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Abstract

Temporal action proposal (TAP) aims to detect the action instances’ starting and ending times in untrimmed videos, which
is fundamental and critical for large-scale video analysis and human action understanding. The main challenge of the
temporal action proposal lies in modeling representative temporal relations in long untrimmed videos. Existing state-of-the-
art methods achieve temporal modeling by building local-level, proposal-level, or global-level temporal dependencies. Local
methods lack a wider receptive field, while proposal and global methods lack the focalization of learning action frames
and contain background distractions. In this paper, we propose that learning semantic-level affinities can capture more
practical information. Specifically, by modeling semantic associations between frames and action units, action segments
(foregrounds) can aggregate supportive cues from other co-occurring actions, and nonaction clips (backgrounds) can learn
the discriminations between them and action frames. To this end, we propose a novel framework named the Mask-Guided
Network (MGNet) to build semantic-level temporal associations for the TAP task. Specifically, we first propose a Foreground
Mask Generation (FMG) module to adaptively generate the foreground mask, representing the locations of the action units
throughout the video. Second, we design a Mask-Guided Transformer (MGT) by exploiting the foreground mask to guide the
self-attention mechanism to focus on and calculate semantic affinities with the foreground frames. Finally, these two modules
are jointly explored in a unified framework. MGNet models the intra-semantic similarities for foregrounds, extracting
supportive action cues for boundary refinement; it also builds the inter-semantic distances for backgrounds, providing the
semantic gaps to suppress false positives and distractions. Extensive experiments are conducted on two challenging datasets,
ActivityNet-1.3 and THUMOS 14, and the results demonstrate that our method achieves superior performance.
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1 Introduction for video understanding. Human action understanding
tasks are also long-term research goals owing to their

With the explosive growth of video data on the Internet,  various applications. Temporal action localization (TAL),
video summary tasks have become increasingly crucial a combination of the above two tasks, has attracted
the attention of many researchers. It aims to detect
action instances in an untrimmed video by predicting the
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yongliu@iipe.zju.edu.cn categories. It has various application scenarios, such as
Yu Yang intelligent security surveillance, human behavior analysis,
yu.yang@zju.edu.cn and video editing. For instance, TAL can detect abnormal
human behaviors to remind people timely in security
surveillance. It can also boost human behavior analysis
by localizing keyframes. For video editing, it can detect
Jianbiao Mei wonderful segments and help extract the highlights of a
jianbiaomei@zju.edu.cn video. Temporal action localization can be divided into
temporal action proposals (TAP) and action recognition.
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TAP task. It determines where the action events occur in
a long untrimmed video, generally implemented by action
boundary localization and action proposal scoring. The
diverse action contents in untrimmed videos make temporal
action proposals a more compelling yet challenging task in
video analysis.

The main challenge of temporal action proposals is
exploiting temporal relations between different timestamps.
Depending on the scale of temporal correlation modeling,
previous methods can be categorized into three types: local-
level, proposal-level, and global-level methods. Local-level
methods utilize ConvNets to regress predefined anchors’
boundaries [15-17, 24, 32, 50, 59] or evaluate each frame’s
actionness probability [25, 34, 47, 56, 57]. However, these
local-level methods only exploit inadequate local infor-
mation and lack a wider receptive field. Proposal-level
methods construct proposal representations to capture more
temporal contexts. They adopt 2D convolution on the
proposal feature map [22, 23] or the Graph Convolutional
Networks (GCNs) [2, 48, 54, 55] to model the proposals’
relationships. Global-level methods [18, 31, 35, 45, 60, 63]
adopt the query-and-retrieval procedure or the video trans-
former to encode global temporal inter-dependencies. How-
ever, these proposal-level and global-level methods lack the
focalization of learning the semantic similarities/distances
between each frame with the action segments.

We argue that semantic-level affinities usually contain
more practical information than global relations. As
shown in Fig. 1, an action video usually contains many
background clips, such as ‘cheering’, which is easy to be
wrongly classified as a false positive sample due to its
similar appearances with foregrounds. Therefore, exploiting
semantic-level similarities is necessary to determine the
distinctions and further boost the action localization. Based

on the intuition above, this paper investigates the semantic-
level affinities between foregrounds (action segments) and
backgrounds (nonaction frames) from two perspectives:
1) Intra-semantic similarity: for the foreground segments,
learning the intra-semantic similarities from other action
clips can extract more supportive cues. For example, in
Fig. 1, the table tennis table in the latter frames provides
scene information for the former action clip, which lacks
practical scenes due to the camera pose. The supportive
cues from the latter action clip enhance the former’s
belief that the action is more likely to be playing table
tennis, thus achieving more precise action localization.
2) Inter-semantic similarity: capturing the inter-semantic
distance between background segments and foregrounds
helps discriminate their similar appearances or motion
patterns, thus suppressing false positives and background
distractions.

In this paper, we focus on exploiting semantic-level
affinities to capture more efficient information for the TAP
task. To this end, we focus on two problems: calculating
semantic similarity with which segments and how to mine
semantic associations. 1) For the first problem, we argue
that action-relevant frames are essential to be focused on
since they always contain more informative video scenarios.
So we set the action frames as the foregrounds, allowing
each frame to learn the semantic affinities between them
with the actions. 2) For the second question, we design
a mask-guided self-attention mechanism. It promotes the
foreground segments to aggregate action cues by computing
the intra-semantic similarity. It also guides the backgrounds
to calculate the inter-semantic distance to restrain false
positives.

Specifically, we present a novel framework named
MGNet for the temporal action proposal task. MGNet fully

Time

Foregrounds

Backgrounds

Intra-semantic Similarity +——»

Inter-semantic Similarity <« — — —»

Fig. 1 Illustration of our motivation. A play table tennis video con-
tains a cheering segment, which is often wrongly classified as a false
positive. Learning intra-semantic similarity of foregrounds can extract

supportive cues form co-occurring action clips to refine action bound-
aries. Modeling inter-semantic distance between backgrounds with
foregrounds can suppress false positives and distractions
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exploits the semantic-level affinities to provide supportive
cues for action segments and capture discriminations
for background clips. We first propose a Foreground
Mask Generation (FMG) module to adaptively generate
the foreground mask, representing the locations of the
action-relevant frames throughout the video. Second, we
design a Mask-Guided Transformer (MGT). It exploits the
foreground mask to guide the self-attention mechanism
to build semantic associations. In this way, foreground
predictions can refine their action boundaries based on
the learned action cues; background distractions and
false positive predictions are suppressed according to the
semantic gaps. Finally, MGNet can be trained end-to-end
from scratch to learn semantic-level affinities adaptively.

We evaluate our proposed method on two popular
benchmarks, ie., ActivityNet-1.3 [6] and THUMOS14
[21], for the TAP and TAL tasks. Experimental results
demonstrate that our MGNet outperforms the state-of-the-
art TAP methods, with the AUC reaching 68.85% on
ActivitNet-1.3 and 45.4% @50 on THUMOSI14. It also
exceeds in the TAL task, with an average mAP that reaches
48.4% on THUMOS 14, surpassing RTD-Net [35] 4.8% and
TCA-Net [31] 4.0%, respectively.

In summary, our main contributions are as follows:

— We propose a novel MGNet for the TAP task. To the
best of our knowledge, this is the first work that exploits
semantic-level affinities with foregrounds to capture
semantic associations for TAP.

—  We design a Foreground Mask Generation (FMG)
module to generate the foreground mask representing
the timestamps of the action-related frames, which are
then employed as prior knowledge to guide the self-
attention mechanism learning semantic similarities.

—  We propose a Mask-Guided Transformer (MGT), which
exploits the foreground mask to model the semantic-
level affinities. It models the intra-semantic similarities
for foregrounds, providing supportive cues to refine
their action boundaries. It also determines the inter-
semantic distances for backgrounds, suppressing false
positives and distractions.

— Extensive experiments demonstrate that our method
outperforms the state-of-the-art methods in temporal
action proposal and temporal action localization tasks
on ActivityNet-1.3 and THUMOS 14 datasets.

2 Related works
2.1 Video understanding

Nowadays, huge amounts of video data are generated
in people’s daily social contact and security monitoring.

@ Springer

As a result, automatic video understanding has become
increasingly important and a hot topic with a wide range of
applications. For example, for video surveillance, person re-
identification (Re-ID) technology [52] can help to retrieve
surveillance videos, action recognition technology [20] can
monitor dangerous behaviors, small objects detection [30]
can detect contraband from security videos. In addition,
the knowledge of 2D video understanding can be extended
to other vision tasks, such as visual odometry [62], point
clouds analysis [19], 3D object detection [44], and depth
map estimation [36]. We aim at the video temporal action
proposal task, which localizes the human action segments
from a long video. It can be applied to intelligent monitoring
and extended to video summary and recommendation tasks.

2.2 Video action recognition

Action recognition is a fundamental task in the video under-
standing domain which can be extended to downstream
tasks such as temporal action localization and video cap-
tioning, etc. Since action recognition is a foundational and
critical task, many algorithms have been proposed, coarsely
divided into three types: two-stream networks, 3D-CNNss,
and transformer-based networks. Two-steam-based methods
[11, 14, 39, 42, 51] exploit RGB flow to capture the spatial
information while utilizing optical flow to obtain the tem-
poral features, and then fuse the two types of features to
implement action classification. 3D-CNNs [8, 13, 20, 40]
extend the common 2D-CNNs with an additional temporal
dimension to simultaneously learn spatiotemporal features
in the video. Transformer-based networks [1, 3, 29] take
full advantage of attention’s global scope and employ recent
strong Vision Transformer [1] to encode spatial and tem-
poral features jointly. With much exploration, the accuracy
of action recognition algorithms is getting more accurate.
However, their training data must be trimmed videos that
only contain action segments, while actions are always
randomly distributed in long videos in reality. Thus, gener-
ating actions proposals from untrimmed videos is vital for
practical application.

2.3 Temporal action proposal

The objective of TAP is to identify the temporal boundaries
of action instances from an untrimmed video, where
building temporal correlations are vital for accurate
detections. According to the different scales of temporal
modeling, current methods can be roughly divided into
three categories: local-level, proposal-level, and global-
level methods. Local methods can be summarized as
anchor regression paradigm [15, 17, 24, 32] and actionness
probability paradigm [9, 23, 25, 34, 57]. The former
paradigm employs predefined anchors to regress the action
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boundaries, lacking temporal flexibility. While the latter
evaluates each frame’s boundary probabilities to generate
action proposals, which are temporal-flexible. However,
they only exploit the local context and lack a wider receptive
field. Proposal-level methods [2, 22, 23, 34, 48, 54]
tried to introduce proposal-level features by constructing
the proposal map or employing GCNs to make up for
the deficiency of local information. Global-level methods
[31, 35, 63] introduced the self-attention mechanism or
the original transformer detection framework (DETR) [7]
to build long-range dependency. However, instinctively
modeling the global-level temporal dependency lacks the
focalization of learning action features and also brings
background distractions. On the contrary, our framework
exploits the semantic-level affinities with foregrounds to
mine temporal associations, improving detection accuracy
and suppressing false positives and interferences.

2.4 Transformer and attention mechanism

Transformer was firstly introduced by [37] in the machine
translation task. Inspired by the recent advances in NLP
tasks, many transformer-based frameworks have also been
applied to better suit video understanding tasks like
object tracking [49], video instance segmentation [43], and
video object segmentation [12]. In addition, to improve

the transformer’s learning ability and efficiency, some
improved self-attention mechanisms were also explored.
For example, Big Bird [53] designs a sparse attention
mechanism to reduce the computational complexity for
long sequences. Wang et al. [41] proposes an aggregate
attention module to classify fine-grained images accurately
with fewer parameters. VoTr [28] proposes local and
dilated attention to enlarge the attention range while
maintaining comparable computational overhead for 3D
object detection. Inspired by them, we enhance the vanilla
transformer to the mask-guided transformer, which exploits
the foreground mask to guide the self-attention mechanism
to explore semantic-level affinities. In this way, our
transformer-based framework better matches the temporal
action proposal task by learning semantic associations.

3 Method

Figure 2 illustrates the proposed framework, consisting of
four stages: 1. Feature extractor (in Section 3.2) encodes
the snippet-level features of the input video; 2. Foreground
Mask Generate (FMG) module (in Section 3.3) exploits
the global context to predict the foregrounds (action
instances and boundaries) mask, representing the locations
of the action-relevant frames throughout the video. 3.

II. Foreground Mask Generation (FMG)
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Fig. 2 Overview of our pipeline, which mainly includes four stages:
1. Feature extraction; 2. Foreground Mask Generation (FMG) mod-
ule encodes the global context and predicts the foreground mask. 3.
Mask-Guided Transformer (MGT) employs the foreground mask to
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learn semantic associations with foregrounds, cooperated with tempo-
ral convolution aggregates the local context to get the foregrounds-
enhanced features. 4. Output modules predict action completeness and
boundary confidence maps for proposal generation and evaluation
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Mask-Guided Transformer (MGT) (in Section 3.4) exploits
the foreground mask to calculate the semantic affinities
with the foregrounds, extracting practical associations and
suppressing background distractions. Meanwhile, temporal
convolution assesses adjacent differences in fine-grain level
and cooperates with MGT to get the foregrounds-enhanced
features. 4. Output modules (in Section 3.5) predict the
action completeness map and boundary confidence map for
proposal generation and evaluation.

3.1 Notation and problem formulation

For an untrimmed raw video X, we can represent it as
a frame sequence X = {x,,}il”:1 with [, frames, where
X, is the n-th RGB frame of the video. Annotation of
video X is composed by a set of action instances ¥, =
{on = (tsy, ten)}nNil, where ts,, te, are the starting and
ending time of the action instance ¢, and N, is the total
number of ground-truth action instances. Temporal action
proposal task is to generate a set of proposals ¥, =

{on = (ts, te,,)}if 7, to cover ground-truth action instances
in video X, where N, is the number of proposals.

Since the TAP task requires the algorithms to locate the
action instances’ starting and ending times in a video on the
temporal dimension, the main challenge is modeling tempo-
ral correlations between different timestamps. Specifically,
action frames usually contain similar spatial appearances
and motion patterns, while background frames always have
semantic gaps with the action segments. Previous methods
rarely capture these semantic-level associations, which is
where we explore further towards this problem point. In
this work, we mainly focus on learning semantic affinities
between each frame x,, and action instances ¢, = (ts;, tey)
to extract high-quality temporal relations for the TAP
task.

3.2 Feature encoding

Following previous TAP methods [22, 48], we adopt the
two-stream network [33] to encode the video features to be
fed into our model. Specifically, we first input the original
untrimmed video into the feature extractor. Second, we split
the untrimmed video frames X = {xn}i”:] into snippets

sequence S = {sn}fj=1 by a regular frame interval §, where
Iy = I,/5. Then each snippet s, is fed into the two-stream
network to get the snippet feature f,, € RS of C-dimension.
In this way, we can obtain the snippets feature sequence
Fy = { fn}szl. Finally, linear interpolation is adopted to
maintain the same length of each video feature sequence fed
into our model. So the feature extractor outputs the video
features represented as F € R”*C containing T snippets,
which are shared by subsequent modules.

@ Springer

3.3 Foreground mask generation

The FMG module aims to generate foregrounds (action
instances and action boundaries) masks, which are the
locations of the action-relevant frames. Our FMG mainly
consists of two submodules: a global-aware attention mod-
ule (in Section 3.3.1) to build the long-range dependency
along the video, and a foreground mask prediction head (in
Section 3.3.2) for mask generation. We will introduce these
two modaules in the following sections.

3.3.1 Global-aware attention module

The global-aware attention module inputs the video
features F' and explores the interactions between snippets
across the video. It has a standard one-layer transformer
encoder architecture, which contains a positional-encoding,
a multi-head self-attention, and an MLP with the residual
connection. Given the video feature sequence F, we
first add sinusoidal position encoding [37] to enable the
transformer to obtain the frames’ relative position in the
video, forming the inputs F’ of the transformer, formulated
as:

F' =F + PE (1)

PE(pos,2i) = sin(pos/10000%/7) )
PE(pos,2i + 1) = cos(pos/10000%/9)

where pos is the temporal position, i is the dimension of
snippet feature fpo;.

Then the multi-head self-attention module can learn
different temporal interactions between snippets from
different representation subspaces. Specifically, F’ is
first projected to three different subspaces by linear
transformations, namely queries Q, keys K and values V,
and then the multi-head self-attention feature F is calculated
using the three projected representations:

Q=WoF ,K=WgF,V=WyF 3)

T

A , OK

F =LN(F' + softmax( 7
where Wo, Wi, Wy € RC'*C are learnable weights, d =
C/M indicates the dimension of each attention head, LN
represents the layer normalization.

By adopting the self-attention mechanism, each snippet
can learn its correlation with other snippets, so F contains
the global context information. Next, to enhance the
nonlinear characteristics of the attention feature, F is fed
into an MLP with ReLU activation function, residual
connection, and layer normalization. Finally, the global-
aware attention module outputs the feature F¢ e R7*C

V) “
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modeled by the global context for the attached mask
prediction head.

3.3.2 Foreground mask prediction head

After modeling the global dependency, we employ the
feature F'8 to predict action-instances foreground mask and
action-boundaries foreground mask. As shown in Fig. 3,
we first evaluate each snippet’s action, starting and ending
probabilities to get the foreground probability sequences
Sa, §% §¢ ¢ RT*! We implement this for all snippets using
stacked 1-D convolution layers H,, with sigmoid activation
on F§:

S’G,S'S,S'e=sigm0id(Hm(Fg))eRTx1 )

Second, we binarize the probabilities to get the fore-
ground mask sequences §¢, S*, §¢ € R”*!. The ith element
Si {0, 1} in these sequences indicates the foregrounds
binary probability of the ith snippet. We implement the
binarization procedure with the threshold function, formu-
lated as:

17
07

S’i > o, -max(S')

" L i=1,2,--
S; < oy, - max(S)

T (6)

;=
where o, is the foregrounds’ binary probability threshold,
we default the action mask threshold to 0.4 and the boundary
mask threshold to 0.5. We ablate its value in Table 6.
Thirdly, since the attention map of 7 x T' dimension in the
MGT represents the correlations between any two snippets,
we rearrange the 1D mask sequences S¢, S¥, S¢ € RT*1
into 2D mask maps M¢, M*, M € RT*T to guide the
transformer to learn the semantic affinities. Specifically, we
implement the rearrange procedure by repeating the mask
sequences T times over the temporal dimension. In this
way, the indexes with the mask value equal to 1 are the
foreground’s timestamps so that each frame could learn its

association with action segments. We also ablate different
formations of the rearranging process in the ablation study
and Fig. 6.

Finally, we dilate these 2D mask maps to introduce
the foregrounds’ neighborhood information, which usually
contains the changing trend of actions and is indispensable
for action boundaries detection. We denote this process as:
M, M*, M = ®(rearrange(S®, $*, $9) e R”"™*T (1)
where M“, M*, M represent the predicted action, starting
and ending foreground mask maps, respectively. The
elementm; ; € {0, 1}in M represents the foreground binary
probability of the jth snippet conditioned on the ith snippet.
@ (-) denotes a kernel of size k used as a dilation operation.
We experiment the ablation study of the kernel size in
Table 7.

The mask prediction head outputs the foreground mask
maps, which are employed later in the MGT to guide the
transformer to build semantic-level affinities, enhancing
the feature representation and further boost the action
localization by learning the associations between frames
and the actions.

3.4 Semantic affinities modeling

After getting the foreground masks, we employ them as
prior knowledge to build the semantic associations with
action segments. Specifically, we propose the mask-guided
transformer (in Section 3.4.1) by exploiting the foreground
mask maps to model semantic affinities with the action
frames. Meanwhile, we employ the local convolution (in
Section 3.4.2) to assess adjacent differences in the temporal
dimension to achieve more fine-grained action boundaries
detection. We will illustrate these two modules in the
following sections.
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3.4.1 Mask-guided transformer

Lack of concentrated attention may lead to the failure
to extract relevant information. Therefore, MGT exploits
the foreground mask to guide the attention mechanism to
build semantic associations, extracting action’s features and
suppressing the background distractions.

We designed two types of MGT to achieve the above
goals: Action Mask-Guided Transformer and Boundary
Mask-Guided Transformer. They take the video features
and foreground masks as inputs, extracting semantic
information under the guidance of the foreground masks.
The Action-MGT employs the action mask M“ to learn
the action persistence, while the Boundary-MGT captures

Fig.4 The Mask-Guided

the changing trend of actions with the guidance of the
boundary masks M®, M¢. Since their structures are in
the same manner, we only illustrate the structure of the
Boundary-MGT in Fig. 4.

Given the original video feature sequence F, we first
generate the position-sensitive feature F by adding the
positional encoding to F. Then, we linear project F to
0,V e RT*C where g; represents the query vector
and v; represents the value vector for each snippet. To
capture information from the starting and ending boundaries
separately, we use two linear projections to generate
KS, K¢ e RT*C representing the starting keys and the
ending keys, respectively. Next, we calculate the cosine
similarity of the queries and the keys to form the starting and

Enhanced Feature

Transformer (MGT) structure TxC
mainly consists of four steps: 1.
Position encoding and linear
projection to calculate cosine
similarity map; 2. Performing
Hadamard-product with
foreground mask maps to obtain
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Softmax normalization and
multiplying with value matrix.
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ending similarity maps SM*, SM¢ € RT*T formulated as:
o
SM° = ~Q—K~ o={s,e} 8)
Q] - K7

The above similarity maps establish the relationships
between all snippets. However, this general global attention
lacks the focalization of learning foreground action features.
Meanwhile, the background nonaction snippets rarely
contain valid information and even bring distractions.
In order to concentrate attention on the foregrounds,
we construct the masking operation M(-) based on the
foreground mask maps M*, M¢, formulated as:

1 if

—o0o if

M,’j:]

MM);; = Mo =0
ij =

©))

We first perform this operation on the starting and
ending mask maps, then hadamard-product the results
with the similarity maps to get the mask-guided maps
GM*,GM¢? € RT<T, By this means, the semantic affinities
with the foreground segments are reserved in the mask-
guided maps, and the other irrelevant elements are removed.
This process is efficient in preserving contributive elements
and suppressing noise, illustrated as follows:

GM° = M(M°) © SM° o0 = {s, ¢} (10)

where M(-) represents the masking operation and O
denotes the hadamard-product.

Next, we apply the softmax function to normalize the
attention scores in the mask-guided maps, multiplying them
with the value matrix V to capture semantic associations
and output the starting-enhanced and the ending-enhanced
features F*, F¢ € RT*C", Then, we concatenate the
two types of features to aggregate information and use
a convolution layer Hp to reduce the channel dimension
from 2C’ to C. Finally, residual connection and FFN are
employed to enrich the nonlinearity, getting the boundary-
enhanced feature F? € RT*C formulated as:

F° = softmax(GM°) -V o = {s, e} an
Fb = H,({FS, F*) @ F (12)
FY — FEN(Fb) @ Fb (13)

where {-,-} stands for the concatenation operation, @
represents the element-summation, and F F' N represents the
feed forward network.

Throughout the above processes, the Action-MGT guides
the action frames to extract more supportive cues, also
instructing the nonaction frames to learn the semantic gap
for better discrimination. The Boundary-MGT facilitates
each frame to learn its similarity with action boundaries,
helping boost the action boundary detection. As a result,
the Action-MGT outputs the action-enhanced feature F¢ €

R7*C and the Boundary-MGT outputs the boundary-
enhanced feature F? e RT*C for following prediction
heads.

3.4.2 Fine-grain context aggregation

Capturing the drastic change of actions in the short term is
essential to detect the action starting and ending boundaries.
Therefore, besides employing the MGT to model semantic
associations, we also need to assess the differences of
adjacent frames for more accurate boundary localization.
We employ the convolution on the temporal dimension
to evaluate adjacent differences for fine-grained level
boundary detection. Specifically, given the original video
feature sequence F € R7*C, we exploit the 1D convolution
layers with kernel = 3 to aggregate the local information
and output the local-level features. Then, we fuse the local-
level features with the foreground-enhanced features by
summation to fuse the fine-level information and semantic-
level associations. As a result, it outputs the action-
enhanced fusion feature F%/ € R7*€ for following action
completeness regression, and the boundary-enhanced fusion
feature F?/ e RT*C for attached boundary classification.

3.5 Proposals generation and evaluation

After obtaining the foregrounds-enhanced features, follow-
ing DBG [22], as shown in Fig. 5, we feed them to two
output heads to predict the action completeness map and
boundary confidence maps. In these score maps shown in
Fig. 5, the row represents the starting dimension, and the
column stands for the ending dimension. So each posi-
tion (i, j)i<; represents the score of the proposal with
starting time = i and ending time = j. The product of
the three scores of each proposal represents its confidence
score for evaluation. We will illustrate the two output heads
and the proposal generation and evaluation process in the
following sections.

3.5.1 Action completeness regression head

The action completeness regression head receives the
action-enhanced fusion feature F%/ as input and outputs
action completeness map P to estimate the IoU between
candidate proposals and ground-truth action instances. First,
it utilizes 1D convolution on F¢ to generate the actionness
score feature P¢ e RT*!, representing each snippet’s
action score. Second, following BSN [25] and DBG [22],
by sampling features in each proposal’s start, center, and
end regions on P¢, it can construct the action completeness
features FM“ for all candidate proposals. In this way,
it transfers the P? to three-dimensional proposal feature
tensors FM? € RT*T*N where T x T represents all the
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Fig.5 Details of proposal generation and evaluation. It consists of an action completeness regression head and a boundary classification head

candidate proposals, N is the number of sampling points for
each proposal and we set N = 32. Finally, it feds FM?
into a series of 2D convolution layers and the sigmoid
activation function to predict the action completeness map
P¢ € RT*T  These processes can be denoted as:

P = FConvip)(F*) (14
FM® = Sample(P?) (15)
P¢ = Sigmoid(Fconv2p)(FM?)) (16)

In the action completeness map, each position (i, j)i<;
represents the max IoU score between the proposal with
(t; = i,t, = j) and ground-truth action instances. We use
the binary logistic regression loss to supervise P“ and the
smooth L1 loss to supervise P¢ during training.

3.5.2 Boundary classification head

The boundary classification head receives the boundary-
enhanced fusion feature F?/ as input and outputs the
boundary confidence maps P*° to evaluate the action
starting and ending probabilities for candidate proposals.
First, it samples on the F bf to construct four-dimensional
proposal boundary features FM? e RT*TXNxC ywhich
contain 7 x T proposal features whose size is N x C.
We set N = 32 as the number of sample points and C
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as the channel numbers of the features. Then we utilize a
3D convolution layer to reduce the temporal dimension N
and several 2D convolution layers to predict the boundary
confidence maps P*¢ € RT*T*2 These steps can be
written as follows:

FM" = Sample(F") 17)

P = Sigmoid(Fconp2p(Fconvsp(FM?))) (18)

In the boundary confidence maps, rows represent the
starting and columns represent the ending dimension. Each
row in P°® represents the confidence score of the proposals
with the same starting location, and each column in P°
represents the score of proposals with the same ending
location. For the proposal (#,¢;) whose starting time
is #; and ending time is 7;, we multiply the scores of
the corresponding position (i, j) in P€¢, P%, P¢ as the
confidence score for this proposal. Then we can select the
top-K proposals with the highest confidence scores as our
predictions.

3.6 Training

. . N, .
Given the annotation ¥, = {@, = (ts,, fen)}, 5 1 of a video,
for one of these ground-truth action instances ¢ = (f, f,),
we define its action region as r¢ = [tq, t.], starting region

g
as r, = [ty — di, 1y + di] and ending region as rg =

8



Exploiting semantic-level affinities with a mask-guided network...

15525

[te — d;, t. + d;], where d; is the two temporal locations
intervals.

Loss of the foregrounds mask generation FMG generates
the action, starting and ending mask sequences S¢, S*, §¢ €
R7*1. For the i-th snippet s; in the mask sequences, we
denote its mask label as g;. If foregrounds (action, starting
or ending) exist in the snippet, we set g; = 1, else we have
gi = 0. With three foregrounds-mask sequences, we can
construct foreground mask generation loss using weighted
binary logistic regression loss:

T

Ly =) (" gi-log(s;)+a - (1—g)-log(1—s)) (19)
i=1

Limask = Lpi (G, $) + Ly (G*, §*) + Lpi(G¢, S¢)  (20)

wherea™ =T/ Y (g;)anda™ = T/ (1 —g;) are balance
factors.

Loss of the action completeness regression Following
DBG [22], for the actionness score feature P¢, we
calculate its binary logistic loss between G“. And for
action completeness map P¢, we denote the proposal
corresponding to pi j be r; j = [i, j1. We calculate the
maximum Intersection-over-Union (IoU) between r; ; with
all rg to generate completeness label g i and adopt smooth
L1 loss to construct the action completeness regression loss
as:

T T
1
Leompte = 73 Y, ) smoothLy(p ;—gf )+Lu (G, P)
i=1j=1
@1

Loss of the boundary classification For each location (i, j)
within the boundary confidence maps P*°, we denote its
starting region as rif ;= [i —d;/2,i + d,;/2] and its ending
region as rﬁj = [j —d;/2, j +d;/2]. Then we calculate the
maximum overlap ratio IoR for ris . with rg,, and rf . with
rg to generate starting label gis, j and ending label gl‘ j We
adopt the binary logistic regression to construct the starting
classification loss and the ending classification loss:
1z
Lotart = 73 > (&} ; -log(p} p+(1=g} ) - log(1—-p} ;)
i=1
1z
Lona = 5 D _(&f ;- log(pf )+ (1=gf ) - log(1=pf ;)
i=1
(22)
The model is trained in the form of a multi-task loss
function, with the overall loss function defined as:

L= Emask + )\lﬁcomple + )‘«ZACstarl + )\3£end (23)

where A1, A» and A3 are three scalars to balance the three
terms, and defaulted as Ay, Ay, A3 = 1.

3.7 Inference

Score fusion With the boundary confidence maps P*¢, each
row in P°® represents the confidence score of the proposals
with the same starting, and each column in P¢ represents
the score with the same ending. In order to obtain robust
boundary confidence scores, we average the i-row in P*
and the i-column in P¢ to represent the starting and the
ending score of the temporal location #;. In this way, we can
get starting score sequence p° € RT*! and ending score
sequence p¢ € RT*! Note that since the starting location
is in front of the ending location, we only average the upper
right part of the P*°.

Then, the element (7, j) in the action completeness map
P¢ represents the action completeness score of the proposal
(#, ;). So we fuse it with the boundary confidence scores
to generate the final confidence score P; ;:

P j= Pifj X pi x pj 24)

Hence, we can get the dense candidate proposals set as
W, = {g, = (i, tj, P )Y,

Post processing Because the above candidate proposals are
generated by matching all starting and ending locations,
resulting in redundant dense proposals. We adopt Soft-NMS
to eliminate redundancy by a score decaying function. Then
we can obtain the sparse candidate proposals set as lI/I’) =
{on = (1,1}, Pl.’, j)};11v=/1’ where Pl.” ; is the final confidence
score and N’ is the final number of the candidate proposals.

4 Experiments and analysis

The purpose of our experiment is to evaluate the perfor-
mance of our MGNet on the temporal action proposal task
and the temporal action localization task, also to explore
the principles behind the effects of semantic-level affinities
modeling. Besides, we also perform ablation studies to val-
idate the necessity and contribution of each component in
our framework.

This section is organized as follows. The experimental
targets of the TAP and TAL tasks and corresponding metrics
are introduced in Section 4.1; Datasets and data preparation
are described in Section 4.2; Implementation details are
provided in Section 4.3; In Section 4.4 and Section 4.5,
we compare our MGNet with the state-of-the-art methods
on the TAP and TAL tasks, respectively. In Section 4.6,
we conduct ablation studies to investigate the principles
behind our framework; In Section 4.7, we visualize the
qualitative results and analyze the performances. Finally, we
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remark on the experimental contributions and limitations in
Section 4.8.

4.1 Experimental tasks and metrics

Experimental tasks We experiment on two popular video
understanding tasks to verify the effectiveness of our
MGNet: Temporal Action Proposal (TAP) and Temporal
Action Localization (TAL). The TAP task aims to detect the
action instances’ starting and ending times from untrimmed
videos, while the TAL also requires determining the action
categories.

Metrics of TAP TAP aims to generate proposals that overlap
with ground-truth action instances at a high recall rate.
According to the temporal Intersection over Union (tloU)
between proposals and ground-truth action instances, the
predicted proposals can be divided into true positives,
true negatives, false positives, and false negatives. Average
Recall (AR) is defined as the ratio of true positives to
the sum of true positives and false negatives, denoted as
AR = TP/(TP + FN). It represents the comprehensive
capability of the model to detect all ground-truth instances.
We calculate the AR@AN: Average Recall (AR) under
different Average Number (AN) of proposals to evaluate
proposals’ quality. In addition, the Area Under the
AR@AN Curve (AUC) is also applied for evaluation,
which is more representative since it considers different AN
simultaneously. Following the standard protocol, we use the
tloU thresholds set as [0.5:0.05:1.0].

Metrics of TAL We use the mean Average Precision (mAP)
as the evaluation metric for the TAL task. A proposal
is considered to be a true positive if its tloU with the
ground-truth instance is larger than a certain threshold and
the predicted category is the same as this ground-truth
instance. Average Precision (AP) is defined as the ratio
of true positives to the sum of true positives and false
positives, denoted as AP = T P/(T P + F P). It represents
the model’s detection accuracy. We calculate the mAP at
the tloU threshold set as {0.3,0.4,0.5,0.6,0.7}, and we also
report the average mAP of all the tloU thresholds.

4.2 Datasets and preparation

THUMOS14 [21] is a standard benchmark for action
localization. Its training, validation, and testing sets contain
13320, 1010, and 1574 untrimmed videos, respectively. The
temporal action localization task of THUMOSI14, which
contains videos over 20 hours from 20 sports classes, is very
challenging since the duration of action instances varies a lot
throughout the videos. Following common settings, we train
and test our model with temporal annotated videos in this
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dataset, that is, 200 untrimmed videos from the validation
set and 213 from the testing set.

ActivityNet-1.3 [6] is a large-scale action understanding
dataset that contains 19994 temporal annotated untrimmed
videos with 200 action categories. The training, validation,
and testing sets are divided into 2:1:1. Each video has an
average of 1.65 action instances. Following the standard
practice, we train our model with the training set and
evaluate its performance on the validation set.

Data preparation Since the datasets are long and untrimmed
videos, which usually contain thousands of frames, extract-
ing the video features online is very costly and time-
consuming. Following the usual practice [22], we employ
the pre-trained action recognition network to extract the
video feature offline and take them as the input of our
model.

For THUMOS 14, the video features are extracted using
the TSN model [39] pre-trained on Kinetics [8] with the
snippet interval § = 5. And we crop each video feature
sequence by sliding window with Length = 128 and
stride = 64.

For ActivityNet-1.3, we adopt the two-stream network
pre-trained on ActivityNet-1.3 by Xiong et al. [46] with
8 = 16 to extract the feature representation. Furthermore,
we rescale the feature sequences to 7 = 100 by linear
interpolation to form the feature sequences fed into our
model.

4.3 Implementation details

Parameters and steps The hyperparameters are empirically
defined as follows: In the global-aware attention module,
the transformer encoder’s layer is set to 1 to avoid
overfitting, and the numbers of multi-head self-attention
heads are set to 8. To exploit the semantic-level affinities,
the numbers of the mask-guided transformer layer is also
set to 1. For the foregrounds’ binary probability threshold,
we set «,, = 0.4 for the action mask and o, = 0.5 for the
boundary mask. The dilation kernel size of the foreground
mask map is set to k = (3,3). The soft-NMS threshold
is set to 0.8 and 0.65 on ActivityNet-1.3 and THUMOS14,
respectively.

The steps of implementing the TAP and TAL tasks
using our model are as follows: First, we employ the
pre-trained TSN model [39] to extract the videos’ RGB
features and optical flow features. Second, following
DBG [22], we feed the two types of features into
parallel mask-guided transformers to mine the semantic
associations simultaneously. Then we fuse the two features
by summation and input them into the prediction heads to
generate action proposals with corresponding confidence
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scores. Next, soft non-maximum suppression (Soft-NMS) is
adopted to suppress the redundant proposals and implement
the TAP task. To achieve the TAL task, we finally
keep the top-200 proposals, and take the top-2 video-
level classification labels and corresponding scores from
UntrimmedNet [38], multiplying them by the confidence
scores to generate action localization results.

Training We train our model using the Adam optimizer,
the learning rate is set to 10~ for the first 8 epochs, and
decayed by a factor of 0.1 for another 2 epochs. The weight
decay is set to 1074, the dropout ratio in the mask-guided
transformer is 0.1. We train our model on a single 2080Ti
GPU with batch size 16.

Testing We first generate action proposals with confidence
scores using our MGNet. Then Soft-NMS is employed
to suppress redundant proposals, we set the threshold
to 0.8 and 0.65 on ActivityNet-1.3 and THUMOSI14,
respectively. Finally, we multiply the classification scores
from UntrimmedNet with the confidence scores as the final
scores for calculating mAP.

4.4 Evaluation of the TAP task

We compare our MGNet with recent state-of-the-art
methods for the temporal action proposal task on the
THUMOS14 dataset and ActivityNet-1.3 dataset to verify
the superior performance of our model.

4.4.1 Performance on THUMOS14 dataset

Table 1 demonstrates the temporal action proposal perfor-
mance comparison on the testing set of THUMOS14. To
ensure a fair comparison, we adopt C3D and two-stream
features to conduct the comparison experiment like the pre-
vious methods [2, 22]. Experiment results suggest that our
MGNet outperforms other local-level, proposal-level, and
global-level methods with both C3D and two-stream fea-
tures. In addition, NMS improves the average recall rate
under small proposal numbers, while soft-NMS performs
better when AN is higher. It proves that our method could
learn more effective information by mining semantic-level
affinities, achieving more accurate action localization by
extracting efficient associations.

4.4.2 Performance on ActivityNet-1.3 dataset

We compare our MGNet for proposal generation performance
on the ActivityNet-1.3 validation set. Table 2 lists a set of
state-of-the-art methods, including BSN [25], BMN [23],
BC-GNN [2], DBG [22], RapNet [16], TCA-Net [31] and
RTD-Net [35]. The result shows that our MGNet outperforms

other methods, especially improving AUC from 68.23%
to 68.85%, demonstrating that our model has good results
under different AN simultaneously and achieves an overall
performance promotion of action proposal generation.

Furthermore, on both ActivityNet-1.3 and THUMOS14
datasets, our model outperforms the concurrent TCA-Net
[31] based on the attention mechanism and the RTD-Net
[35] with transformer-alike architecture. TCA-Net employs
attention to aggregate global interactions, but instinctively
employing the attention on the global perspective lacks
concentration on foreground frames. RTD-Net uses the
transformer decoder to implement the set prediction of
proposals. However, it does not fully utilize the transformer
encoder’s global dependency modeling ability. Our MGNet
employs the transformer to model semantic relations with
action segments. It has a more robust, high-quality feature
mining ability and performs better.

4.4.3 Comparison and analysis

Compared with the local-level methods such as TURN [17]
and BSN [25], they only mine the local context, which
is usually insufficient. Our model obtains more temporal
information by establishing the foreground interactions.
Compared with BMN [23], BC-GNN [2], and DBG
[22], which adopt GCNs or the sampling strategy to
construct proposal-level feature correlations, our MGNet
adopts the mask-guided transformer to build semantic-
level relations, which are more representative and efficient.
The global-level methods RapNet [16], TCA-Net [31],
and RTD-Net [35], build long-range dependencies using
the vanilla vision transformer [1] or the query-and-
retrieval procedure. These methods lack the focalization
to learn the action’s valid information from the video and
introduce background distractions. However, our MGNet
exploits the foreground mask as prior knowledge to
model semantic associations with action frames, efficiently
extract high-quality information and suppress background
distractions.

As a result, our MGNet significantly outperforms other
methods on both THUMOS 14 and ActivityNet-1.3 datasets
for the temporal action proposal task. Thus, it proves
that exploiting semantic-level affinities with our MGNet is
effective and efficient.

4.5 Evaluation of the TAL task

To evaluate the quality of proposals, we test the proposals
generated by our MGNet on the temporal action localization
task. We calculate the mean Average Precision (mAP) under
different IoU thresholds to evaluate action localization per-
formance. We set the IoU thresholds as {0.3,0.4,0.5,0.6,0.7}
for THUMOS 14.
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Table 1 Compare our model with other state-of-the-art methods for the TAP task on the THUMOS 14 dataset
Feature Method Types Models AR@AN
@50 @100 @200 @500 @1000
C3D Local-level SCNN-prop [32] 17.22 26.17 37.01 51.57 58.20
SST [5] 19.90 28.36 37.90 51.58 60.27
TURN [17] 19.63 27.96 38.34 53.52 60.75
BSN [25]+NMS 27.19 35.38 43.61 53.77 59.50
BSN [25]+SNMS 29.58 37.38 45.55 54.67 59.48
MGG [27] 29.11 36.31 44.32 54.95 60.98
Proposal-level BMN [23]+NMS 29.04 37.72 46.79 56.07 60.96
BMN [23]+SNMS 32.73 40.68 47.86 56.42 60.44
DBG [22]+NMS 32.55 41.07 48.83 57.58 59.55
DBG [22]+SNMS 30.55 38.82 46.56 56.42 62.17
BC-GNN [2]+NMS 33.56 41.20 48.23 56.54 59.76
BC-GNN [2]+SNMS 33.31 40.93 48.15 56.62 60.41
Gloabl-level RapNet [16] 29.72 37.53 45.61 55.26 61.32
CAN [26] 30.79 38.39 47.59 56.02 61.44
Semantic-level MGNet(Ours)+NMS 34.29 42.75 50.53 59.28 62.02
MGNet(Ours)+SNMS 31.50 40.10 48.24 57.69 62.88
2-stream Local-level TAG [58] 18.55 29.00 39.61 - -
TURN [17] 21.86 31.89 43.02 57.63 64.17
CTAP [15] 32.49 42.61 51.97 - -
BSN [25]+NMS 3541 43.55 52.23 61.35 65.10
BSN [25]+SNMS 37.46 46.06 53.21 60.64 64.52
MGG [27] 39.93 47.75 64.65 61.36 64.06
Proposal-level BMN [23]+NMS 37.15 46.75 54.84 62.19 65.22
BMN [23]+SNMS 39.36 47.72 54.70 62.09 65.49
DBG [22]+NMS 40.89 49.24 55.76 61.43 61.95
DBG [22]+SNMS 37.32 46.67 64.50 62.21 66.40
BC-GNN [2]+NMS 41.15 50.53 56.23 61.45 66.00
BC-GNN [2]+SNMS 40.50 49.60 56.33 62.80 66.57
Gloabl-level RapNet [16] 40.35 48.23 54.92 61.41 64.47
CAN [26] 41.33 47.99 55.42 62.43 64.91
RTD-Net [35]+I3D features 41.52 49.32 56.41 62.91 -
TCA-Net [31] 42.05 50.48 57.13 63.61 66.88
Semantic-level MGNet(Ours)+NMS 45.40 53.05 59.05 63.81 64.19
MGNet(Ours)+SNMS 41.36 51.04 58.36 65.04 68.68

The metrics are AR@AN. SNMS stands for Soft-NMS

The bold entries represent the better results in our comparison experiments for readers convenient to read and compare

Table 2 Performance comparison with state-of-the-art proposal generation methods on the validation set of ActivityNet-1.3 in terms of AR@AN

and AUC

Method BSN [25] BMN [23] BC-GNN [2] DBG [22] RapNet [16] TCA-Net [31] RTD-Net [35] MGNet(Ours)
AR@100(val) 74.16 75.01 76.73 76.65 76.71 76.08 73.21 77.12
AUC(val) 66.17 67.10 68.05 68.23 67.63 68.08 65.78 68.85

The bold entries represent the better results in our comparison experiments for readers convenient to read and compare
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4.5.1 Detection strategy

We adopt the two-stage “detection by classifying proposals”
TAL framework, which feeds the predicted proposals to the
action classifier for action recognition, thus implementing
temporal action localization. Specifically, we first generate
a set of action proposals with confidence scores with our
model, and utilize the Soft-NMS to keep top-200 proposals.
Then we take the top-2 video-level classification labels and
corresponding scores from UntrimmedNet [38], multiplying
them by the confidence scores for detection evaluation.

4.5.2 Comparison and analysis

Table 3 lists some state-of-the-art temporal action local-
ization methods. We use the same TSN features [39] for
a fair comparison, except RTD-Net employs the I3D fea-
tures [8]. In addition, we also use the same action classifier
UntrimmedNet [38].

Our MGNet achieves an average mAP of 48.4%
([0.3:0.1:0.7]), with an mAP of 50.1% at tloU=0.5 and an
mAP of 28.3% at tloU=0.7, implying that our method can
recognize and localize actions much more accurate than
any other method. Note that our method also outperforms
the concurrent works of RTD-Net [35] and TCA-Net [31],
which also employ the transformer architecture and atten-
tion mechanism for proposal detection. Different from them,
our model employs the foreground mask as prior knowl-
edge to guide the transformer to learn the semantic-level

affinities with the action frames. By this means, our trans-
former can focus on and extract more critical information
from contributive frames, modeling robust feature represen-
tations and achieving better performances.

4.6 Ablation study

To verify the effectiveness of our method, we conduct
the following ablation studies: we ablate different forms
the network architectures, such as the formations of the
foreground mask (Section 4.6.1) and the fusion strategy
of the MGT and convolution (Section 4.6.2), so as to
investigate the contribution of each component. We also
ablate some hyperparameters, such as the threshold of
binarization probability (Section 4.6.3), the size of the
foreground mask dilation kernel (Section 4.6.4), and the
number of MGT’s layers (Section 4.6.5), to find the best
parameter settings.

4.6.1 The foreground mask formations

Our MGT learns the semantic-level affinities and extracts
informative features from action segments by utilizing the
foreground mask map, which is the core component of
our model. So we set up various formations of the action-
instance mask maps to compare and analyze the effects of
different formations of masks.

As shown in Fig. 6, we compare five different formations
of the foreground mask maps. The first w/o mask means

Table 3 Comparison between our model with other temporal action localization state-of-the-art methods on THUMOS 14 testing set in terms of

mAP(%)

Method 0.7 0.6 0.5 0.4 0.3 Avg.
SST [4] 4.7 10.9 20.0 31.5 41.2 21.7
TURN [17] 6.3 14.1 24.5 353 46.3 253
BSN [25] 20.0 29.4 36.9 45.0 535 36.8
MGG [27] 21.3 29.5 374 46.8 539 37.8
BMN [23] 20.5 29.7 38.8 474 56.0 385
DBG [22] 21.7 30.2 39.8 49.4 57.8 39.8
G-TAD [48] 23.4 30.8 40.2 47.6 54.5 39.3
BC-GNN [2] 23.1 31.2 40.4 49.1 57.1 40.2
RTD-Net [35] 25.0 36.4 45.1 53.1 58.5 43.6
TCA-Net [31] 26.7 36.8 44.6 53.2 60.6 444
CAN [26] 224 30.3 39.7 48.7 57.9 39.8
Gemini [61] 21.4 325 42.6 50.6 56.7 40.8
A2Net [50] 17.2 325 455 54.1 58.6 41.6
KFC [10] 23.8 33.6 44.9 527 59.3 429
Xia et al. [45] 24.0 335 442 522 61.9 432
MGNet(Ours) 28.3 38.7 50.1 59.3 65.8 48.4

The bold entries represent the better results in our comparison experiments for readers convenient to read and compare
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Fig.6 Ablation in the different formations of the action-instance foreground mask maps

it does not adopt the foreground mask to guide the MGT
to learn semantic associations. The second fore<>self mask
formation means each action segment extract features from
itself, so it lacks learning supportive cues from other co-
occurring action frames. The third fores<>fores formation
represents that the action segments build semantic relations
with each other. In this way, the connection among different
action instances in the same video can be established. The
fourth fores<>fores & backs<>adj means that the action
segments capture the correlations with each other, and the
nonaction frames aggregate features from adjacent frames.
The last all<>fores mask formation represents that all
frames exploit the semantic-level affinities with foreground
action segments.

Table 4 shows the experimental results of different
formations of the foreground mask maps. Comparing
the w/o mask of the first row with the others, we
can see that the transformer is less effective without
the guidance of the foreground mask since it is not
guided to focus on the essential foregrounds, lacking
focalization to capture semantic information from the action
frames. In addition, the transformers’ intensity of extracting
representations from valid video scenarios is weakened
due to the introduction of background distractions. By
comparing the second row with the third row, we can
conclude that the supportive cues between action segments
can help extract more action clues. It means that the
correlations between different action instances can be

Table 4 Performance comparison of the different formations of action-instance foreground mask maps on ActivityNet-1.3

Formations of foregrounds mask map AR@10 AR@100 AUC
w/o mask 57.56 76.64 68.41
fore<>self 57.29 76.70 68.40
fores<>fores 57.43 76.71 68.52
fores<>fores & backs<>adj 57.40 77.02 68.64
all<fores 57.93 77.12 68.85

The bold entries represent the better results in our comparison experiments for readers convenient to read and compare

The italic entries represent the abbreviated names of different methods in our ablation experiments
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Table 5 Performance analysis of different fusion strategies of the MGT and the convolution on ActivityNet-1.3

MGT Conv Fusion Strategy AR@10 AR@100 AUC
1 v - 57.09 76.56 68.35
2 v - 57.50 76.36 68.15
3 v v MGT in series with Conv 56.35 75.53 67.30
4 v v Conv in series with MGT 56.69 76.05 67.70
5 v v MGT parallels with Conv by concatenation 57.81 76.83 68.61
6 v v MGT parallels with Conv by summation 57.93 77.12 68.85

Conv strands for convolution

The bold entries represent the better results in our comparison experiments for readers convenient to read and compare

established since the actions are mostly related in a
specific video. The last row all<>fores performs best
since it allows all source frames to mine the semantic-
level affinities with the foreground action clips. In
this way, foreground frames can build correlations and
connections between different action instances. Meanwhile,
background frames can discover the semantic gap between
themselves and action instances, helping better distinguish
background distractions. Therefore, we adopt this formation
of rearranging to construct our foreground mask map.

4.6.2 Fusion strategies of the MGT and convolution

Our MGT exploits the foreground mask to guide the
transformer to capture semantic associations, while fine-
grained convolution assesses adjacent differences for
precise boundary detection. We explore the different fusion
strategies of the MGT and convolution in Table 5. It
can be seen that without MGT or convolution, both lead
to performance degradation. In particular, the results are
lower without the MGT, proving that our mask-guided
transformer extract more informative representations by
modeling semantic affinities. Moreover, we explore the
different fusion strategies of the MGT and convolution,
including series and parallel connection. The MGT in
parallel with Conv using summation outperforms other
fusion strategies.

4.6.3 Binary probability threshold

During predicting the foreground mask maps, as shown in
Fig. 3, we transform the foreground probability sequences
into the mask sequences by employing the threshold
binarization function. Different thresholds «,, will generate
different foreground mask maps. Table 6 ablates the
action-foreground and boundary-foreground threshold on
the THUMOS 14 testing set with the C3D feature.

Comparing the results under different o, settings,
we observe the best performance improvement when the
action’s probability threshold &, = 0.4 and the boundary’s
threshold «,, = 0.5. We believe that when the threshold
is set too low, false positives and background interferences
will be introduced, distracting the MGT from learning
semantic associations from foreground segments. However,
when the threshold is set too high, MGT can only extract
less action information, which is insufficient to support
temporal modeling. Therefore, we conclude that a moderate
threshold setting can boost our model more accurate and
efficient.

4.6.4 Dilation kernel size
We dilate the foreground mask map to introduce the fore-

grounds’ surrounding information, which usually contains
the changing trends of actions in the video. Furthermore,

Table 6 Ablation study on the binary probability threshold of the action foregrounds and boundary foregrounds on THUMOS 14

Probability threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Action AR@50 42.40 42.92 43.96 45.40 44.40 44.92 44.82 42.37 43.45
AR@100 50.80 51.40 51.90 53.05 52.15 52.54 52.30 51.03 51.64

Boundary AR@50 43.06 43.16 44.51 44.31 45.40 43.45 42.68 42.68 42.56
AR@100 51.03 5142 52.12 52.35 53.05 51.14 50.80 51.37 50.93

The bold entries represent the better results in our comparison experiments for readers convenient to read and compare
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Table 7 Ablation study on the dilation kernel size of the foreground
mask map on THUMOS 14

Kenel size k AR@50 AR@100 AR@200
1 44.21 52.50 58.67
3 45.40 53.05 59.05
5 44.26 52.36 58.10
7 42.85 51.55 52.97
9 42.66 51.43 57.95

The bold entries represent the better results in our comparison
experiments for readers convenient to read and compare

since the predicted foreground mask may be biased in the
temporal dimension, the dilation process can reintroduce the
false-negative snippets for the MGT to extract their valid
representations. Table 7 shows the results under different
dilation kernel size £ on the THUMOS14 dataset. From the
table, we can see that k = 3 performs best. The results are
not good when k = 1 since it lacks capturing the moving
trends from around the action boundaries. It also does not
reintroduce the false-negative frames to extract their effec-
tive features. On the contrary, excessive negative nonaction
frames will be introduced when the dilation kernel size is
larger, weakening the foreground mask’s guidance effect.

4.6.5 Number of transformer layers

The previous transformer-based approaches used for NLP
[37] or Vision [7] demonstrate that stacking more layers
often brings better performance. We stack different numbers
of transformer layers in our MGT for comparison. Table 8
shows that our MGT performs best in shallow layers. We
believe this is mainly caused by the distribution of the dataset
and the degree of the model’s overfitting. Specifically, the
ActivityNet-1.3 dataset contains about 20K videos, but its
training set videos mainly include one only action instance
or several action segments of the same class. With a small
number of samples of different categories, our mask-guided
transformer with deeper layers easily converges to a local
optimum. As for the THUMOS14 dataset, each video has

Table 8 Ablation study on the different number of transformer layers
in MGT on ActivityNet-1.3

No. of transformer layers AR@10 AR@100 AUC
1 57.93 77.12 68.85
2 57.46 76.61 68.39
3 57.57 76.48 68.33
6 57.25 76.44 68.21

The bold entries represent the better results in our comparison
experiments for readers convenient to read and compare

@ Springer

various action instances of different classes. However, with
only 200 annotated videos available to train our network
in this dataset, our deeper MGT is prone to over-fitting.
Therefore, the number of our MGT layers set to 1 is the
most appropriate. We strive to achieve better performance
in the future by acquiring more datasets or using some data
augmentation methods to train a deeper network.

4.7 Visualization and analysis

Figure 7 visualizes some representative action localization
results for the videos with different challenge cases. For
each video with n ground-truth, we choose the proposals
with confidence score top-n for visualization.

In the first video, the person doing the action and the
action object are present in both background and foreground
segments. Specifically, they both contain a man holding a
saxophone. However, he assembles the saxophone in the
background clips while playing the saxophone only in the
foreground. Our model accurately learned the interaction
between the actor and the action object, helping detect the
interval of playing saxophone.

The challenge of the second video is that an indistinct
background clip exists between two action segments.
Specifically, the athlete first exercises on the parallel bars.
Then, he jumps off for a short rest next to the parallel bars
and later goes back for exercise again. This short action
pause is hard to distinguish and may easily be misclassified
as a false positive. Our MGNet learns the semantic gap
between the short rest clip and the action frames to suppress
the false positive detections. As a result, our top-2 proposals
accurately detect these two action segments and identify
the background clip between the two foregrounds, proving
that modeling the semantic-level affinities is effective and
efficient.

The difficulty of the third video is that multiple action
clips exist in the video, so our top-n proposals need to detect
all ground-truth action instances accurately at the same
time. We visualize the results of our top-4 proposals, which
all precisely localize the action instances and distinguish the
backgrounds. In summary, our MGNet can handle videos in
different complex scenes with strong robustness and high
accuracy.

4.8 Contribution and limitation

Contribution Based on the experiments and analysis above,
we remark the contribution of this paper as follows. We
propose the MGNet for temporal action proposal in videos.
It learns the semantic-level affinities between action frames
to enhance the feature representations and further boost the
action localization. In the experiment, we first compare our
MGNet with other advanced methods on the TAP and TAL
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Fig.7 Visualization examples of temporal action localization with the proposals generated by our model

tasks, verifying the effectiveness of our model. Second, we
conduct the ablation studies on our model. We experiment
with different formations of the foreground mask map to
analyze its principles, and remove the MGT to prove its
necessity. Results show that each component contributes to
accurate action localization.

Limitation The experiment limitation is that utilizing the
video features pre-extracted offline decreases the model’s
efficiency, and the feature representations also influence
the detection results. Specifically, since the datasets in the
TAP task are long untrimmed videos that usually contain
thousands of frames, extracting video features online is
costly and time-consuming. Therefore, the usual practice
is to employ the pre-trained action recognition network to
extract the video features offline, and then take them as the
input of the model. In this case, the model’s performance
is affected by the input features. As shown in Table 1,
both previous methods and our model perform better using
the two-stream features than the C3D features. Therefore,
in future work, we will focus on designing an end-to-
end framework to efficiently extract the video features in
real-time with lower-cost resources for the temporal action
localization task.

5 Conclusion

This paper proposes a novel framework called MGNet for
temporal action proposal in videos. MGNet exploits the
foreground mask as prior knowledge to model semantic-
level associations with action segments, enhancing feature
representations and further boosting action localization.
First, we design the Foreground Mask Generation (FMG)
module to generate the foreground mask, representing the
locations of the action-related frames across the video.
Then we propose a Mask-Guided Transformer (MGT) by
exploiting the foreground mask to guide the transformer
to learn the semantic-level affinities, building intra-
semantic similarities for foregrounds to extract supportive
cues from co-occurring actions, and modeling the inter-
semantic gaps between backgrounds and action frames
for better distinction. Extensive experiments conducted
on ActivityNet-1.3 and THUMOS14 demonstrate that our
model can achieve superior performance on both TAP and
TAL tasks. In the future, to improve the model’s learning
efficiency, we will further explore an end-to-end network to
extract the video features and model the temporal relations
simultaneously, implementing an online real-time action
localization method.
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