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Abstract—This paper examines a pursuit-evasion game
(PEG) involving multiple pursuers and evaders. The decen-
tralized pursuers aim to collaborate to capture the faster
evaders while avoiding collisions. The policies of all agents
are learning-based and are subjected to kinematic constraints
that are specific to unicycles. To address the challenge of
high dimensionality encountered in large-scale scenarios, we
propose a state processing method named Mix-Attention, which
is based on Self-Attention. This method effectively mitigates the
curse of dimensionality. The simulation results provided in this
study demonstrate that the combination of Mix-Attention and
Independent Proximal Policy Optimization (IPPO) surpasses
alternative approaches when solving the multi-pursuer multi-
evader PEG, particularly as the number of entities increases.
Moreover, the trained policies showcase their ability to adapt
to scenarios involving varying numbers of agents and obstacles
without requiring retraining. This adaptability showcases their
transferability and robustness. Finally, our proposed approach
has been validated through physical experiments conducted
with six robots.

I. INTRODUCTION

The Pursuit-Evasion problem holds significant potential
for applications in both civilian [1] and military [2]-[4]
domains. A growing body of literature recognizes the multi-
agent PEG since the cooperation of autonomous decision-
making pursuers can increase the task success rate. While
traditional control theories and optimization-based methods
have proven effective in scenarios with multiple pursuers
and a single evader [5]-[7], they encounter difficulties when
modeling complex real-world environments.

Drawing upon the technique of learning from agents’
interactions with the environment, Multi-Agent Deep Rein-
forcement Learning (MADRL) has been successfully applied
to the PEG. However, several drawbacks still persist in
current works: 1) Single Evader [8]-[11]. Advanced assign-
ment and collaboration strategies of pursuers are crucial
for environments that involve multiple evaders. 2) Reliance
on rule-based or pre-trained evasion policies. Such policies
adopted by the evaders can introduce the risk of overfitting
in the pursuers’ policy. 3) Insufficient emphasis on collision
avoidance [8]-[11]. Insufficient attention has been given in
previous studies to the exploration of collision avoidance
between robots and obstacles as a necessary constraint,
resulting in the game continuing even after a collision occurs.
4) Limited generalization and scalability. Most previous
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works require retraining specific policies to accommodate
varying numbers of pursuers or evaders due to the fixed
dimension of the input.

This paper investigates a decentralized scenario involving
slower pursuers and faster evaders. Both pursuers and evaders
adhere to unicycle kinematic constraints. It is assumed that
the states of all agents are observable, and obstacles are
distributed randomly throughout the environment. When an
agent collides with an obstacle, it becomes immobile and
loses its ability to interact with the environment. Successful
pursuit is defined as the pursuer and evader within a pre-
defined capture radius. The proposed scenarios in this study
introduce new challenges to the algorithm, including target
assignment, obstacle avoidance, and target guidance.

To address the limitation of low generalization and scal-
ability caused by the fixed input dimension, we introduce
a state processing technique called Mix-Attention based on
Self-Attention. This method provides a compact feature rep-
resentation for MADRL and is non-parametric in the number
of agents and obstacles. We combine Mix-Attention with the
widely-used multi-agent reinforcement learning algorithm
IPPO [12] to handle the scenario involving multiple pursuers
and evaders. Taking inspiration from [13], we train the
pursuit and evasion policies synchronously to facilitate the
complex co-evolution of policies.

In our simulation experiments, we evaluate the perfor-
mance of our approach in various scenarios with different
numbers of entities. We measure the success rate, travel
distance, pursuit cost, and per-evader cost. Additionally, we
assess the generalization capability of the trained policy by
testing it in environments with different numbers of entities
from the training setup. The experimental results demonstrate
that our method significantly outperforms other approaches.

The main contributions can be summarized as follows:

1) The paper considers collision avoidance and motion
constraints within a decentralized multi-pursuer multi-
evader pursuit-evasion game.

2) A novel state processing method named Mix-Attention
is introduced and combined with IPPO. The approach
achieves lower training costs, better performance, and
improved scalability compared to Bi-RNN and Mean-
Embedding.

3) The effectiveness of the learned policies is demon-
strated through a physical experiment involving four
autonomous robots pursuing two targets, showcasing
successful policy transfer to the real world.

The remaining sections of the paper are organized as

follows: Section II provides a review of relevant works. Our
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approach is presented in Section III. Section IV offers details,
results, and analysis of the simulation experiments. Section V
elaborates on the implementation of the physical experiment.
Finally, conclusions are drawn in Section VI.

II. RELATED WORK
A. Non-learning methods in Pursuit-Evasion

Many non-learning approaches to the pursuit-evasion
problem are rooted in differential game theory [14], graph
theory, biological behavior theory, or probabilistic game
theory.

Differential game theory explores the multi-pursuer single-
evader PEG [5], [6] and the single-pursuer multi-evader
PEG [15], [16] by considering continuous states and actions
of the agents, with the state variables evolving through
differential equations. Some works adopt a discrete graph
representation of the environment [17]-[19] and employ
graph theory to analyze it. Additionally, heuristic solutions
inspired by biological perspectives [20]-[22] utilize compu-
tational simulations to study emergent behavior in groups.
Certain solutions [23], [24] frame the problem within the
theoretical framework of probabilistic games.

Most of the aforementioned works make assumptions
about holonomic agents and known environmental dynam-
ics. However, challenges arise when dealing with scenarios
involving a growing number of entities, motion constraints,
and randomly located obstacles, making it difficult to model
complex environments and establish suitable objectives.

B. Deep Reinforcement Learning in Pursuit-Evasion

The majority of works in deep reinforcement learning
(DRL) have focused on scenarios with multiple pursuers and
a single evader. In [8], the Twin Delayed Deep Deterministic
Policy Gradient (TD3) [25] algorithm was employed to train
a decentralized, shared policy for homogeneous pursuers un-
der unicycle kinematic constraints. In [9], a communication
protocol based on learning was proposed for communication
among pursuers. In [10], the Multi-Agent Deep Deterministic
Policy Gradient (MADDPG) [26] algorithm was employed
to train the pursuit policy for the task with multiple pursuers
and a single evader.

The large-scale decentralized PEG has received minimal
attention. In a recent work [27], a group pursuit-evasion
strategy for large-scale multi-player scenarios was proposed.
The strategy is based on Mean Field Games theory [28] and
an actor-critic framework. A successful capture was defined
as the average positions of the pursuers matching those of
the evaders.

In most of the aforementioned works, evasion policies
are either rule-based or pre-trained, potentially leading to
overfitting risks when training the pursuit policy. Addition-
ally, collision avoidance, which is imperative in real-world
scenarios, has been neglected.

C. Policy Generalization and Scalability

Due to the fixed-dimensional input requirement of policy
networks, most models are trained for a specific number

of agents, which limits their generalization and scalability.
Moreover, as the number of agents and obstacles increases,
the length of observation data increases as well. Sim-
ply flattening or concatenating these observations as fixed-
dimensional inputs would result in a dimension explosion
and the well-known curse of dimensions.

In the work [29], a state representation method for multi-
agent deep reinforcement learning is proposed. This method
utilizes the mean-embedding of distributions to tackle the
curse of dimensions. The agents are treated as samples, and
their empirical mean-embedding is used as input for a decen-
tralized policy. The researchers combine this representation
method with Trust Region Policy Optimization (TRPO) [30]
and validate it within the PEG.

To improve the generalization and scalability of the policy,
the work [31] combines Bi-RNN and Deep Deterministic
Policy Gradient (DDPG) [32]. This combination allows new
agents to join the game without requiring the entire system
to be retrained. However, it is worth noting that these envi-
ronments do not include obstacles, and collision avoidance
between agents is not considered in their approach.

III. DEEP REINFORCEMENT LEARNING FOR
PURSUIT-EVASION

We define each agent’s task as a Markov Decision Process
(MDP), which is represented by a tuple (S,A,P,R,7).
Here, S denotes the set of states, A represents the set of
actions, P refers to an unknown transition probability model,
R represents the reward model, and « € (0, 1] is a discount
factor. At each time step ¢, the agent, located in state s;, takes
action a; based on the policy 7y (a¢|s:). Subsequently, the
agent receives a reward r; and transitions to the next state
st+1. The policy 7y (a¢|s;) is parameterized by 6, and the
objective of DRL is to maximize the discounted accumulated
reward J (0) = Eut o[>, v R (s",a")]. To enhance train-
ing efficiency, we utilize the parameter-sharing technique
[33] because all pursuers and evaders are homogeneous.
Specifically, each pursuer uses a shared policy g, (a|st)
parametrized by 0, and each evader uses a shared policy
7o, (a¢|st) parametrized by 6.. The policies 7y, (a¢|s;) and
mo, (at|st) are trained using the experiences of all pursuers
and all evaders separately.

A. The Pursuit-Evasion Scenario

We consider a circular arena with a radius of Rg,enq that
contains multiple pursuers, evaders, and randomly placed
obstacles. The pursuers are slower but have a numerical ad-
vantage over the evaders, who are faster but fewer in number.
All agents have complete knowledge of the environment.
The objective of the pursuers is to cooperatively capture the
evaders in the shortest possible time, while the goal of the
evaders is to avoid capture by the pursuers. A successful
pursuit is defined as the distance between a pursuer and
an evader being less than a specified capture radius e, i.e.,
lze (t) — xp (t)]] < €, where z.(t) and z, (t) are the
positions of the evader and the pursuer at time ¢, respectively.
Here, ||-|| represents the Euclidean norm and € > 0. Notably,
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Fig. 1: The state normalization employing the heading-frame.

our approach differs from previous works in that we consider
collision avoidance as a mandatory constraint (relevant, for
instance, in situations involving the capture of rogue boats
at sea, which necessitates avoiding collisions with islands
and reefs). If an agent collides with walls, obstacles, or
other agents, it becomes immobilized and can no longer
interact with the environment. Furthermore, both pursuers
and evaders are subject to the unicycle kinematic constraints.
These constraints are represented by the following equations:

T =vcosy (1a)
y =wvsiny (1b)
v =w (1c)

where (z,y) denotes the position of the agent, 1) represents
the heading angle, v denotes the linear velocity, and w
represents the angular velocity. The controllable variables
for both pursuers and evaders are the linear velocity v with
limits 0 < v < VU4, and the heading angular rate w with
limits —wpar < W < Wpaee. In our scenario, we adopt a
discrete action space to emphasize the motion strategies of
pursuit, evasion, and collision avoidance rather than precise
movement actions.

B. State & Action Space

State normalization can enhance the efficiency and stabil-
ity of reinforcement learning raining. However, in the multi-
pursuer multi-evader scenario, the ego-frame [34], [35],
which is commonly used in single-goal tasks like multi-
agent navigation and multi-pursuer single-evader tasks, is
not suitable due to the presence of multiple targets. To
address this issue, we employ the heading-frame instead
of the ego-frame. In the heading-frame, the origin of each
agent’s heading frame corresponds to its position in the fixed
world frame, and the X-axis of the agent’s heading-frame
represents its heading direction.

The state normalization method, depicted in Fig. 1, em-
ploys the heading-frame. The state of each agent ¢ is com-

posed of three components: own state, other agents’ state,
and obstacles state. First, the own state is described as
[gis 70, 00, v;], where g; represents a flag indicating whether
agent 1 is involved in a collision, 7, and 6, denote the polar
representation of the world frame origin in the heading-frame
of agent ¢, and v; denotes the linear velocity of agent 3.
Second, for each other agent j # i, their state is given by
[gj, dij,0i5, 07,0 ] Here, g; is a flag indicating whether
agent 7 is engaged i 1n a collision, d; ; represents the distance
between agent ¢ and agent j, 6; ; is the polar angle of agent
J in the heading-frame of agent ¢, and v} ; and vY . ;; denote
the projections of the velocity vector along the x and y axes
of the heading-frame of agent ¢. Third, the state of each
obstacle k is described as [d; k, 0; k], where d; j, represents
the distance between agent ¢ and obstacle k, and 6; ;, denotes
the polar angle of obstacle k£ in the heading-frame of agent
1.

In our scenario, we utilize a discrete action space, allowing
for control over both linear velocity (v) and angular rate (w).
The linear velocity ranges from 0 to vjy,45, While the angular
rate ranges from —wy,qz 10 Wiae. Specifically, we assume
that the discrete linear velocity has a cardinality of N,, and
the discrete angular rate has a cardinality of N,,. As a result,
the discrete action space has a total cardinality of N, x N,,,.
Each combination action, denoted as [v,w], can be uniquely
represented by its corresponding index through the following
equations:

Umax
v = m (nv ].) ,Where N, € [l,Nv] (23)
= - —|—2wﬂ( — 1), where n, € [1, N,]
W = —Wmazx N, —1 N , W N y IVw
(2b)

C. Reward Structure

Assuming there are m agents and n obstacles in the
circular arena. At each step, each agent takes action based
on its policy and receives an individual reward. We design
a compound reward function that considers distances to
meet the requirements of the complex task. Specifically,
for agent i taking action, we obtain its distance from
the wall (di ), its distance set from all obstacles (D! =
{alt) df 2 ,dS"™ 1), its distance set from its teammates
(Di = {d(7 Y d(z 2) d(z - 1)}), and its distance set from
opponents (DO = {d(l D d(l D dlm,

We define a common reward functlon for both pursuer and
evader to avoid collisions:

Te, if £ <0
_ ddanger_m 'f 0 < d
fC(‘T) =9Te daanger+x’ 1 < Z < ddanger
0, otherwise.

where z is the distance between entities, 7. is the negative
reward for collisions, and dggnger iS a constant. Once = <
ddanger> fo(z) becomes negative.

Another aspect of the reward is to encourage pursuit and
evasion behaviors.
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The reward of pursuer ¢ to encourage pursuit behavior is:

m—k
Z fp puej

j=1
where f, (p;,e;) is
— (d 10 mp) , if e; is not captured
Io (Pires) = § ry, if e; is captured by p;
fe (d(()i;j)> , otherwise.

Here, p; is pursuer 4, e; is evader j, dcqp is the capture
distance, and 7 is the reward for successful capture.
In time step t, the total reward of pursuer ¢ is given by:

Yo fel(d)+

deD}uD;

m—k
) = f. (dL) + 3 fopie) 3
j=1

The reward of evader j to encourage evasion behavior is:

£(e;) re, if e; is not in a collision or captured
(2 =
o 0, otherwise.
where 7. is a positive reward to encourage evasion behavior.
The total reward of evader j in time step ¢ is given by:

"= @)+ Y @) fle) @
diepiupiuDi,
D. Action Mask Module

The presence of randomly located obstacles in the environ-
ment necessitates that agents take into account the possibility
of colliding with walls or obstacles when selecting actions.
Given that pursuers and evaders have discrete action spaces
and walls/obstacles remain static, we utilize an action mask
module in our experiments.

The fundamental concept underlying the action mask
module is to mask actions that would lead to collisions with
walls or obstacles. Importantly, the action mask module does
not consider actions that could result in collisions with team-
mates, as agents are dynamic entities in the environment.
Instead, these actions are penalized with negative rewards
to foster the learning of collision avoidance strategies with
teammates. Furthermore, in certain cases where an agent
is positioned in close proximity to an obstacle, considering
kinematic constraints, all actions within the discrete action
space would inevitably lead to a collision. To mitigate this
situation, we integrate a penalty into our reward design for
being too close to walls/obstacles.

E. State Processing

The state processing structure is illustrated in Fig. 2 and
referred to as Mix-Attention. Mix-Attention leverages self-
attention [36] to facilitate the integration of information from
all entities during state processing. It involves defining a
projection function based on neural networks for each entity
type. By applying the corresponding projection function,
each agent’s original state is transformed into query, key,
and value components.

self-attention
projection projection
'Y 1 Y
14 14

Self Informatlon l
' proj e(‘t\on ' proj emon sum

Friends Informallon

' projection E projection sum
— Eﬂl —) —)

Opponents Information

' prolecuon ' DfOJECUOn

Obstacles Information

Fig. 2: The state processing process of Mix-Attention.

The state processing network is trained end-to-end through
reinforcement learning. The use of projections offers several
advantages: first, it ensures that the resulting embeddings
remain unaffected by the permutation of entities, enabling
consistent representation across different entity orderings.
Second, the scale of projection function parameters is inde-
pendent of the scale of entities, thereby addressing challenges
associated with large system sizes and preventing inefficien-
cies in the learning process [37].

IV. SIMULATION EXPERIMENTS

In this section, we conduct extensive experiments to
compare the performance of our approach with the three
baseline methods outlined in Section IV-A. To ensure a fair
comparison of different feature representation networks, we
utilize the same configuration for training and evaluating
each method. Given that the policies of the evaders and
pursuers are trained synchronously, facilitating their co-
evolution, we introduce a cross-confrontation method in
Section IV-B to assess the performance of the different
methods. In Section IV-C, we present the evaluation metrics
employed in our simulation experiments. Subsequently, we
analyze the performance of the different methods from both
the pursuer and evader perspectives, considering various
scales of entities in Section IV-D. Section IV-E evaluates the
generalization capability of policies trained using different
methods, examining the scaling up of the number of entities
without the need for retraining new policies. Lastly, in
Section IV-F, we analyze the emergent group behavior of
the multi-agent system.

The experimental environment configuration is displayed
in Table I. The pursuer’s and evader’s linear velocities are
discretized into three and five options, respectively. Similarly,
the pursuer’s and evader’s heading angular velocities are
discretized into 13 and 19 options, respectively.

A. Baseline Methods

We implemented three state processing methods combined
with IPPO as our baseline: MLP, Bi-RNN [31], and Mean-
Embedding [29]. MLP directly concatenates observations
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TABLE I: Environment configuration

TABLE II: Results of 16 pursuers, 4 evaders, and 4 obstacles

Item Variable Value Evader’s | Pursuer’s | Average | Average | Average Average
Simulation Timestep 02s Policy Policy Success Travel Pursuit | Per-Evader
Max Iteration Time Per Episode 200 s Rate distance Cost Cost
Environment Shape Circle E}‘\:{ip4~ D ( Ifif'rfl) 0.995 3.948 432 1.085
— lgi‘;iues C5_r’£e Pf;g ;;Lj) 0998 | 2.954 3.89 0.975
1 16,4,
Minimony Radius 03 m - Pé%xé‘ 41 1000 | 3527 435 1.088
Maximum Radius 0.5m Epi-rNN P%lgli Py 0.565 19.805 7.05 3.119
Pursuer ShaPe Circle Mg’)f‘ﬁ) 0.470 18.477 3.71 1.973
Radius 0.1'm pie.* 0.863 | 20694 | 5.18 1.501
.Maximum Linear Velocity . 0.2 m/s E;:I(I)-: :&4) pU6. 4.4 0.193 22.096 532 6.909
Maximum Heading Angular Velocity | 7/3 rad/s M&Pzt, 4)
— Shane A P?I%RM 0.648 | 29.808 5.26 2.031
Radius 0.15 m Pyurx ) 0.748 27.832 4.42 1.478
Maximum Linear Velocity 0.4 m/s Egr P;;g,f ] 0638 | 16641 | 856 3357
Maximum Heading Angular Velocity | 7/2 rad/s P! i_i{;,@ 0.733 | 27303 | 544 1.857
pﬁgm‘” 0503 | 19276 | 3.52 1751

into a fixed dimension; Bi-RNN takes the features of the
entities as the sequence input of the network; and Mean-
Embedding treats the entities as samples and uses the em-
pirical embedding as the feature representation.

Since the works mentioned above consider single-evader
and assume no obstacles in the environment, we adapted
their approach based on their main idea to fit our setting.
Specifically, we designed an embedding module based on Bi-
RNN or Mean-Embedding for each type of entity. Because
non-permutation-invariant neural networks such as MLP and
Bi-RNN can lead to inefficiencies in learning when operating
on sets [37], we sorted the observed agent information by its
type and the relative distance in order to make training more
efficient and comparisons fairer.

B. Policy Cross-Confrontation

Given that the pursuit and evasion policies are learning-
based and trained synchronously, a key concern arises re-
garding how to evaluate their performance. It becomes chal-
lenging to differentiate whether a successful capture is a
result of the pursuer’s strong performance or the evader’s
poor performance.

To address this issue, we employ the concept of cross-
confrontation in our experiments. Firstly, we utilize four dis-
tinct methods (MLP, Mean-Embedding, Bi-RNN, and Mix-
Attention) as state processing structures. We train simultane-
ous policies of pursuit and evasion using IPPO, facilitating
the co-evolution of policies. By conducting training for 10
million time steps, we obtain a pursuit policy and an evasion
policy for each co-evolution.

Subsequently, we evaluate the efficacy of the evolved
strategies by cross-comparing the pursuit and evasion poli-
cies derived from different co-evolutions. In these cross-
versus scenarios, the opponent’s policy differs from the one
employed during training. For the sake of convenience, we
denote the policies obtained using the method method and
trained with m pursuers, n evaders, and k obstacles as
pimnk) o B here P oand B represent the pursuit

method method® .
and evasion policies, respectively.

C. Evaluation Metrics

We perform 100 trials for each comparison and utilize four
evaluation indices: Success Rate, Travel Distance, Pursuit
Cost, and Per-Evader Cost, to assess the performance of
the policies. Let m represent the number of pursuers and
n the number of evaders in the environment. In a trial where
m’ pursuers and n’ evaders collide, the Success Rate is
determined by the proportion n’/n, indicating the number
of incapacitated evaders after a simulation trial.

The Travel Distance is computed as the average distance
traveled by all pursuers, which is obtained by summing
the travel distances of each pursuer (d;) from 1 to m, and
dividing it by m. Meanwhile, the Pursuit Cost signifies the
number of incapacitated pursuers after a trial, which corre-
sponds to m/. Additionally, the Per-Evader Cost represents
the average number of pursuers required to successfully
capture an evader. It is calculated by dividing n’ by m/’.

D. Effect of the Scale of Entities

In this section, we aim to assess how the scale of entities
impacts the performance of different methods through policy
cross-confrontation across three entity scales. The results
of policy cross-confrontation for each environment, distin-
guished by their entity scales, are presented in Table II, III,
and IV.

Regarding the pursuit policy, Mean-Embedding and Mix-
Attention demonstrate a significant advantage in terms of
Average Success Rate compared to MLP and Bi-RNN. The
pursuit policy utilizing Mix-Attention surpasses other pursuit
policies with respect to the Average Per-Evader Cost perfor-
mance index. This implies that it achieves a considerable
Average Success Rate while incurring lower pursuit costs
than other state processing structures.

On the other hand, the evasion policy exhibits under-
performance when using MLP and Bi-RNN. Although the
evasion policy employing Mean-Embedding outperforms the
Mix-Attention policy in environments with smaller entity
scales, as the entity scale increases, the evasion policy using
Mix-Attention dominates the Mean-Embedding policy across
nearly all performance indexes.
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TABLE III: Results of 20 pursuers, 5 evaders, and 8 obstacles

Evader’s | Pursuer’s | Average | Average | Average Average
Policy Policy Success Travel Pursuit | Per-Evader
Rate distance Cost Cost

EQ. ™ | POy | 0998 [ 2743 6.30 1.263
P%O’gf) 0.998 | 3.068 5.26 1.054

waii | 1000 | 3637 4.96 0.992

ES o | Pore | 0708 | 14526 | 834 2356
Pﬁé‘l 20| 1.000 | 9.690 5.68 1.136

P;ZIE;?N 1 0992 | 12271 5.38 1.085

EGe Y szgp”) 0440 | 17513 | 731 3323
P! i_;{}’fj) 0760 | 21614 | 7.61 2.003

Pfi%( S| 0932 | 20138 | 556 1193

E{ Y P@i’j*‘) 0542 | 15.306 9.15 3.376
P! i_i{;,? 0.802 | 20432 | 9.12 2274

P%%Aﬁ 0932 | 21375 | 6.1 1311

TABLE IV: Results of 24 pursuers, 6 evaders, and 12

TABLE V: The pursuit policy transfer to the environment
with fewer entities

Evader’s | Pursuer’s | Average | Average | Average Average
Policy Policy Success Travel Pursuit | Per-Evader
Rate distance Cost Cost
16, 4,9 (20,3, 8)
Eyvip %@Rylg 0.998 3.482 4.86 1.218
Pl‘ﬁ'g/’gN ) 1.000 3.116 3.94 0.985
Py | 1000 | 3.003 | 374 0.935
16,4, 9 (20,3, 8)
Egi kNN P%AsNg 0.835 20.949 4.39 1.314
Pl | 0915 | 19335 | 4.04 1.104
16,4, 9 (20,5.8)
EyiEaN BN 0.390 27.899 3.59 2.301
P ) 0.868 22.598 3.71 1.069
16, 4,9 (20,5, 8)
Evrk BRNN 0.788 21.943 6.52 2.070
Pinae | 0893 | 22985 | 453 1.269

TABLE VI: The pursuit policy transfer to the environment
with more entities

Evader’s | Pursuer’s | Average | Average | Average Average
obstacles Policy Policy Success Travel Pursuit | Per-Evader
Evader’s | Pursuer’s | Average | Average | Average Average Rate distance Cost Cost
Policy Policy Success Travel Pursuit Per-Evader Eﬁtp& » iﬁ?ﬁi@ﬁ) 0.998 3.263 7.92 1.322
Rate | distance | Cost Cost PP | 1000 | 2.899 6.24 1.040
Egre 2 | PRSP | 0995 | 3190 6.72 1.126 Pg?ﬁ ® | 0988 | 688l 5.79 0.976
P%;%{m 1000 | 2779 6.16 1.027 Eo | P | 1000 | 7.523 7.08 1.180
PULO1D | 1,000 | 2570 5.93 0.988 Punc Y | 0997 | 13.058 | 636 1.064
Epan | Pae ™ | 0867 | 6727 11.50 2211 Evpc” | Phoeie | 0823 | 15803 | 1083 2.192
P;Z%» /§N 21 1000 | 5725 6.68 1.113 Pfﬁ?}* © | 0940 | 20449 | 6.8 1.202
PLs 2 | 1.000 4.191 5.96 0.993 EGn ™ | PL DT 0738 | 18743 | 11.04 2.492
EG P@P@'”) 0378 | 7.939 8.20 3.616 Pivan. | 0900 | 20796 | 8.12 1.504
PUEOY | 0943 | 14928 | 820 1.449
Pusc 2 | 1000 | 7745 6.49 1.082
EGLE T P;;;‘P&'z) 0.502 7.365 11.05 3.669
P! "i‘z"”?) 0912 | 16275 8.59 1.570 number of entities without retraining the pursuit policies
Pfi;,m”) 0.985 14.509 8.05 1.362 leads to performance deterioration across all indicators, in

E. Generalization and Scalability

In this section, we assess the generalization and scala-
bility of the policies by directly transferring them to test
environments where the opponent’s policy and the number
of entities (pursuers, evaders, and obstacles) differ from the
environment used for training. Specifically, we transfer the
pursuit policies trained through different co-evolutions in an
environment with 20 chasers, 5 evaders, and 8 obstacles to
environments with fewer entities (16 pursuers, 4 evaders,
and 4 obstacles) and more entities (24 pursuers, 6 evaders,
and 12 obstacles) without retraining. The results of these
experiments are shown in Table V and VI

Comparing the results in Table II and V, we observe
that the pursuit policies trained in environments with more
entities than the test environment perform well in the test
environment, even outperforming specifically trained pursuit
policies with the same number of entities as the test en-
vironment. This may be attributed to the parameter-sharing
mechanism, which can utilize more parallel empirical data to
train the policy in environments with more entities, resulting
in faster convergence. However, when comparing the results
in Table IV and VI, we find that directly scaling up the

contrast to specifically trained policies in environments with
the same number of entities as the test environment. In the
presence of a change in the scale of entities, the pursuit
policies using Mean-Embedding or Mix-Attention exhibit
more stable performance compared to the pursuit policy
using Bi-RNN, while the policy using MLP fails to adapt
to the scale change due to the fixed-dimension input.

F. Analysis of Emergent Behavior

During the co-evolution of pursuit and evasion policies,
we have observed interesting emergent group behaviors that
appear to be crucial for successful captures.

Fig. 3a illustrates a highly cooperative behavior exhibited
by the pursuers. The three pursuers on the right side of
the box are actively attempting to drive the evader to the
left, while the two pursuers on the left side of the box
strategically position themselves to block the potential escape
routes through the obstacles.

Fig. 3b demonstrates the pursuers’ ability to switch targets.
The pursuer on the right side of the box has already collided
with an evader, prompting the other pursuers to redirect their
pursuit towards different evaders to avoid wasteful pursuit
costs.

Fig. 3c we observe the pursuers’ tendency to trust their
teammates. Despite the presence of an uncaptured evader in
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Fig. 3: The learned emergent group behaviors during the co-evolution of pursuit and evasion policies. (a) The highly
cooperative behavior of the pursuers. (b) The target-switching behavior of the pursuers. (c) The pursuers’ trusting behavior.

(d) The behavior of exploiting the obstacles.

Fig. 4: The multi-pursuer multi-evader PEG in the real world.

The trajectories of all robots showed in the constructed map.

the box, the pursuer on the left side of the box has decided
to move on and capture other evaders. This decision is based
on the belief that the evader in the box can be successfully
captured by other teammates within a few time steps.

Fig. 3d showcases the pursuers’ skill in exploiting ob-
stacles. The three pursuers in the lower part of the box
collaborate to drive the evader towards the upper part, where
the presence of obstacles and the restricted movement space
between the pursuers and the evaders limit the options for
evasive maneuvers.

V. DEMONSTRATION ON PHYSICAL WORLD

The experiment was conducted in a real-world setting
using Ubuntu 18.04 with ROS Melodic. The experiment
took place in an indoor environment with a radius of ap-
proximately 3 meters. Our approach was demonstrated in
a scenario where four pursuers were chasing two evaders.
The pursuers were represented by Ackerman robots, while
the evaders consisted of a differential chassis robot and a
Mecanum wheels robot. Communication between all robots
was established through a WiFi module connected to a router.

To facilitate sim-to-real transfer, we trained the pursuit
and evasion policies in a simulation environment described
in Section III-A. The state spaces and action spaces for

(b)

(a) The trajectories of all robots in a successful pursuit. (b)

the pursuers and evaders were detailed in Section III-B.
The linear velocity and angular velocity of each robot were
determined by the integer output of the policy network. It is
important to note that due to the Ackerman chassis motion
constraint on the pursuer robots, we excluded actions that
had a turning radius smaller than the minimum turning radius
when sampling from the policy network.

We constructed the indoor environment map using the Car-
tographer algorithm [38]. Each robot utilized the Adaptive
Monte Carlo Localization (AMCL) algorithm to determine
its position on the map and published its location and
pose topic. All the required information for our algorithm
was obtained from the robots’ onboard sensors. The be-
havior of each robot was computed on a local computer
and transmitted wirelessly to the robot at a rate of 5 Hz.
Although our setup involved a centralized system with the
local computer and robots, our methodology can still be
adapted for a decentralized system if the onboard processors
on each robot can be utilized for neural network inference.
Fig. 4a showcases a successful decentralized pursuit-evasion
demonstration, with trajectories of the robots drawn on the
constructed map. The resulting trajectories can be observed
in Fig. 4b.
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VI. CONCLUSION

We propose a decentralized approach based on MADRL to
address the pursuit-evasion problem involving multiple pur-
suers and evaders while considering collision avoidance. The
learning-based policies of pursuers and evaders are trained
synchronously to achieve co-evolution. Each agent, adhering
to unicycle kinematics, independently determines its own
action. Simulation results demonstrate that our approach,
which incorporates the Mix-Attention network as the feature
processor, offers superior generalization in both pursuit and
evasion policies as the number of entities increases. Compar-
atively, it outperforms the mean-embedding network and the
bidirectional RNN network commonly employed in recent
MADRL-based approaches. Furthermore, we validate the
feasibility of our algorithm through real-world experiments
involving up to six robots with motion constraints.
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