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Abstract

Face reenactment and swapping share a similar pattern of identity and attribute manipulation. Our previous work UniFace
has preliminarily explored establishing a unification between the two at the feature level, but it heavily relies on the accuracy
of feature disentanglement, and GANS are also unstable during training. In this work, we delve into the intrinsic connections
between the two from a more general training paradigm perspective, introducing a novel diffusion-based unified method
UniFace++. Specifically, this work combines the advantages of each, i.e., stability of reconstruction training from reenact-
ment, simplicity and effectiveness of the target-oriented processing from swapping, and redefining both as target-oriented
reconstruction tasks. In this way, face reenactment avoids complex source feature deformation and face swapping mitigates
the unstable seesaw-style optimization. The core of our approach is the rendered face obtained from reassembled 3D facial
priors serving as the target pivot, which contains precise geometry and coarse identity textures. We further incorporate it
with the proposed Texture-Geometry-aware Diffusion Model (TGDM) to perform texture transfer under the reconstruction
supervision for high-fidelity face synthesis. Extensive quantitative and qualitative experiments demonstrate the superiority of
our method for both tasks.

Keywords Face reenactment - Face swapping - Unified model - Diffusion models - 3D priors

1 Introduction

The latest research has observed notable progress in face
reenactment and swapping technologies due to their wide-
ranging applications within the metaverse. The goal of face
reenactment is to migrate facial attributes, including pose
and expressions, from a target face to a source face, without
altering the source face’s identity. On the other hand, face
swapping is aimed at transferring the identity of a source
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face onto a target face, while maintaining the target face’s
original attributes intact. Although these two tasks share the
same pattern, current methods (Zhao et al., 2023; Jiang et
al., 2023; Gao et al., 2023; Zhang et al., 2023; Xu et al.,
2023) seldom adopt a unified framework to address these two
tasks. In this paper, we focus on delving into the similarities
between them and exploring the potential enhancements for
each in a unified view.
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Our previous conference work, Xu et al. (2022a), has made
preliminary explorations into this issue. In that work, we
focus on how to reuse identity and attribute feature extrac-
tion modules, as well as their transfer networks, to enhance
the robustness of each task. In this work, we shift our focus
away from feature-level considerations for this issue, instead
aiming to unify the two tasks from a holistic framework per-
spective based on our two observations. First, in both tasks,
the target supplies the geometry while the source contributes
the appearance. Face swapping often does a good job of pre-
serving the structure information of the target face, thanks
to the explicit provision of these information in the target,
necessitating only minor adjustments of the facial identity.
However, as shown in Fig. 1a, reenactment usually involves
significantly reassembling the source features to align with
the target’s structural information, which poses a greater
challenge. Thus it invites us to ponder, whether we can mod-
ify the source-oriented approach in face reenactment to a
target-oriented one to assist in achieving better structural
alignment. Second, face reenactment typically maintains a
relatively stable high level of identity consistency under
the same-identity setting, which is attributed to its learning
under reconstruction supervision. In contrast, face swap-
ping lacks ground truth and needs to balance the influence
of coarse-grained identity loss and attribute loss, as illus-
trated in Fig. 1c. Here we pose another question, whether we
can achieve stable training under solely reconstruction loss
supervision in face swapping to ensure high identity con-
sistency. Additionally, UniFace employs Goodfellow et al.
(2020), whose unstable adversarial min-max objective train-
ing process can lead to quality degradation. Now, diffusion
models (Ho et al., 2020a; Nichol & Dhariwal, 2021) have
become the mainstream framework for generation.

In this work, we propose a novel framework, named
UniFace++, a diffusion-based, target-oriented reconstruction
framework that unifies both tasks. Specifically, we frame
face reenactment as a target-oriented texture transfer, replac-
ing the conventional source-oriented feature rearrangement,
as shown in Fig. 1b, and adopt a multi-conditional dif-
fusion model to avoid unstable training of GANs, termed
Texture-Geometry-aware Diffusion Model (TGDM). In par-
ticular, benefiting from the explainable and disentangled
parameter space of 3DMMs (Deng et al., 2019b), we com-
bine the texture-related coefficients from the source face
with the geometry-related ones from the driving condi-
tions to construct 3D descriptors, which are projected to the
image domain and serve as the target pivot. Besides, vec-
torized 3DMMs coefficients are also injected to the main
dataflow by AdaIN (Huang & Belongie, 2017). To fur-
ther supplement source texture to rendered face, we employ
cross-attention that accurately models the correspondences
between the source and target appearance. To this end,
TGDM is dedicated to transferring the source texture to

the target rendered face, which preserves explicit struc-
tural information but avoids complex texture deformations.
Furthermore, we connect TGDM to face swapping task.
Unlike current diffusion-based methods (Kim et al., 2022;
Zhao et al., 2023) that still require balancing identity trans-
fer and attribute preservation, we derive an entirely new
reconstruction-based training framework with a single face
input, as shown in Fig. 1d, with no extra tricks for sampling
either. Echoing the reenactment process, we regard the ren-
dered meshes of the recombined source and target codes as
the pivotal, with the target image where the face region is
masked serving as the source appearance, and incorporate
supplementary global identity cues to facilitate the recon-
struction of the face.
In summary, we make the following four contributions:

— We examine the similarities between face reenactment
and face swapping from a holistic paradigm perspec-
tive and, based on this, reconstruct the frameworks for
both tasks to share a target-oriented reconstruction-based
framework, termed UniFace++, which facilitates a stable
training process and high-performance outcomes.

— We propose a novel TGDM pipeline based on the multi-
conditional diffusion model to afford complex texture
transfer and maintain overall facial geometry.

— Abundant experiments are conducted qualitatively and
quantitatively to demonstrate the superiority of Uni-
Face++ for both tasks over SOTA methods.

2 Related Works
2.1 Face Reenactment

Face Reenactment (Wu et al., 2018; Chen et al., 2020b; Ren
et al., 2023) involves taking the source face and replicating
its pose and expression as the target. Previous efforts (Huang
et al., 2020a; Zhang et al., 2020; Ha et al., 2020) directly
combine target landmarks and source face for training. Then,
with the success of AdaIN (Huang & Belongie, 2017), subse-
quent works (Zeng et al., 2020; Zakharov et al., 2019) encode
the target attributes in vectorized information and then inject
them into the source face. Among them, Bounareli et al.
(2023) leverages a superior pre-trained StyleGAN2 genera-
tor (Karras et al., 2019, 2020) and introduces hypernetworks
to animate the source with target expressions. However, the
above methods fail to explicitly indicate the movements
between the source and target faces. Subsequently, warping-
based methods learn to warp and synthesize the target faces
based on estimated motion fields. These methods (Wiles et
al., 2018; Siarohin et al., 2019a) usually separate motion esti-
mation and warped source face refinement into two stages.
The most representative work is FOMM (Siarohin et al.,
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Fig. 1 An illustrative comparison of training phase among UniFace,
other mainstream methods, and proposed UniFace++. We can initially
summarize that for both tasks, the source provides identity information
(represented by solid shapes), while the target provides structural infor-
mation (represented by hollow shapes). For face reenactment (top part),
a UniFace efcare source-oriented rearranging operation, i.e., reshaping
the solid square to a circular form, while b UniFace++ serve as the target-
oriented transfer task, i.e., filling the hollow circle with the texture of the
square. For face swapping (bottom part), ¢ UniFace efcusually suffer
from unstable training introduced by seesaw-style optimizing of iden-
tity and attribute losses across different identities (orange and blue).
By contrast, d UniFace++ with simple reconstruction loss for stable
training while still maintaining comparable results. Besides, it can be
observed from the b and d that the proposed UniFace++ effectively
unifies the two tasks within a single framework (Color figure online)

2019b), which uses relative key-point locations to predict
flow fields to drive the appearance of the source. Other
follow-up works (Tao et al., 2022; Zhao & Zhang, 2022;
Zhang et al., 2023) focus on improving motion flows and
warping operation accuracy. Some studies further introduce
3D cues as structural guidance to refine flow field, such as
face mesh (Ren et al., 2021; Zhang et al., 2021; Doukas et
al., 2021; Gao et al., 2023) and depth information (Hong et
al., 2022, 2023).

More recent work, Rochow et al. (2024), samples each
target pixel with a transformer-based decoder conditioned on
keypoints and an expression vector that are extracted from the
driving frame. Wei et al. (2024) introduces a cross-attention
mechanism to guide the source animation.

The descriptions above all indicate that current methods
are source-oriented, requiring the resampling of the source
to align with the target’s attribute, which involves signifi-
cant deformation and increases the complexity of training,
as shown in Fig. 1a. In contrast, face swapping only requires
minor adjustments to the target face’s identity while pre-
serving its inherent structural information. Consequently, we
reframe face reenactment into a target-oriented paradigm,
using the desired textual 3D face mesh as a pivot for further
texture and identity enhancement, as shown in Fig. 1b.

@ Springer

2.2 Face Swapping

Face Swapping aims to change the target identity according
to the given source but keep other facial attributes constant.
Early face swap works (Blanz et al., 2004; Bitouk et al.,
2008; Cheng et al., 2009; Lin et al., 2012) mainly focus on
3D-based methods but suffer from poor visual quality. Then,
GAN-based (Goodfellow et al., 2020) methods (Perov et al.,
2020; Natsume et al., 2018; Bao et al., 2018) have made
significant progress. Specifically, Li et al. (2020) adaptively
integrates identity and attribute for face synthesis. Chen et
al. (2020a) introduces a feature matching loss hoping to pre-
serve more attribute embeddings. Wang et al. (2021b) and Li
et al. (2021) introduce 3D face descriptor for better geome-
try structure of swapped results. Gao et al. (2021a) decouples
identity and attribute information to better balance the two
aspects. With the success of Karras et al. (2019, 2020), many
works have emerged as a solution for high-resolution genera-
tion. Specifically, Zhu et al. (2021) is a pioneering work based
on pSp (Richardson et al., 2021) and subsequent works (Xu et
al., 2022d; Rosberg et al., 2023) further design fusion strate-
gies for better attribute preservation. E4S (Liu et al., 2023b)
and RAFSwap (Xu et al., 2022b) explicitly encode facial
components related to each identity to enhance ID consis-
tency. However, they lack flexibility in application due to the
fixed generator. Consequently, Luo et al. (2022) redesigns
the StyleGAN2 module and opens parameters for training.
Concurrent Xu et al. (2022¢) introduces a mask branch and
an ID inversion strategy to empower high-fidelity and robust
face swapping.

As the diffusion model shows excellent performance in
many fields, Kim et al. (2022) makes the first attempt that
uses facial guidance during denoising sampling. Zhao et al.
(2023) is closely related to our work, which resorts to 3D
information for explicit semantic and geometrical control.

Despite the impressive progress achieved by the above
methods, it is still remains a challenge to fully transfer the
face identity from the source face while preserving identity-
unrelated attributes of the target images due to seesaw-style
training losses, i.e., improving one aspect at the expense of
another, as shown in Fig. 1c. We observe that face reen-
actment yields relatively stable high-fidelity results in the
same-identity setting, attributing this to its strong recon-
struction supervision. Inspired by this, we reformulate the
training of face swapping as a single-image reconstruc-
tion task, achieving stable optimization without the need for
paired ground truth data, as shown in Fig. 1d.

2.3 Unified Framework
Unified Framework has been preliminarily explored in our

conference work Xu et al. (2022a), where we harmonizes
the two tasks from the feature processing level. In this work,
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we adopt a holistic framework perspective to more seam-
lessly integrate the advantages of both tasks based on the
above discussions, resulting in a more stable and superior
performance. Besides, the GAN employed in UniFace has
an unstable adversarial min-max optimization objective that
struggles to stably converge to satisfactory results. The dif-
fusion models have overcome these issues and demonstrated
powerful capabilities in the field of generation (Avrahami et
al., 2022; Harvey et al., 2022; Ho et al., 2022b; Fan et al.,
2022). Thus, we build UniFace++ based on this foundation.

2.4 Diffusion Model

Diffusion models (Ho et al., 2020a; Nichol & Dhariwal,
2021) are recently proposed generative models that can
synthesize high-quality images, which are trained without
discriminators, so they are more reliable and robust dur-
ing training compared to GANs. Additionally, they do not
suffer from common issues such as mode collapse or van-
ishing gradients, which are inevitable in the training process
of GANSs. After achieving great success in the unconditional
generation, diffusion models are adapted to enable condi-
tional generation. Dhariwal and Nichol (2021) introduce
classifier-guided diffusion, which forces the produced noise
to approach the desired condition. Ho et al.further (Ho & Sal-
imans, 2022) develop a Classifier-Free Guidance approach
that allows conditional editing without having to pretrain
classifiers. Despite these advantages, diffusion models are
hindered by their slow sampling speed due to the thousands of
times on one sample for complete pixel space-based denois-
ing. To address this issue, Song et al. (2020) propose DDIM
reduce sample time, and Rombach et al. (2022) propose the
Latent Diffusion Models (LDMs), which transfer the training
and inference processes to a compressed lower-dimension
latent space for more efficient computing.

Application fields of the diffusion model vary from image
generation (Avrahami et al., 2022; Fan et al., 2022; Ruiz
et al., 2022; Saharia et al., 2022), video generation (Ho et
al., 2022c,a; Wu et al., 2022; Molad et al., 2023; Zhou et
al., 2020), audio generation (Huang et al., 2023; Liu et al.,
2023a), 3D representation generation (Poole et al., 2022; Xu
et al., 2022c; Li et al., 2022), and many others.

3 Preliminaries

3.1 Denoising Diffusion Probabilistic Models
(DDPMs)

DDPMs follow the idea of latent variable models that consist
of aforward diffusion process and a reverse diffusion process.
Specifically, a diffusion process gradually adds noise to the
data sampled from the target distribution xg ~ g(xo) as a

Markov chain. Each step g (x; | x;—1) (fort € {0,...,T})
is defined as a Gaussian distribution with a fixed or learned
variance schedule g; € (0, 1):

g el xie) =N (VI= B A). (M

By the Bayes’ rules and Markov property, the latent variable
x; can be expressed as:

g (i | x0) =N (xi: Vaxo, (1 —an 1), @)

where a; = 1_[;:1 og, and @y = 1 — B;. Then, the reverse
process g (x;—1 | x;) is parametrized by another Gaussian
transition:

Po (xi—1 | x0) == N (x,-15 o (x4, 1), 09 (x4, 1)), 3)

where wg (-) and oy () are predicted by the trained deep
neural networks €y, which is optimized under the objective
Ex e~A0,1). [II€ — €9 (x;, 1)II3]. Thus, given x;, x,_; can
be sampled by using:

1
7= (v g o) v @

Xi—1 =

where z € N (0, I). Furthermore, according to Song et al.
(2020), x can be approximate derived by x; and €g (x;, 7):

P — 1 —arep (x4, 1) )
0- ﬁ .

This facilitates the use of pixel-level supervision and the per-
ceptual losses during the training stage in Sect. 4.2.

3.2 3D Morphable Models (3DMM:s)

Recent methods estimate the 3D face descriptors of 2D
images by optimizing a neural network to extract 3D param-
eters from a face image. Thus we follow the previous work
D3DFR (Deng et al., 2019b) that adopts ResNet50 as the
backbone to predict 3DMM coefficients, which consist of
identity a € R8O, expression f € R, texture § € R8O,
illumination y € R?’, and pose p € R°. Note that the orig-
inal 3DMM fails to control the gaze direction, we explicitly
model the gaze like Park et al. (2018), providing the normal-
ized direction vector from the center of the eye to the pupil
in four dimensions @ € R*. Therefore, given an input face
I, the output coefficients p € R26L.

p:D(I):{“:ﬂas,yanw}~ (6)
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With 3DMM, the 3D shape S and albedo texture T could be
parameterized as:

S=S+ Bigo + Bexpﬂy

T=T+B,3, @
where S and T denote the mean face shape and albedo texture.
B4, Beyxp, and B, are the bases of identity, expression, and
texture computed via PCA. We project the reconstructed 3D
face onto the 2D image plane with a differentiable renderer
R according to its illumination y and pose p:

I3, =RS, T, y, p). (8)

We naturally choose the rendered image I3, as the inter-
mediate geometry condition due to its several appealing
properties: 1) Compared with other structural represen-
tations, e.g., landmarks and segmentation maps, 3DMMs
provide an explainable and disentangled parameter space,
which enables direct recombining of corresponding fac-
tors when conducting the specific face manipulation task.
Besides, mapping other cues onto 3DMMs is much eas-
ier since no additional spatial information is required. 2)
Rendered face images provide more detailed semantic and
explicit geometry than vectorized parameters, thus reducing
the training difficulty of our framework for both face reen-
actment and swapping.

4 Method
4.1 Overview

Our previous work delves deeply into the intrinsic con-
nections between face reenactment and face swapping,
proposing UniFace to unify the two. However, it primar-
ily focuses on the feature level and relies heavily on the
feature decoupling capability of reenactment. In this work,
we revisit the paradigm of both tasks from a more gen-
eral viewpoint, proposing an enhanced framework known
as UniFace++. whose critical component termed Texture-
Geometry-aware Diffusion Model (TGDM). It is built upon
the multi-conditional diffusion model, allowing complex tex-
ture transfer and overall facial geometry preservation, stable
and effective training either. In Sects. 4.2 and 4.3, we respec-
tively describe how TGDM can be simultaneously adapted
for face reenactment and swapping. We will supply more
details in the following.

4.2 TGDM for Face Reenactment

Most recent face reenactment methods are source-oriented
that model the deformation to animate the source into

@ Springer

the driving pose and expression. However, it is still quite
challenging to achieve the accurate desired geometry and
maintain the complex identity appearance under various
conditions, yielding noticeable artifacts and degradation
problems. Inspired by the target-oriented swapping frame-
work that the desired facial structure is inherently provided by
the target itself and the remaining task is to transfer the global
identity onto this target structure, we reconstruct the source-
oriented reenactment framework into a target-oriented one.
For this purpose, we design the Texture-Geometry-aware
Diffusion Model (TGDM), which focuses on transferring the
source texture to the rendered geometry face. In this part, we
give the descriptions of the network structure and the training
details.

Feature Extraction As shown in Fig. 2, we combine the
appearance-related 3DMM coefficients (identity, texture, and
illumination) from the source image Iy with the motion-
related coefficients (expression, pose, and gaze) from the
driving image I ;4 to construct the desired 3D face descriptors
p = {og, By, 8. ¥, Py, @a}, along with its rendered face
I3, as the geometry conditions, which explicitly represent
accurate facial structure and coarse identity semantics.
Architecture. Following Ho et al. (2020b), our conditional
denoising model €g is designed by the UNet-based back-
bone, consisting of the encoder W and decoder Wp. As
shown in Fig. 2, TGDM is conditioned on three external
inputs. First, the spatially aligned rendered face I3, is con-
catenated channel-wise with the noisy face Zr, which is
obtained by adding noise to I, according to Eq. 2. They
are fed to the first layer of the network to guide the denois-
ing process, ensuring the intermediate noise and the output
face follow the given facial geometry. But I3, struggles
with precise identity control due to its coarse semantics and
unrealistic textures. Consequently, the texture encoder ®
provides the multiscale features Fy = {F9,..., F ’S‘} to pro-
vide the desired identity texture patterns, where k is 1, i.e.,
we adopt two resolution texture features in 16 x 16 and
32 x 32. To mix the source texture within the noise pre-
diction branch and eliminate the effects of misalignment,
we design the Texture Attention-based (TexAtt) module that
employs the cross-attention mechanism for harmonious inte-
gration. Concretely, as shown in Fig. 2, each TexAtt receives
the source texture feature Fls and the noise feature F;, the
query is extracted by one convolution from F',, and the key
and value are extracted from F i in the same way, obtaining
Q.. K, Vg e REG/MH>Wi which have reduced channel
numbers. Then @, and K are used to calculate the correla-
tion matrix M, which further multiplies V; to obtain F i‘% d
A zero-initialized learned scale parameter t is applied on
F fv% 4 to control the source texture transfer flow when added
to the F:
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Texture-Geometry-aware Diffusion Model (TGDM)

Linear(p) + Linear(t)

Fig.2 Overview of the paradigm of face reenactment. Given the source
and target faces, we first represent them in geometry-related 3DMM
coefficients and then project the recombined ones to the rendered face
I34, which serves as the intermediate structural representation. To

i softmax(Q,(K,)")V, = MV, )

s—d —

Fi=<F_ , +F. (10)

In addition to the explicit conditions, the modified coef-
ficients p further supplement the implicit geometry cues,
especially the gaze direction not included in the rendered
face. It added with embedded time, forming the last con-
dition C = Linear(p) + Linear(¢), which is injected into
the noise predictor via the adaptive instance normalization
(AdalN) (Huang & Belongie, 2017):

AdaIN(F';, C) = oc(C)Fd_—M.(Fd) + e (C), (1)
o (F)

where 1(+) and o (+) is the average and variance operation of
the input feature Fil respectively. (. () and o, (-) are used to
estimate the adapted mean and bias according to the given
condition. To this end, all condition information is properly
integrated into the network €g(Z;, Fy, I34, p, t) to predict
the noise for face reenactment.

Objectives. We first adopt the regular simple Denoising Loss:

»Csimple = ||€ —€9(Z;, Fy, I34, P, t)”z ) (12)

where € is an added noise on I,. Besides, we estimate the
fully denoised face Zo according to the Eq. 5, which enables
further constraints on the image level. Concretely, we mea-
sure the difference between Zo and I, at the pixel and
perceptual level by a Reconstruction Loss Lyec as Ly dis-
tance and a Perceptual Loss as the LPIPS loss (Zhang et al.,

Fa softmax ) 4 lpﬂ
D> D
i F,
Fg d
D ResBlk
| | ResBlk + AdaIN

TexAtt

@D add
|_ & Multiply

obtain realistic faces, we develop a multi-conditional diffusion model,
termed TGDM, that learns geometry prior from I3, by simply concate-
nated input, transfers source appearance from I ; by cross attention, and
supplements implicit identity and geometry information by AdaIN

2018):

b= |22 1],

£p = | duse20) — ol (14)

where ¢y, (+) represents the pre-trained VGG16 (Simonyan
& Zisserman, 2014) network. Thus, the total loss is defined
as follows:

L= )kw'mple»csimple + )\rec»crec + )\p»cp7 (15)
where Agimpre = 10, Aree = 1, and A, = 1.

4.3 TGDM for Face Swapping

Despite the impressive progress of recent methods, GAN-
and diffusion-based face swapping methods still suffer from
the dilemma that the improvement of source face iden-
tity consistency at the expense of sacrificing target attribute
preservation. For example, Kim et al. (2022) employs iden-
tity and attribute expert models to guide the noise prediction,
and the balance between them is critical to producing high-
quality swapped faces. However, it is complex and needs
many experimental attempts. We attribute this phenomenon
to the training phase of playing the seesaw-style game, which
struggles to balance all identity-unrelated attributes preserva-
tion and the source identity fusion. Inspired by the stable and
appealing performance brought about by reconstruction loss
in same-identity face reenactment, we attempt to reframe the
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0.6111
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0.1012
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0.0596
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0.0608
0.0581
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0.0349
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7.24
6.94
7.35
5.

28.35
27.19

0.6429
0.6853
0.6787
0.6603
0.7718

0.0793
0.0944
0.0758
0.0792
0.0554

0.0484
0.0683
0.0463
0.0554
0.0315

5.23
6.12
5.36
5.81

5.09

0.3609
0.3563
0.3450
0.3541
0.3346

13.38
15.50
16.55

16.18

HyperReenact (Bounareli et al., 2023)
AniPortrait (Wei et al., 2024)

.14
0.

S

0.5655
0.5694
0.7017

27.09
27.17

FSRT (Rochow et al., 2024)

05

40.07
35.16

UniFace (Xu et al., 2022a)

Ours(UniFace++)

0.18

82

25.51

18.55

Bold and underline represent optimal and suboptimal results. The up arrow indicates that the larger the value, the better the model performance, and vice versa. PP means user preference percentage

Ziqg + Linear(p) + Linear(t)
———> § > 2y - ———————— |

BBy

Add noise T

R

Training phase

Inference phase

Fig. 3 The new paradigm of face swapping is built upon the TGDM.
During the training phase, we focus on reconstructing the input face
I from given identity- and attribute-related conditions, i.e., identity
embedding z;4, 3D face descriptor p, rendered face 134, and masked
face I,,. During inference, we first render the recombined coefficients
to capture the desired geometry prior and coarse identity texture, which
incorporates with other conditions to generate final swapped results

face swapping as a single-image reconstruction task, which
is also built upon the TGDM.

Specifically, as shown at the top of Fig. 3, there are two
modifications. First, we completely mask the face region of
the source texture image with the help of the mask predictor
M (Yu et al., 2018) to ensure that the ground truth identity
information is not visible to the network, obtaining 7,,:

I, = I, x M(Iy). (16)

Second, because of the low-dimensional linear representation
of 3DMM:s, the rendered images often lack photo-realism and
fine texture details like wrinkles. We further supplement the
identity embedding from the expert identity model G (Huang
et al., 2020b). In this way, the renderer image 13,4, identity
embedding z;4, and Linear(p) focused on affording iden-
tity cues and identity-unrelated attributes of the face region,
while I,, makes up for the absence of hair and background.
Notably, the mouth areas are also served as the background,
which is discussed in Sect. 5.3. During training, as Eq. 15,
our scheme does not require complex losses. Instead, the
reconstruction loss is sufficient. The hyperparameter setting
is the same as Eq. 15 either. For inference, given the source
I and the target I,, we first render the 13,4 with the identity
factor of the source and the remaining parameters of the tar-
get. As shown in the bottom of Fig. 3, I3, is sensitive to the
geometric structure, exhibiting the exact desired face shape,
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and z;4 contains source identity semantics. Combining both
of them guarantees identity similarity. To this end, follow-
ing the standard denoising process, our method successfully
transfers semantics and textures of the source identity to the
target, while fully keeping the identity-unrelated attributes
without any complex sampling tricks.

4.4 Temporally Coherent Video Generation

The aforementioned methods primarily focus on the image
level. In order to output temporally consistent face swap-
ping and driving results, we make minor modifications to the
TGDM. Inspired by Stypulkowski et al. (2023), we intro-
duce two temporally consecutive frames to provide motion
information, which are concatenated with the source input
(Is in reenactment paradigm Fig. 2 and I,, in swapping
paradigm Fig. 3) and injected into the textual encoder ® g
through attention to incorporate temporal cues. During train-
ing, given that our ground truth frame I ; is randomly selected
from a sequence at the timestamp k, three distinct cases arise:
Initially, for k >= 2, there is an ample supply of preceding
frames to act as motion frames. In the case of k = 1, the frame
at k = 0 is paired with a single-channel black image to con-
stitute the motion frame. Finally, for k = 0, the motion frame
is composed of two single-channel black images. Then, the
sampling procedure is consistent, and it should be noted that
the motion frames utilized in the inference phase are derived
from the frames predicted earlier, since we do not have access
to the ground truth frames. In this way, we generate tempo-
rally coherent videos frame by frame.

5 Experiment
5.1 Datasets and Implementation Details

Datasets. For face reenactment, we leverage the Vox-
Celebl (Nagrani et al., 2017) dataset for training. Among
them, we select the high-resolution (720P) ones and follow
the preprocessing method in FOMM Siarohin et al. (2019b)
to crop the videos and resize them to 256 x 256. We artificially
construct various challenging pairs as a test set to evaluate the
model’s overall performance. Besides VoxCelebl, we ran-
domly select 1,000 images from the VGGFace2-HQ (Cao et
al., 2018)1 dataset to serve as the source images, and corre-
spondingly sample target faces from (Nagrani et al., 2017),
to compare generalization capability with other methods.
For face swapping, we utilize the high-quality (Lee et al.,
2020) dataset for training, which has 30,000 images with
fine-grained mask annotation. Rossler et al. (2019) is used
for testing, which is a forensics dataset consisting of 1,000

1 https://github.com/NNNNAI/VGGFace2-HQ.

videos. Besides, we further randomly sample 1,000 identity
pairs from the test set of CelebA-HQ datasets for further
evaluation.
Metrics. We evaluate the reenactment performance from
three aspects: Quality is measured using PSNR, LPIPS (Zhang
et al., 2018), and FID (Heusel et al., 2017), which are com-
monly used in most available models (Ren et al., 2021; Wang
etal., 2021a; Zhu et al., 2022; Rochow et al., 2024; Xu et al.,
2022a; Hongetal., 2023, 2022; Hong & Xu, 2023; Bounareli
et al., 2023); Attribute Consistency is assessed using Exp,
Angle, and Gaze, following Zhu et al. (2022), which cal-
culates the average Euclidean distances of expression, pose,
and gaze coefficients extracted by 3D face reconstruction
model (Deng et al., 2019b) between the generated and target
images; Identity Consistency is also measured like most
competitors (Wang et al., 2021a; Zhu et al., 2022; Xu et
al., 2022a; Hong et al., 2023, 2022; Bounareli et al., 2023),
by calculating the identity cosine similarity in the feature
space, termed ID-C, where C indicates that ID embeddings
are extracted by Huang et al. (2020b). Similarly, we evalu-
ate the swapping performance from three aspects: Quality is
judged using FID (Zhao et al., 2023; Xu et al., 2022d; Zhu
etal., 2021; Liu et al., 2023b; Rosberg et al., 2023). Identity
Similarity is estimated using ID-A (Zhu et al., 2021; Kim
et al., 2022; Shiohara et al., 2023), where A means (Deng et
al., 2019a) extractor. Attribution Preservation is assessed
using Exp and Angle (Kim et al., 2022; Shiohara et al., 2023).
However, we observe that the reliability of the discrimina-
tive model decreases under challenging conditions. Inspired
by Kim et al. (2022), we introduce a relative distances metric
to measure not only how close synthesis is to positive pairs,
but also how far synthesis and negative pairs, as formalized
in Eq. 17. This approach better reflects how humans perceive
facial changes, especially in challenging cases.

D (Zsyn. Zp)

R—-D .=
D (Zsyn. Zp) + D (Zsyn. Zn)

, )

where D can be any distance metric, Zy, is the generated
face, Z p has the desired characteristic, while Z, has the unde-
sired ones.

Consequently, we supplement our evaluation with addi-
tional challenging metrics to better reflect identity consis-
tency and attribute preservation under various conditions,
termed R-ID-A, R-ID-C, R-Exp, R-Angle, and R-Gaze,
which are the relative distance versions of the original met-
rics.

Implementation Details. For face reenactment, we randomly
sample the source and target faces from the same video in
VoxCelebl for training. It takes about 4 days by using 4
V100 GPUs with 8 batch sizes and a 0.0002 learning rate
for 200K iterations. For face swapping, we train its model
as the aforementioned setting for approximately 3 days. For
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Fig. 4 Qualitative comparison with SOTA methods on VoxCelebl test set. We present various challenging cases which show the significant
difference between the source and target of the pose, occlusion, and face size. Please pay attention to the area indicated by the red arrow

Table 2 Quantitative results on

the tasks of cross-identity Method R-Exp | R-Angle | R-Gaze | R-ID-C ¢ FID |
setting when the source faces are DaGAN++ (Hong et al., 2023) 6.88 0.0692 0.1054 0.5134 68.09
sampled from VGGFace2-HQ
MCNet (Hong & Xu, 2023) 6.64 0.0562 0.0955 0.5433 54.73
HyperReenact (Bounareli et al., 2023) 6.73 0.0629 0.1128 0.4982 51.60
AniPortrait (Wei et al., 2024) 7.45 0.0720 0.1321 0.5077 60.15
FSRT (Rochow et al., 2024) 6.51 0.0597 0.1052 0.5569 53.62
Ours 5.76 0.0401 0.0656 0.6294 45.83

‘We use relative distances metric in this experiment
Bold and underline values represent optimal and suboptimal results

the diffusion model, the length of the denoising step T is set
to 1000, and a linear noise schedule is adopted for both the
training and inference process. Notably, to stale the training
procedure, only MSE loss of noise is used at the beginning
of the training, when it has been decreased below 0.05, MSE
loss of image, and LIPIS loss then start to work. Besides, the
UNet of TGDM receives 256 x 256 resolution images and
performs 16 down-sample ratios.

Source Target FSRT DaGAN++ MCNet Aniportrait HyperReenact ours

Fig. 5 Qualitative comparison with recent SOTA methods on
VGGFace2-HQ dataset

@ Springer



International Journal of Computer Vision (2025) 133:4538-4554

4547

5.2 Face Reenactment
5.2.1 Comparison with Baselines

Qualitative Results. We perform qualitative comparisons
with Siarohin et al. (2019b); Ren et al. (2021), NTHS (Wang
etal.,2021a; Zhuet al., 2022), TPSM (Zhao & Zhang, 2022),
DAM (Tao et al., 2022; Hong et al., 2023), MCNet (Hong
& Xu, 2023; Bounareli et al., 2023; Rochow et al., 2024),
recent diffusion-based method Wei et al. (2024), and our pre-
vious version Xu et al. (2022a) in the Cross-Identity setting,
where the source and the target are of different identities.
As shown in Fig. 4, we sample nine pairs from VoxCelebl
for visualization. First, the top three pairs have a significant
difference in face size. It can be seen that FOMM-based meth-
ods, e.g., TPSM, DAM, and MCNet, produce over-smooth
facial textures and suffer from noticeable warping artifacts.
HifiHead could generate realistic faces, but their poses are
inconsistent with the target. Another stylegan-based method,
HyperReenact, exhibits the opposite phenomenon, where
attribute similarity is high, but image distortion is severe, par-
ticularly in non-facial areas. By contrast, the results of our
method are of high quality and with the desired attributes.
Second, the target faces of the middle ones show rich micro-
expressions. Recent methods just imitate mouth shape and
head direction, and they ignore the emotion embodied in
the target. For example, the target of the fourth row is sur-
prised, and the sixth is contempt. For comparison, our results
exhibit accurate emotion styles, i.e., surprised forehead lines,
delighted mouth corners, and disdainful eyes. Finally, the
bottom pairs suffer from occlusions in the source or the tar-
get. It is difficult for FOMM-based methods to estimate the
precise key points, even with the introduction of depth cues
in DaGAN++ to enhance accuracy. Thus they usually suf-
fer from extremely distorted facial shapes (the head area of
row 7). Other methods also struggle to animate the occluded
objects to fit the desired pose, which is attributes to source-
oriented methods struggle to reassemble unseen parts into a
coherent and reasonable result.

In contrast, our method designed in a target-oriented man-
ner thus avoids these problems, which is not sensitive to
occlusion and reasonably preserves the non-facial parts in
the generated results (the headphones of row § and the hat of
row 9). Moreover, these cases are all under large-pose condi-
tions. Aniportrait, as the latest method, although it has fully
integrated the facial structure information with the source
face, it still produces noticeable artifacts in these challeng-
ing scenarios. Our previous work UniFace is a GAN-based
source-oriented framework, so it is not surprising that it could
not produce competitive results. Note that we introduce the
gaze information in 3D facial prior, and it can be seen from
rows 5 and 6 that it does work. Thus these visualizations con-
vincingly demonstrate the superiority of our target-oriented

method that successfully transfers the source texture to the
target rendered image, providing more realistic results with
accurate pose and detailed expression while preserving the
source identity.

To fully assess the generalization and adaptability of
the proposed method, we provide a qualitative comparison
with SOTA methods on VGGFace2-HQ dataset. We choose
competitors from publications dating from 2023 onwards,
i.e., DAGAN++, MCNet, FSRT, HyperReenact, and AniPor-
trait. As shown in Fig. 5, our results are conditioned on
explicitly decoupled 3DMM coefficients and rendered 3D
faces, which are not very sensitive to the source and driv-
ing subjects. Therefore, despite the different cropping and
alignment methods between VGGFace2-HQ and VoxCelebl,
our method can still effectively handle these source faces
and map them to the desired attributes under various driven
expressions and poses. In contrast, comparative methods
exhibit noticeable texture degradation and inconsistencies in
identity preservation.

Quantitative Results. We quantitatively compare the pro-
posed method with several aforementioned SOTA methods
both in Same-Identity and Cross-Identity settings. We ran-
domly sample 200 identities from the test set and set 5
random seeds to generate 1K pairs in total. The results
are summarized in Table 1. Benefiting from the explicit
facial representation contained in the target rendered face,
our method achieves an impressive performance of facial
attributes, i.e., far ahead in metrics Exp, Angle, and Gaze,
indicating that our model can animate the source face that is
highly faithful to the given structure cues. Beyond that, our
approach was nearly the best in overall quality and similarity
to the identity. HifiHead obtains the lowest FID and shows
the best identity consistent, yet suffers from severe pose error,
which can be concluded from rows 2 and 8 of Fig. 4 either.

Besides, we report the quantitative results on VGGFace?2-
HQ in Table 2. We employ more challenging metrics, i.e.,
relative distance metrics, to assess the performance of our
method on this unseen and cross-domain dataset. Consis-
tently, our method achieves superior performance on all these
metrics.

Finally, we attach the overall user preference percentage
results in the rightmost column in Table 1. Concretely, we
randomly sample 200 pairs from the corresponding test set.
Each pair is compared 5 times by different volunteers, who
are asked to choose the preferred one in terms of three met-
rics: realism, identity-consistency, and attribute-alignment.
The results show that our method outperforms other compet-
ing methods.

5.2.2 Ablation Study and Analysis

We perform qualitative and quantitative ablation studies to
validate the merits of the proposed designs. For a fair com-
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Source Target

Loss Ablation

Expl Exp2 Exp3 Exp4

TextAtt Ablation

Ours

Component Ablation

Expsr Exp7 Exp8 Exp9 Exple

Fig. 6 Qualitative ablation study of our method with different variations on VoxCelebl dataset, including loss functions, method components,

TextAtt structures

parison, we train our method and all these baselines with the
same setting, e.g., same batch sizes and training iterations.
Ablating Loss Functions. we first present ablation experi-
ments to explore the impact of various loss functions. As
shown in Fig. 6, using only a simple loss (Agimpre = 1,
Arec = 0, 4, = 0, column 3, Exp1) can produce structurally
consistent driving results, but the texture and color differ
significantly from the source. Introducing a reconstruction
loss (Asimpte = 1, Apec = 1, A = 0, column 4, Exp2) fur-
ther leads to degradation in the results, possibly because the
estimated fully denoised face Zy according to the Eq. 5 is
inaccurate. Directly applying a strong pixel-level loss can
easily cause oscillations, while a perceptual loss constrains
at the feature level and can produce relatively better results
(Asimpte = 1, Apec = 0,4, = 1, column 5, Exp3). Consistent
conclusions can also be drawn from the Table 3. Since Exp2
exhibits severe degradation, we do not calculate the metrics
for it.

Furthermore, we perform a sensitive analysis on these
three loss functions to obtain an optimal combination of
weights. As shown in Fig. 6, we introduce two variants,
Asimple = 1, Apec = 1, A = 1 (column 6, Exp4), Agimpre =
L, Aree = 10, A, = 10 (column 7, Exp5), and the setting
Asimple = 10, Arec = 1, Ap = 1 we used is shown in col-
umn 13. From these visualizations, it can be observed that
the Exp5 has an excessively large weight on the pixel-level
reconstruction loss and perceptual loss, leading to an absence
of denoising capabilities, while the output of the Exp4 is
also unsatisfactory, exhibiting noticeable degradation. Con-
sistently, Exp4 shows a noticeable decline in all metrics, as
shown in Table 3. The results of the Exp5 are pure noise, so
we do not calculate metrics for it.

Ablating Method Component. As shown in Fig. 6, when
the 3D face descriptor is absent (column 10, Exp8), the
overall quality of the generated face does not significantly
deteriorate; however, details such as eye gazes, which are

@ Springer

Table3 Quantitative ablation study of our approach with different mod-
ule on VoxCelebl

Method Exp | Angle |, Gaze | ID-C ¢ FID |
Expl 6.34 0.0389 0.1037 0.5544 57.91
Exp2 n/a n/a n/a n/a n/a

Exp3 6.10 0.0372 0.0789 0.6525 42.36
Exp4 7.22 0.0470 0.1448 0.4981 54.17
Exp5 n/a n/a n/a n/a n/a

Exp6 6.06 0.0353 0.1252 0.6323 46.63
Exp7 6.69 0.0443 0.1346 0.5204 52.96
Exp8 5.98 0.0350 0.0948 0.6855 41.83
Exp9 n/a n/a n/a n/a n/a

Expl0 9.10 0.4376 0.1845 0.2233 70.49
Ours 5.82 0.0349 0.0596 0.7017 35.16

Bold values represent optimal and suboptimal results

Input Source

Fig.7 Attention visualization of TextAtt. The color bars indicate acti-
vation values. The points in the input rendered face could correctly
match similar semantic and geometrical areas in the source

challenging to convey in the rendered face, are inaccurately
represented, as can be seen in the rows 1, 3, and 4. This
demonstrates that the 3D face descriptor is primarily respon-
sible for providing detailed information about the eye area.
This is also evident from the comparison between the rows 8



International Journal of Computer Vision (2025) 133:4538-4554

Source Target Ours Diffface High-Res SimSwap HifiFace

Fig. 8 Qualitative comparison of face swapping results with other
SOTA models on FaceForensics++. The results of our model better
reflect the source identity, especially the face shape and local charac-

and 11 of Table 3, where there is a noticeable decline in the
gaze metric, i.e., from 0.0596 to 0.0948.

Then, when there are no source features (column 11,
Exp9), only the facial textures remain. This proves that cross-
attention effectively supplements the textures missing from
the rendered face, such as hair and background, and further
refines the facial textures. We do not include this variant in
the Table 3 because it is unable to output a complete facial
image.

Finally, when there is no rendered face 134 (column 12,
Exp10), the 3D face descriptor must solely provide facial
geometric information. Comparing the results of columns
12 and 13, we can observe that the implicit representation is
insufficient to effectively support geometry alignment, which
underscores the importance of the rendered face. This con-
clusion is further supported by the sharp performance decline
in the row 10 of the Table 3.

Ablating Feature Fusion Method of TextAtt. We design two
variations to evaluate the effectiveness of TextAtt. As shown
in Fig. 6, we adopt the image-level (column 8, Exp6) and
feature-level (column 9, Exp7) concatenation for feature
injection as two baselines, these two baselines are able to
generate the desired pose and expression, but they have a
limited ability to retain the source appearance, exhibiting
severe color jitting and artifacts, especially the feature-level
concatenation. Contrary to the above competitors, our results
using cross attention show higher quality, which illustrates
the effectiveness of cross attention as the feature transfer
module, reducing the difficulty of training and speeding up
the convergence of the model. Besides, the above observa-
tions could also be summarized from Table 3, our proposed
method improves all metrics by a large margin.

Interpretability of TextAtt. To better understand the cross-
attention mechanism, we visualize the attention maps of the

InfoSwap

MegaFS  FaceShifter E4S BlendFace  DiffSwap ROOP UniFace

teristics. Additionally, they are more faithful to the target image for
non-identity-related attributes. The results of other methods are from
the Kim et al. (2022) main paper and officially released codes

FlowFace Ours

Source Target

Fig. 9 Qualitative comparison of face swapping results with other
SOTA models without officially released codes. The inferred images
are directly copied from their papers

TextAttin UNet middle block, which is 16 x 16 resolution. As
shown in Fig. 7, we select three points from different regions
in the noise feature, i.e., head, face, and background. The
visualized attention maps indicate that each location pays
more attention to the geometrically and semantically similar
areas, e.g., the red point is sampled from the head region,
which has a higher response with the corresponding region
of the source feature. Consequently, such attention-based
design allows sufficient texture transfer to achieve photo-
realistic and identity-consistent face generation.

5.3 Face Swapping
5.3.1 Comparison with Baselines

Qualitative Results. We first conduct qualitative experi-
ments to compare our method with diffusion-based methods:
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BlendFace Ours

Source Target E4S

DiffSwap

Fig. 10 Qualitative comparison of face swapping results with recent
SOTA models on CelebA-HQ dataset

ROOP?2 Kim et al. (2022); Zhao et al. (2023), GAN-based
methods: Li et al. (2020); Wang et al. (2021b); Chen et al.
(2020a); Zhu et al. (2021), InfoSwap (Gao et al., 2021a),
High-Res (Xu et al., 2022d), E4S (Liu et al., 2023b; Shio-
hara et al., 2023), and our previous version Xu et al. (2022a)
on the Rossler et al. (2019) dataset. As shown in Fig. 8,
our model outperforms other models in obtaining high-
fidelity face swapping results, especially on face shapes
and local characteristics (eyes, nose, mouth), and preserving
non-identity-related attributes such as hair and background.
Specifically, in the third row, our model can successfully
transfer a wide face into a slim face benefiting from the
explicit geometry guidance while other methods tend to keep
the shape of the target face. DiffSwap and DiffFace, while
possessing some ability to alter facial shapes, still exhibit
unstable identity and attribute adversarial processes, as seen
in the columns 4 and 13, which fail to produce consis-
tent results. Similarly, HiFace employs implicit 3D-aware
features, and struggles to effectively preserve facial shape.
Besides, in the first row, our result has larger eyes and is
more consistent with the source, while other methods lack
this feature, resulting in low identity consistency.
Moreover, Fig. 9 presents more qualitative comparisons
with other SOTA methods that are without officially released
codes, e.g., Luo et al. (2022), and Zeng et al. (2022) when
there are pronounced differences in facial contours. Figure 10
presents the comparative results on the CelebA-HQ dataset
to further verify the generalization of our method. We select
DiffSwap, E4S, and BlendFace for comparison, which are
published in and after 2023. It can be observed that the results
of E4S fail to preserve the same skin tone as the target, while
BlendFace and DiffSwap exhibit low identity consistency. In
contrast, our method effectively maintains target attributes
while possessing a high degree of identity similarity, i.e.,
learning the flat chin characteristic of the first case and the
long face feature of the second case. Please pay attention to
the area indicated by the red arrow.
Quantitative Results. We further report quantitative results
compared to some of the above method with officially
released codes in Table 4. Benefiting from the explicit struc-

2 https://github.com/sOmd3v/roop.
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Target Mask Ablation

Source Component Ablation

Fig. 11 Qualitative ablation study of our method with different varia-
tions on FaceForensics++ dataset

tural information, our method has a large lead in the Exp
and Pose metrics. At the same time, due to the sufficient
identity-related texture and semantic transfer, the ID-A met-
ric is also the best. We observe that ROOP slightly leads
our method in terms of FID. This is attributes to the fact that
ROOP inherits the generative priors that Stable Diffusion has
learned from large-scale data, thus ensuring the overall qual-
ity of the generated results. Consequently, our UniFace++
surpasses that of other methods in almost all aspects, includ-
ing the user preference percentage in the rightmost column
in Table 4. We also supplement the quantitative results on
the CelebA-HQ dataset in Table 5. Obviously, our method is
leading in all aspects of the challenging metrics. Qualitative
and quantitative experiments both prove that our method is
better considering both identity consistency with the source
and attribute preservation with the target.

5.3.2 Ablation Study and Analysis

We perform qualitative ablation studies to validate the merits
of the proposed designs. For a fair comparison, we train our
method and all these baselines with the same setting, e.g.,
same batch sizes and training iterations.

Ablating Mask Form. The critical operation of our reconstruc-
tion-based face swapping paradigm is to mask the source face
to avoid identity information leaking. Thus we report a visu-
alization to explore the effect of the mask area. As depicted
in Fig. 11, we design three variations, i.e., the Normal mask
(column 3, Expl) covers the all face area, the Small mask
(column 4, Exp2) treats the mouth area as the background,
and the Dilated mask (column 5, Exp3) dilates the Normal
mask to cover more areas. There is no apparent difference
between the Normal and Small types in terms of identity
and attributes by comparing columns 3 and 4, but the Small
obtains the more realistic mouth area since it can learn infor-
mation from the Small masked source. Please pay attention
to the red rectangle of row 2. The results of Dilated show the
artifacts around the face contour and lead to image degra-
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Izr'i:]i:risgrl)l zcl)riltg?el:\,:wapping on Method D-A1 Exp ¥ Angle v FID | PP

FaceForensics++ dataset FaceShifter (Li et al., 2020) 0.5283 2.54 0.3001 17.82 0.08
HifiFace (Wang et al., 2021b) 0.5792 2.56 0.3116 18.91 0.11
MegaFS (Zhu et al., 2021) 0.3409 3.08 0.3385 21.68 0.02
InfoSwap (Gao et al., 2021b) 0.5914 2.93 0.2874 21.23 0.06
High-res (Xu et al., 2022d) 0.3182 2.92 0.2288 21.79 0.04
E4S (Liu et al., 2023b) 0.5621 2.66 0.2138 16.67 0.07
BlendFace (Shiohara et al., 2023) 0.5333 2.47 0.2051 19.23 0.07
DiffSwap (Zhao et al., 2023) 0.4022 3.03 0.2867 20.50 0.05
ROOP 0.5861 2.20 0.1877 15.56 0.17
UniFace (Xu et al., 2022a) 0.5835 2.67 0.2790 16.72 0.12
Ours(UniFace++) 0.6121 1.94 0.1122 15.87 0.21
Bold and underline values represent optimal and suboptimal results

Izgll[e):risg: ?)r;tli:(l:tflzvsewapping on Method RID-A T RExp R-Angle J FIDV

CelebA-HQ test set E4S (Liu et al., 2023b) 0.4735 2.44 0.2427 15.62
BlendFace (Shiohara et al., 2023) 0.4368 2.32 0.2040 16.54
DiffSwap (Zhao et al., 2023) 0.3628 291 0.3070 20.36
Ours(UniFace++) 0.4948 1.81 0.1359 14.35

We use relative distances metric in this experiment
Bold and underline values represent optimal and suboptimal results

dation. On the basis of these phenomena, we choose Small
masks experimentally, as depicted in I,, of Fig. 3.

Ablating Method Component. To verify that the components
in our method are indispensable, we present qualitative abla-
tion studies in Fig. 11. The vectorized features contain crucial
source identity embeddings z;4, and the absence of these
features (column 6, Exp4) leads to a decrease in identity con-
sistency, which can be observed by comparing the columns
4 and 6. Then, the absence of the source feature (column 7,
Exp5) results in the same phenomena described in the reen-
actment task, i.e., there is no texture outside of the facial
area, and the texture within the facial area is also not real-
istic. Finally, we observe that without the rendered face 134
(column 8, Exp6), the color of the swapped results is prone
to be similar to the source rather than the target, and fails
to preserve the facial expression of the target (rows 2 and
3), which further demonstrates the necessity of the explicit
facial geometry as the condition.

6 Conclusion

In this paper, we revisit a unified framework for face
reenactment and swapping, constructing a target-oriented
reconstruction paradigm, termed UniFace++, which shows
several appealing properties: (1) We reframe the face reen-
actment as a target-oriented texture transfer, instead of the

source-oriented feature rearrange, to avoid complex source
texture deformation. (2) We reframe the face swapping as
a single image reconstruction task, which mitigates the
challenge of balancing identity transfer and attribute preser-
vation. (3) Our proposed Texture-Geometry-aware Diffusion
Model (TGDM) decomposes the complex transfer problem
into a multi-conditional denoising process, where a Texture
Attention-based module accurately models the correspon-
dences between appearance and geometry cues contained in
source and target conditions, and incorporates extra implicit
information for high-fidelity face generation. (4) Our exten-
sive results demonstrate the superiority of the proposed
framework for both face reenactment and swapping.
Limitations and Future Works. Constrained by computational
resources, we utilize the Denoising Diffusion Probabilistic
Model (DDPM) to validate the effectiveness of our Uni-
Face++, which currently only supports a resolution of 256,
and takes about 45 ms on one V100 GPU to generate a single
face under the 7 = 1000 DDPM setting. In subsequent work,
we plan to introduce more advanced techniques such as Sta-
ble Diffusion (SD) to strengthen our framework in terms of
effectiveness and efficiency.>4>-©

3 https://www.robots.ox.ac.uk/vgg/data/voxceleb/vox1.html.
4 https://github.com/NNNNAI/VGGFace2-HQ.

> https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.
html.

6 https://github.com/ondyari/FaceForensics.
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