 52.7159.9 64.1 80.7
) Compared With Query-Based Methods: Compared to Panoptic-PolarNet [3] 54.1/60.7 65.0 81.4
P3Former, which uses a mixed-parameterized positional b & DS-Net [1] 55.9|62.5 66.7 82.3
- . : - ased CPSeg [68 57.0/63.5 68.8 82.2
embedding to distinguish various instances, DQFormer cg [68] 2|02 D88 O
. . .. SCAN [63] 61.567.5 72.1 84.5
improves performance for both things and stuff, achieving Panoptic-PHNet [4] 615167.9 72.1 84.8
: Th St :
gains th+1~g% on PQ™ and +2~f;% .Oan Q™. This demf)ni Center-based | CenterLPS [5] 61.6[67.9 72.6 84.0
stratf.:s that the query generator etfectively extracts practica MaskPLS-M [11] 5821633 68.6 830
queries for both things and stuff through two decoupled Query- PUPS [12] 62.2|65.8 72.8 84.2
branches, validating the effectiveness of our query decoupling based DQFormer (ours) 63.1/67.9 73.6 85.0
strategy DQFormerT (ours) 64.9/69.5 75.1 85.8

Results on SemanticKITTI: We validate our method’s
effectiveness and generalization on the SemanticKITTI [14]
test and validation sets, as shown in Tables III and IV.

DQFormer outperforms all detection-based and clustering-
based methods, achieving 5.7% higher PQ than Effi-
cientLPS [2] and 1.6% higher than Panoptic-PHNet [4]. It also
surpasses the recent center-based method CenterLPS [5],
which uses object queries for instance segmentation, by 1.5%
in PQ. We explain that while the center-based method shares a
similar approach with DQFormer by predicting object queries

based on BEV position to generate masks, DQFormer further
integrates this method for stuff classes and provides more
global receptive fields for stuff queries, resulting in more
complete masks.

Compared to query-based methods, DQFormer demon-
strates notable improvements in PQ over MaskPLS and PUPS,
with gains of 4.9% and 0.9% on the test split, respectively.
Although it slightly lags behind PUPS in RQ due to PUPS’s
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TABLE IV

COMPARISON OF LPS PERFORMANCE ON THE VALIDATION SET OF
SemanticKITTI [14]. BOLD AND UNDERLINED INDICATE THE BEST
AND SECOND-BEST PERFORMANCES. ALL RESULTS IN [%]

Type | Method | PQ [PQT RQ SQ
RangeNet++ [65] + PointPillars [66][36.5| — 44.9 73.0

Detection- PanopticTrackNet [16] 40.0 - 483 73.0
based KPConv [67] + PointPillars [66] |41.1| — 50.3 74.3
EfficientLPS [2] 59.2165.1 69.8 75.0

LPSAD [20] 36.5|46.1 - -

Clustering- Panoster [22] 556 - 66.8 79.9
based DS-Net [1] 57.7/63.4 68.0 77.6
Panoptic-PolarNet [3] 59.1|64.1 70.2 78.3

Center-based | CenterLPS [5] |62.1|67.0 72.0 80.7
SAL [64] 59.5] - 69.2 75.7

Query- MaskPLS-M [11] 59.8| - 69.0 76.3
based PUPS [12] 64.468.6 74.1 81.5
DQFormer (ours) 63.5167.2 73.1 81.7

TABLE V

COMPARISON OF LIDAR SEGMENTATION PERFORMANCE ON THE TEST
SET OF DALES [15]. mloUy,, MIOUg, AND MIOU,;; REPRESENT
mloU VALUES FOR THINGS, STUFF, AND ALL CATEGORIES,
RESPECTIVELY. ALL RESULTS IN [%]

Semantic Segmentation

Method mloUy, mloUg mloUyy
ConvPoint [69] 58.4 94.4 67.4
PointNet++ [70] 60.2 92.7 68.3
SuperCluter [71] - - 77.3

SPT [72] 74.5 94.9 79.6

KPConv [67] 76.3 95.6 81.1
PCE [73] 77.1 95.6 81.7
MCTNet [74] 79.0 96.5 83.3
DQFormer (Ours) 78.3 96.2 82.2

Panoptic Segmentation

Method ‘ PQ RQ sQ
SuperCluster [71] 61.2 68.6 87.1
DQFormer (Ours) 64.7 70.9 90.5

use of a CutMix strategy for data augmentation, DQFormer
still enhances SQ by 0.8% and 0.2% on the test and validation
sets. This underscores DQFormer’s effectiveness in decoupling
things and stuff queries to reduce competition between clas-
sification and segmentation, a factor overlooked by previous
query-based methods, thereby promoting SQ.

Results on DALES: In Table V, we compare the semantic
and panoptic segmentation performances of various methods
on the DALES test set [15]. For semantic segmentation,
we report the mloU metric for things (mloUy,), stuff (mloUy),
and all categories (mIoUy;). Our DQFormer achieves a com-
parable performance of a mloU, of 82.2% compared to
MCTNet [74], which specifically focuses on the semantic
segmentation task.

In panoptic segmentation, DQFormer outperforms the pre-
vious SoTA method, SuperCluster [71], achieving a notable
improvement with a 3.5% boost in PQ and a 3.4% increase
in SQ. This improvement is attributed to the localize-then-
segmentation paradigm of DQFormer, which first localizes
objects on the BEV and then predicts segmentation masks,
resulting in more complete and cohesive results. In con-
trast, SuperCluster relies on clustering algorithms to group
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Panoptic-PolarNet

DQFormer (Ours)

Fig. 5. Qualitative comparisons of panoptic segmentation between DQFormer
with DSNet [1] and Panoptic-PolarNet [3], on SemanticKITTI test split.
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Fig. 6. Qualitative comparisons of mask predictions across different decoder
blocks on the SemanticKITTI test split.

instance points, which are widely scattered and can lead to the
problem of over-segmentation in large-scale outdoor scenes.

D. Qualitative Results and Discussion

This section presents visualization results, including quali-
tative results in vehicular and aerial scenes, mask predictions
across decoder blocks, object center predictions, and attention
maps for things and stuff queries.

1) Panoptic Segmentation in Vehicular Scenes: Fig. 5
provides qualitative comparisons of our DQFormer with
DSNet and Panoptic-PolarNet using the SemanticKITTI test
set. The first two rows highlight DQFormer’s superior ability
to segment small instances in local regions. In contrast, DSNet
and Panoptic-PolarNet struggle with under-segmentation,
particularly for adjacent instances with similar geometries.
This demonstrates the effectiveness of our query generator in
distinguishing individual objects. In the third row, DQFormer
efficiently segments large objects like buses and trucks, while
the other methods face over-segmentation issues with sparse
instances. The last row illustrates DQFormer’s accuracy in
identifying rare objects, such as trolleys, and its proficiency
in distinguishing widely distributed stuff points based on their
attributes.

2) Comparisons Across Decoder Blocks: Fig. 6 visualizes
mask predictions from different decoder blocks. Shallow
blocks struggle with the under-segmentation of adjacent small
objects and produce fragmented masks for large targets.
In contrast, deeper blocks generate more precise masks for
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Fig. 7. Qualitative results in aerial LIDAR point cloud, including semantic
segmentation and panoptic segmentation on the DALES test split.
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Ground Truth

Ob;j. Center Preds After Query Fusion

Fig. 8.  Visualization of object centers extracted from the BEV heatmap,
after the query fusion module, alongside the corresponding ground truth.

both objects and background elements, demonstrating the
effectiveness of the masked cross-attention mechanism, which
helps queries focus on key points for improved segmentation
accuracy.

3) Panoptic Segmentation in Aerial Scenes: Fig. 7 presents
qualitative results from the DALES [15] test set, a large-scale
aerial scan dataset collected by an airborne LiDAR system.
This demonstrates that our method predicts accurate seman-
tic and panoptic results, underscoring the generalizability of
DQFormer in large-scale outdoor scenes. Notably, our method
distinguishes adjacent instances with similar geometries, such
as cars and buildings, demonstrating the effectiveness of
DQFormer in aerial remote sensing.

4) Visualization of the Object Centers: Fig. 8 shows pre-
dicted object centers from the query fusion module alongside
their ground truth, using distinct colors for different categories.
Comparing the first two columns reveals the efficiency of our
query fusion module in merging duplicated queries, resulting
in compact queries that align closely with the ground truth.

The first two rows demonstrate our query generator’s ability
to localize adjacent small instances and effectively fuse their
queries through geometric consistency and feature similarity
constraints. The third and fourth rows highlight the generator’s
capability to distinguish adjacent instances with similar geo-
metric attributes. In the last row, a failure case is noted where

5702515

Person Bicyclist Other-Vehicle

=)
2
w
Terrain Vegetation Building
Affinity Value
Irrelevant I Relevant
0 >» 1
Fig. 9. Visualization of attention maps between queries and points cloud.
TABLE VI
ABLATION ON THE NETWORK COMPONENTS ON SemanticKITTI
VALIDATION SET. ALL SCORES ARE IN [%]
Mask  Mask Query Generator Mask

PQSt

PQ ‘ RQ SQ pQ™

60.6
60.8

Decoder Embed Stuff / Thing / Fusion Fusion

70.4
70.7

76.0
76.0
76.6

76.4
76.6
81.5

76.5
81.7

63.1
62.3
63.7

64.2
66.4
67.8

65.8
68.8

58.8
59.7
59.6

59.9
59.6
59.6

59.4
59.6

63.1|72.9

62.1]71.5
v 635|731

AR NN ENN
AANENNNEN
ARV AN
AANENN

AN

all queries for a truck are not fused into a single embedding,
emphasizing the critical role of the mask fusion process.

5) Visualization of Attention Maps: In Fig. 9, we explore
the relationship between queries and the point cloud, with
red indicating high correlations and blue indicating low cor-
relations. The visualization shows that things queries align
with locally concentrated points, while stuff queries focus
on points distributed throughout the scene. This highlights
the effectiveness of query embeddings in capturing relevant
features, facilitating precise segmentation mask generation
through the masked-attention mechanism.

E. Ablation Study

1) Effects of Network Components: Table VI presents the
ablation results of our proposed components.
1) Baselines: We establish a clustering-based baseline
(line 1) that integrates the dynamic shift module [1], and
two query-based baselines (lines 2 and 3) that utilize a
vanilla mask decoder. Results indicate that query-based
methods outperform the clustering method (line 1 versus
line 2), and incorporating masking embedding further
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Ablation on the number of decoder blocks and things queries on the SemanticKITTI validation set, along with the latency of mask decoding.

(a) Ablation on the number of decoder blocks. (b) Ablation on the output of different decoder blocks. (c) Ablation on the number of things queries.

TABLE VII

ABLATION ON THE DECOUPLING STRATEGY ON SemanticKITTI
VALIDATION SET, WITH DQ, HM, AND DC CLS.&SEG. WE Do
NOT USE THE MASK FUSION FOR A FAIR COMPARISON.
ALL SCORES ARE IN [%]

[ e B g [va sq v ro?
Baseline | X v 61.3|71.4 76.6 63.7 59.6
1 v v 61.4|71.5 76.6 64.0 59.6
2 v v v 61.7|71.5 764 642 59.9
3 v v v 62.4|72.0 76.6 66.5 59.5
4 v v v v 163.1/729 81.5 67.8 59.6

TABLE VIII

PER-CLASS PQ RESULTS OF SMALL INSTANCES ON THE SemanticKITTI
VALIDATION SET. ALL SCORES ARE IN [%]

Variants ‘ PQTh ‘ Bicycle Motorcycle Person Bicyclist
Baseline 63.7 524 59.6 77.1 90.3
Ours 68.8T5.1 55'5T31 67'6T84() 79.5T2_4 91'5T1-2
TABLE IX

ABLATION ON QUERY FUSION USING POSITIONAL INFORMATION AND
COSINE SIMILARITY ON THE SemanticKITTI VALIDATION SET

Position Cosine ‘ pQTh ‘ Bicycle Motorcycle Person  Bicyclist
X X 67.3 54.6 65.2 78.8 91.1
v X 68.2 54.9 67.2 79.0 91.4
X v 67.8 55.1 66.6 79.3 91.3
v v \ 68.81) 5 \ 555100 676024 795107 915104

TABLE X

ABLATION ON THE SIMILARITY THRESHOLDS 6, FOR THINGS QUERIES
FusION ON THE SemanticKITTI VALIDATION SET.
SEMANTIC-AWARE DENOTES ONLY FUSING
QUERIES WITH THE SAME SEMANTICS.

ALL SCORES ARE IN [%]

Semantic-aware  6,, | PQ  RQ SQ | PQ™ RQ™ sQ™
v 1.00 | 628 726 785 | 673 731 854
v 095|631 729 815| 679 737 925
v 090 | 632 730 81.6| 682 740 926
v 085|635 731 817 | 688 742 929
v 0.80 | 634 73.1 816 | 68.6 742 927
X 085|633 729 788 | 683 736 86.1

enhances performance (line 2 versus line 3) by integrat-
ing positional information.

2) Effects of the Query Generator: Lines 4 and 5 introduce
the query generator for stuff and things, both achieving

TABLE XI

ABLATION ON QUERY FUSION AND MASK FUSION MODULES ON THE
SemanticKITTI VALIDATION SET. ALL SCORES ARE IN [%]

query fusion mask fusion | PQ  RQ SQ | PQT™" RQ™ sQ™

X X 62.5 720 766 | 664 720 804

X v 62.8 726 785| 673 731 854

v/ b 63.1 729 815| 678 737 924

v v 63.5 73.1 817 | 688 742 929
TABLE XII

ABLATION ON THE NUMBER OF SAMPLE POINTS IN MASK LOSS ON THE
nuScenes VALIDATION SET. ALL SCORES ARE IN [%]

Sub-Sample S;,  Su; |PQ RQ SQ [PQ™ RQ™ sQ™
X - - |77.2 88.8 86.5|77.1 89.0 863
v 100 20,000|76.7 88.4 86.4| 764 883 863
v 500 20,000|77.4 88.8 86.8| 77.4 889 86.8
v 1,000 20,000|77.7 89.2 86.8| 77.8 89.5 86.7
v 500 10,000|77.0 88.7 86.4| 76.8 88.8 86.2
v 1,000 10,000|77.3 88.9 86.6| 77.4 89.1 86.5

TABLE XIII

ABLATION ON THE MASK L0OSS FUNCTIONS ON THE nuScenes
VALIDATION SET. BCE DENOTES THE BINARY CROSS-ENTROPY
LoOSS. ALL SCORES ARE IN [%]

BCE Focal Dice | PQ RQ SQ | PQ™ RQ™ sqQ™
v - v | 717 892 868 | 77.8 895 867
v v - | 764 878 865 | 760 876 864
- v v | 771 887 865| 770 89.0 863
v v v | 774 890 866 | 775 893 865

PQ gains. Specifically, the query generator for stuff
enhances PQS' by 0.3% (line 3 versus line 4), while the
generator for things boosts PQ™ by 2.7% (line 3 versus.
line 5), demonstrating its effectiveness in generating
practical query proposals. Additionally, including the
query fusion module (line 6) improves PQ, highlighting
the advantages of multiscale query fusion.

3) Effects of the Mask Decoder: Line 7 replaces the query-
oriented mask decoder with a single-layer transformer
decoder, leading to a 5% decrease in SQ compared to
line 6. This underscores the importance of the multilevel
masked cross-attention mechanism.

4) Effects of the Mask Fusion: Line 8 employs the mask
fusion module, yielding a 1.0% improvement in PQ™
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TABLE XIV

ABLATION ON MODEL SETTINGS AND EFFICIENCY BETWEEN DQFormer AND EXISTING METHODS. HERE, Ny REPRESENTS THE NUMBER OF
DECODER BLOCKS, N; DENOTES THE INSTANCE QUERY NUMBER, AND C, INDICATES THE FEATURE DIMENSION. ALL EXPERIMENTS
ARE CONDUCTED ON THE nuScenes VALIDATION SPLIT. 1 INDICATES THAT WE MEASURE THE LATENCY ON OUR
HARDWARE USING THE OFFICIALLY RELEASED CODES

Type Method | N Ny Ce| PQ RQ SQ PQM™M PQS | Params FPS
Detection-based | EfficientLPS [2] | - - - | 620 739 834 568 70.6 | 43.8M 4.0'
Clustering-based | DS-Net [1] - - - 425 503 836 325 592 | 56.5M 227
Query-based MaskPLS-M[11] | - - - | 577 660 718 644 522 | 31.5M 47F
1 150 128 | 762 881 86.1 757 771 | 419M 5.3
2 150 256 | 769 889 862 766 716 | 473M 46
Query-based DQFormer (Ours) | 5 150 256 (777 892 868 77.8 775 | 505M 45
3200 256 | 770 888 863 766 775 | 505M 4.4

over line 6 by merging duplicated instance masks, which
enhances SQ.

2) Effects of Decoupling Strategy: Table VII validates
the effectiveness of our decoupling strategy, which includes
decoupling things and stuff queries, as well as disentangling
classification and segmentation.

1) Effects of DQs: The baseline employs coupled queries
with Hungarian matching (HM), achieving a PQ of
61.3%. Variant 1, using independent learnable queries,
shows only marginal improvements due to limited initial
query information, making it less effective in outdoor
scenarios. In Variant 4, decoupled queries based on BEV
positions and embeddings achieve significant gains of
1.8% in PQ and 4.1% in PQ™. This improvement results
from better alignment of queries with their properties,
enabling the model to focus on specific areas and extract
relevant features.

Effects of decoupling classification/segmentation (DC
Cls.&Seg.): Variants 2 and 3 assign semantic classes to
queries based on BEV prediction, resulting in increases
of 0.3% and 1.0% in PQ over Variant 1. This approach
reduces similarities between different objects of the
same class, enhancing instance distinction.

3) Effects on Segmenting Small Instances: Table VIII com-
pares the PQ of small instances between DQFormer and the
baseline model, showing significant improvements. This con-
firms that our decoupling strategy effectively reduces mutual
competition between objects and large background elements,
enhancing the segmentation of smaller instances.

4) Effects of the Decoder Blocks and Things Queries:
Fig. 10 compares mask decoder block settings and object
queries, highlighting latency on an RTX A6000 GPU.
In Fig. 10(a), more decoder blocks enhance PQ and PQ™
due to the masked cross-attention mechanism and deep
supervision. Fig. 10(b) indicates that deeper blocks yield
better performance, showing gradual convergence to keypoints.
Fig. 10(c) assesses object queries N,, with optimal perfor-
mance at N, = 150; too few queries miss difficult objects,
while too many cause over-segmentation and higher costs.

5) Effects of Fusion Constraints: Table IX examines
the impact of query fusion constraints based on posi-
tional information and cosine similarities. Both constraints
enhance performance, with their combination achieving opti-
mal results. The positional constraint fuses geometrically

2)

Fig. 11. Comparison of query fusion with and without cosine similarity. The
red balls represent person queries, while the blue balls indicate car queries.
(a) w/o cosine similarity. (b) w/ cosine similarity.

close queries, while the cosine similarity constraint integrates
characteristically similar ones. This combination ensures both
geometric-consistency and instance-awareness. Fig. 11 shows
that the cosine similarity constraint effectively differentiates
adjacent individuals by highlighting gaps in their feature
similarity.

6) Effects of Query Fusion and Mask Fusion: Table X
shows that the optimal similarity threshold for fusing things
queries is Gy 0.85 with semantic-aware fusion, while
semantic-agnostic fusion results in a 6.8% decrease in SQ™
due to the risk of merging instances of different semantics.
Additionally, Table XI compares our query fusion module
with the mask fusion module from [5]. These modules
integrate queries and merge duplicated instance masks, respec-
tively, with results indicating that combining both techniques
achieves optimal performance.

7) Effects of Mask Loss: Instances are usually concentrated
in local regions, resulting in an imbalance between positive
and negative samples for mask supervision. To mitigate this,
we randomly sample Sy, points from objects and S, points
from the scene for mask loss calculation to ensure balanced
supervision. Ablation studies in Table XII demonstrate that
this sub-sampling strategy significantly enhances SQ (SQ™)
and PQ (PQ™). Additionally, Table XIII shows that combining
binary cross-entropy and dice loss yields the best performance
for mask supervision.

8) Effects of Model Settings and Efficiency: Table XIV eval-
uates the performance and efficiency of our DQFormer against
three types of methods: detection-based, clustering-based, and
query-based methods, all tested on an NVIDIA RTX A6000
GPU using the nuScenes validation set. The results show
that DQFormer significantly outperforms previous methods
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TABLE XV
DETAILED PER-CLASS RESULTS ON THE SemanticKITTI VALIDATION SET, WHICH INCLUDE BOTH SEMANTIC SEGMENTATION
AND PANOPTIC SEGMENTATION. BLUE NUMBERS INDICATE THE BEST RESULTS, WHILE BOLD NUMBERS INDICATE THE
SECOND-BEST RESULTS. ALL RESULTS IN [%]
2 - b=t
5 2 2z =] =
5} = - 5] S 5 .50
s Z > ¢ £ % 2 3 5 2 R 2
Q - = o o= — L = =
= £ £ : 2 3 : 2 E :E oz 23 : %2 : P oz o
Method Metrics | O -3 = = o & -3 = ~ & »n O m i > = = = & | Mean
PolarNet [80] IoU 91.5 30.7 38.8 464 240 541 622 00 924 47.1 780 1.8 89.1 455 854 596 723 58.1 422 | 536
SalsaNext [81] ToU 90.5 446 49.6 863 546 740 814 00 934 406 69.1 00 846 530 83.6 643 642 544 398 | 594
RangeViT [82] ToU 947 441 614 718 377 653 755 00 955 488 83.1 00 883 60.0 863 653 727 63.1 427 | 609
SPVNAS [55] IoU 96.5 448 63.1 599 643 720 860 00 939 424 759 00 888 59.1 88.0 675 73.0 635 443 | 623
Cylinder3D [57] ToU 96.4 61.5 782 663 698 80.8 933 00 949 415 780 14 875 50.0 86.7 722 688 63.0 42.1 | 649
AMVNet [83] IoU 95.6 48.8 654 887 548 70.8 860 00 955 539 832 02 909 62.1 879 668 742 647 493 | 652
He et al. [84] ToU 96.7 50.6 762 931 628 782 905 0.1 943 479 818 52 91.6 639 881 704 747 64.1 525 | 675
DQFormer(Ours) ToU 968 488 643 93.6 637 762 933 01 949 442 825 00 91.7 621 882 695 748 679 517 | 66.6
PQ 943 555 676 91.1 60.7 79.5 915 10.1 944 403 793 00 89.1 268 874 554 59.1 641 598 | 635
RQ 99.0 67.8 732 924 649 887 976 102 99.8 543 925 0.0 97.1 369 99.8 739 785 845 78.1 | 73.1
SQ 952 81.8 925 986 93.6 89.7 937 98.6 946 743 856 00 91.7 727 87.6 750 752 758 76.6| 81.7
TABLE XVI
DETAILED PER-CLASS RESULTS ON THE nuScenes VALIDATION SET, WHICH INCLUDE BOTH SEMANTIC SEGMENTATION AND PANOPTIC
SEGMENTATION. BOLD NUMBERS INDICATE THE BEST RESULTS. ALL RESULTS IN [%]
[}
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. 5 9 E ] 15) o] b s 5] =] = = = 5] s By
Method Metrics | /@ 3 ) @] @] = ~ = = = a o 0 = = > | Mean
Panoptic-PHNet [4] PQ 535 775 754 90.8 48.6 873 91.0 87.0 565 72.6 96.7 583 724 549 887 84.8| 74.7
RQ 67.7 894 80.6 955 60.5 950 974 952 654 786 998 678 88.0 69.6 99.0 97.0 | 84.2
SQ 79.1 86.7 935 950 804 919 935 913 864 923 96.8 859 823 789 89.6 874 | 882
ToU 779 524 935 93.0 57.0 88.1 839 699 69.6 863 969 753 763 753 90.7 887 | 79.7
P3Former [31] PQ 650 689 771 941 613 852 93.0 91.5 602 730 962 596 693 575 869 829 | 759
RQ 773 793 803 975 675 915 979 970 675 77.6 999 693 857 735 983 959 | 847
SQ 84.1 869 96.0 96.6 90.8 931 950 943 893 942 963 86.0 80.8 782 884 865 | 89.8
TIoU 682 403 924 832 57.0 841 763 651 732 853 965 715 741 748 896 872 | 768
DQFormer(Ours) PQ 635 748 86.8 91.6 572 851 884 815 68.1 810 967 658 71.1 59.6 872 848 | 77.7
RQ 823 923 932 97.8 725 962 981 965 773 885 999 755 864 754 979 968 | 89.2
SQ 77.1 81.0 93.1 937 79.0 885 90.1 845 881 916 968 872 822 79.0 89.1 87.7| 86.8
ToU 737 378 935 87.6 384 823 713 489 741 837 969 719 748 743 89.6 86.5| 74.1

while maintaining faster speeds than detection and clustering
approaches and comparable speeds to MaskPLS. This high-
lights the efficiency of our unified workflow, which avoids
time-consuming detection and clustering processes.

FE. Detailed Benchmarks

The class-wise performance of our DQFormer on the
SemanticKITTI and nuScenes datasets is detailed in Tables XV
and XVI. The results indicate that DQFormer excels in the RQ
metric, showcasing its effectiveness in locating and recogniz-
ing objects in large-scale scenes. It also performs comparably
on the SQ metrics and sets a new state of the art in overall PQ.
These findings highlight the success of our decoupled-query
paradigm in distinguishing objects and achieving precise
segmentation, advancing scene understanding.

V. CONCLUSION

We propose a novel framework named DQFormer using
a decoupled query paradigm for unified LPS, aiming to
address the challenges posed by foreground objects and back-
ground elements in large-scale outdoor scenes. Specifically,

we introduce a multiscale query generator that generates
semantic-aware queries based on the positions and embeddings
of things and stuff in BEV space. Moreover, we design a query
fusion module to integrate queries from multiple BEV resolu-
tions. Finally, we propose a query-oriented mask decoder by
utilizing informative queries to guide the segmentation pro-
cess. Comprehensive experiments on both vehicular and aerial
point cloud datasets demonstrate that our DQFormer achieves
state-of-the-art performance. Extensive ablation studies and
visualization results further demonstrate the effectiveness of
our method.
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