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Efficient Multi-Robot Task and Path Planning in
Large-Scale Cluttered Environments

Gang Xu"’, Yuchen Wu'”, Sheng Tao, Yifan Yang

Abstract—As the potential of multi-robot systems continues to
be explored and validated across various real-world applications,
such as package delivery, search and rescue, and autonomous
exploration, the need to improve the efficiency and quality of task
and path planning has become increasingly urgent, particularly
in large-scale, obstacle-rich environments. To this end, this letter
investigates the problem of multi-robot task and path planning
(MRTPP) in large-scale cluttered scenarios. Specifically, we first
propose an obstacle-vertex search (OVS) path planner that quickly
constructs the cost matrix of collision-free paths for multi-robot
task planning, ensuring the rationality of task planning in obstacle-
rich environments. Furthermore, we introduce an efficient auction-
based method for solving the MRTPP problem by incorporating a
novel memory-aware strategy, aiming to minimize the maximum
travel cost among robots for task visits. The proposed method
effectively improves computational efficiency while maintaining
solution quality in the multi-robot task planning problem. Finally,
we demonstrated the effectiveness and practicality of the proposed
method through extensive benchmark comparisons.

Index Terms—Multi-robot systems,
planning, auction mechanism.

task planning, path

I. INTRODUCTION

ULTI-ROBOT task and path planning (MRTPP) prob-

lem aims to enhance the collaborative capabilities of
multi-robot systems, enabling a fleet of robots to perform a
series of tasks in the shortest possible travel distance or time
in real-world applications, such as package delivery [1], target
reconnaissance [2], autonomous exploration [3], search and
rescue [4], and power inspection [5]. In these applications,
the environment is often cluttered with numerous obstacles.
Decoupling task planning and path planning—by first perform-
ing task planning without collision constraints, then generat-
ing collision-free paths for the assigned tasks—can lead to
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higher task execution costs for robots. To ensure high-quality
solutions for the MRTPP problem, it is crucial to consider the
coupling between task planning and path planning [6]. However,
as the number of robots and tasks increases, constructing the
cost matrix for collision-free paths becomes computationally
expensive, particularly in large-scale environments with dense
obstacles. Thus, achieving a trade-off between solution quality
and computational efficiency remains a significant challenge in
the MRTPP problem.

Many methods have been proposed for the MRTPP problem.
For example, Camisa et al. [7] solved a combined task and path
planning problem using a distributed primal decomposition ap-
proach for package delivery applications. Xu et al. [8] addressed
the MRTPP problem in dense environments by separately solv-
ing both the task and motion planning problems. However, the
above methods decouple task planning and path planning, which
may increase the task execution costs for robots in environments
with complex obstacles. In contrast, many existing approaches
consider their coupling. For instance, Liu et al. [9] designed an
integrated optimization method to minimize the total traveling
cost and potential path conflicts. Jin et al. [10] proposed a
method based on differential dynamic programming to solve the
integrated task allocation and trajectory optimization problem.
In addition, some methods address the MRTPP problem by mod-
eling it as a capacitated vehicle routing problem (CVRP) [11] or
a multiple traveling salesman problem (mTSP) [12]. However,
constructing a collision-free cost matrix using these methods is
computationally expensive. In practical applications, ensuring
real-time performance often requires reducing the number of
robots and tasks. As the environment grows or the number of
agents increases, the computational burden escalates, making
real-time matrix construction increasingly challenging. More-
over, to simplify the MRTPP problem, most methods formulate
the objective to minimize the total travel cost of all robots
rather than the maximum individual cost, which better aligns
with real-world needs. However, this simplification inevitably
increases individual travel costs.

To address these issues, we first propose an Obstacle-Vertex
Search (OVS) path planner that efficiently constructs the cost
matrix of collision-free paths between tasks and robots in large-
scale, cluttered environments. Moreover, we formulate the ob-
jective function to minimize the maximum travel cost for robots
in executing tasks and introduce an efficient auction-based
method for solving the MRTPP problem by incorporating anovel
memory-aware strategy. We evaluate the proposed method using
extensive MRTPP instances and make detailed comparisons with
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current state-of-the-art (SOTA) solvers. The experimental results
show that our method outperforms others in terms of solution
quality and computational efficiency.

The main contributions are summarized as follows:

1) A fast path planner suitable for large-scale and cluttered
workspaces that efficiently constructs the cost matrix of
collision-free paths between tasks and robots for solving
the MRTPP problem.

2) An efficient auction-based method for solving the MRTPP
problem by incorporating a novel memory-aware strategy,
aiming to minimize the maximum travel cost for robots to
visit tasks.

3) The source code of our method, along with the compared
SOTA solvers, is released to benefit the community.l

II. RELATED WORKS

One common method for solving the MRTPP problem is to
decouple the task and path planning and solve them separately.
Among the approaches, heuristic methods [13], [14], [15] are the
most popular ones. They improve task planning efficiency and
solutions quality by designing appropriate heuristic functions.
Additionally, many methods [16], [17] employ the mTSP or
CVRP formulations to solve the problem. Furthermore, auction-
based methods [18], [19] have also attracted significant attention
from researchers due to their computation efficiency. However,
these methods plan tasks using a centralized server commu-
nicating with all robots. As the number of robots and tasks
increases, computational complexity grows exponentially, mak-
ing deployment in real-world applications difficult. In contrast,
decentralized methods can significantly reduce computational
complexity. Among them, the most representative is auction-
based methods, such as [20], [21], [22], [23], which dynamically
iterate the allocation results based on rewards, significantly sav-
ing computation time. In addition, due to the high computational
efficiency, deep reinforcement learning (DRL) methods [24],
[25], [26] have also been widely studied for solving the MRTPP
problem. After task planning, classic path planners like A*
[27], jump point search (JPS) [28], and RRT* [29] are often
used to find safe paths for robots to execute tasks. At the same
time, some methods [8], [30] also improve the computational
efficiency of path planning. However, decoupled methods tend to
increase the cost of task execution in environments with cluttered
obstacles [7], [8].

Compared to decoupled methods, approaches that consider
the coupling between task planning and path planning—i.e.,
those that account for the impact of collision-free paths on task
planning—can achieve higher solution quality in dense obstacle
environments. Among them, many methods [9], [11], [31] use a
path planner to construct the cost matrix of collision-free paths
before task planning and then use this matrix in the task planning
solver to obtain high-quality solutions for the MRTPP problem.
However, since these methods aim to minimize the total cost
of the robots, this may increase the time required for task
completion, affecting the efficiency of the multi-robot system. To
address this, some methods [32], [33], [34], [35] set the objective
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function of the MRTPP problem to minimize the maximum cost
among the robots, thereby ensuring the collaboration efficiency
of the multi-robot system in terms of task completion time.
Additionally,some methods [10], [11] transform the MRTPP
problem into classical problems and resort to current advanced
solvers, such as LKH [36], Gurobi [37], and OR-Tools [38].
However, as robots’ workspace expands, existing path planners
struggle to efficiently find collision-free paths. Therefore, it
remains difficult to construct the cost matrix for task planning
efficiently in large-scale, cluttered scenarios. To this end, the
only way to ensure real-time computation for the multi-robot
system is to reduce the scale of the MRTPP problem and find
local collision-free paths instead of global ones at the cost of
sacrificing solution quality.

Unlike the abovementioned methods, we propose a fast path
planner to construct the cost matrix efficiently. In addition, to
enhance the collaboration ability of the multi-robot system,
we formulate the objective function to minimize the maximum
travel cost among robots and introduce an efficient auction-based
approach to solve the MRTPP problem. In conclusion, the pro-
posed method aims to strike a better trade-off between solution
quality and computational efficiency in MRTPP.

III. PROBLEM FORMULATION

This letter addresses the MRTPP problem in large-scale clut-
tered environments, aiming to minimize the maximum travel
distance for a fleet of robots to visit all tasks, starting and
ending at their respective depots. Without loss of generality,
we assume that there are m robots and n tasks, where the
robot set and task set are represented as R = {1,2,...,m}
and 7 ={1,2,...,n}, respectively. Each robot R;, where R
denotes the i-th robot in the robot set R, is required to complete
the assigned tasks with the shortest possible travel distance,
with a maximum of L, tasks and a maximum allowable travel
distance of D! due to its limited battery life. In addition, we
define A, as the distance discount factor, where 0 < A, < 1.
Thus, the reward function for robot R; executing the assigned
tasks can be defined as

J€Ts

where T; C T is the ordered set of tasks allocated to robot R;,
sorted in their execution order, P; is the collision-free path that
robot R; follows to visit all tasks in 7;, P; ; is the part of P;
from the position of R; to the position of task j, and d(P; ;) is
the length of the path segment P; ;.

Accordingly, the MRTPP objective to minimize the maximum
travel cost among robots can be formulated as

Fmin_mex (—fi(T:))
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Fig. 1. Illustration of the proposed OVS planner. The light gray area enclosed
by the dashed box represents the inflated obstacles in O, and a vertex being
None indicates that the corresponding vertex does not exist.

where p(7) denotes the power set of 7', z; ; is a binary variable
equal to 1 if task j is assigned to robot R;, and 0 otherwise.
The constraints are as follows: the number of tasks allocated
to R; must not exceed its task capacity Li  : each task j
can be assigned to only one robot, though a robot may be
assigned multiple tasks; and the distance traveled by R; must
not exceed its allowable travel distance D . In each iteration,
we introduce the marginal reward w; ;, which measures the cost
change from assigning an unallocated task j to robot R;, to
iteratively optimize the objective function. The marginal reward
w5 is derived as

= [i(Tiv{s}) = f:(Ti) =

As shown in (3), a higher marginal reward corresponds to a lower
objective value, making w; ; an effective bidding metric during
the auction process. In this way, the iterative bidding effectively
drives the algorithm toward minimizing the maximum travel
cost across robots. Moreover, the marginal reward w;_; naturally
decreases as more tasks are assigned to robot R;, exhibiting
a property known as diminishing marginal gain. This property
guarantees the convergence of the algorithm, as demonstrated
in [20]. Meanwhile, we assume perfect communication between
all robots.

WD e 3)

IV. METHODOLOGY
A. Obstacle-Vertex Search Planner

This subsection presents our OVS planner, illustrated geomet-
rically in Fig. 1.

We assume that all obstacles are non-intersecting polygons,
which is reasonable as polygons can accurately approximate
diverse shapes in a two-dimensional workspace. Next, we define
the notations used subsequently. We regard the robot as a disc
with radius 7, and let O denote the set of obstacles in the
environment. Note that all obstacles in O are pre-inflated by
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the robot’s radius r. Let the robot’s starting and goal positions
be p, and pg, respectively. Let L(p1, p2) represent a directed
segment in Euclidean space, where p; and p» are its starting and
ending positions, respectively, directed from p; to ps. In each
iteration, let p and p,, denote the current path node and the goal
path node, respectively. Let pg, be the optimal convex vertex
from obstacles in O that minimizes the cost from p to p,. Let
Oin € O denote the set of obstacles that geometrically intersect
the segment L(p, p, ). Initially, p = p; and p, = p,.

Next, we describe how to find the optimal vertex pg, in
each iteration. According to the principles of computational
geometry [39], an optimal collision-free path in an environment
with obstacles must consist of nodes formed by the vertices
of the obstacles, excluding the starting and goal positions.
Based on this principle, our key idea is to find suitable vertices
from the obstacles’ vertices to serve as path nodes for forming
the collision-free path. Suppose there are H obstacles inter-
secting with segment L(p7 p.) in an iteration. Thus, we have
O = {0},02,...,0}. Then, let Vh—{pl,pz,...,pk} be
the set of convex vertlces for the intersecting obstacle o/, where

n € O, with h indexing the intersecting obstacles in Oj,, and
k indexing the convex vertices in V},. Meanwhile, we define the

set Vsubopt C V), of the suboptimal convex vertices for of! as

subopt = {p | L(p pk) Mooy = @} Vp € Vh, Voo, € O,

C))
where the segment L(p, py!), formed by any vertex py! in VI
and the current path node p, does not intersect with any obstacle

0ob in O. Further, let V1. = {pi;, pﬁght} represent the set of the
leftmost and rightmost vertices in Vmbopt along the direction of

segment L(p, p, ). We then define the set V! C V!

opt © Vside of optimal

convex vertices of 0- as

opt {pv | L(papv) N Oob = @ L(pva pv) N Oob = @}, (5)

where p/ € V!, and both the segments L(p,p,) and
L(p!,, pv) do not intersect with any obstacle oy in O. As illus-
trated in Fig. 1, two obstacles intersect with segment L(p, p,) in
the first iteration, where H = 2, p = p,, and p, = py. Taking
the intersecting obstacle ol as an example (i.e., h = 1), its
convex vertices are V; = {p%, pPs,--.,Ps}, and the subopti-
mal convex vertices are Vo = {P1,Pg}. Additionally, the
leftmost and rightmost vertices in V1, . along the direction of

subop
the segment L(p, p,) are Py = Pg and Py, = Pi, respec-
tively. Thus, the leftmost and rightmost vertices form the set
Viide = {Pieri> Phignt}» and the set of optimal convex vertices is
Vi = 0.
Thus, we can derive the formulation for the candidate vertex
" related to the intersecting obstacle ol as

arg m;r}ll d(p', L(p, pv)), lfv(ilp[ # 0,
e

pg _ P 'opl . (6)
arg min d(p/, L(p,py)), if V!
prevh

side 7é (Z)’
side
where d(p’, L(p, p,)) represents the distance from vertex p’ to
segment L(p, p,). Then, let Veana be the set of potential optimal
vertices for all intersecting obstacles, i.e., Veana = {p" | Vh €
{1,2,...,H}, VI, # 0}. Note that as long as a collision-free
path ex1sts, there must be at least one vertex in the intersecting
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obstacles that satisfies the above conditions [39], sO Veang 1S
guaranteed to be a non-empty set. Therefore, we can deduce the
formulation for the optimal vertex pg, as

max d(p;, L(p, pv)) (7
pLEVl

cand

Popt € a8

where d(p?, L(p, p,)) denotes the distance from vertex p to
segment L(p, p,). Note that if there are multiple maximizers,
we select the optimal vertex corresponding to the first one
encountered during the search. As shown in Fig. 1, during the
first iteration, the set Veana = {PL} = {p§} for the intersecting
obstacles ol and o2, is obtained using (6). At the same time,
based on (7), the optimal vertex pg,, equals Pe-

We summarize the OVS planner in Algorithm 1. Initially,
the current path node p and goal path node p, are set to ps
and pg, respectively (Line 1). Then, p, is added to the robot’s
global path Pp,, and all obstacles in O that intersect with the
segment L(p, p,) are identified to form the set O;, (Lines 2-3).
Next, we obtain the optimal vertex pg, in each iteration using
the proposed method (Line 5). We then add pg, t0 Ppan and
update p and p, if segment L(p, pgpl) does not intersect with
any obstacles in O (Lines 8-12). Otherwise, p, is updated to
Popt (Lines 13-14). This process is repeated until pg, equals p,
or poy does not exist.

1) Complexity Analysis: As summarized in Algorithm 1,
the OVS planner’s computation complexity primarily stems
from searching for the optimal vertex pg, and performing
intersection checks. Specifically, the time complexity of
searching for pg, is approximately O(NN) in the worst case,
where N is the total number of vertices of all polygonal
obstacles. Intersection checks are performed by determining
whether the segment L(p, p, ) intersects with the edges of any
obstacle in O, so the time complexity is O(NN) in the worst
case. Thus, the computational complexity per iteration of the
OVS planner is approximately O(N). Assuming K iterations,
the total computational complexity for the planner to find
a collision-free path is O(K x N). Notably, since the OVS
planner does not require constructing a visibility graph [39], it
is much more efficient than visibility graph-based methods. In
fact, its complexity depends on the number of convex vertices
of polygonal obstacles, making it significantly more efficient
in large-scale environments compared to traditional search-
based [28] and sampling-based methods [29]. In particular, our
method supports more efficient recomputation of collision-free
paths when the positions of the robot and tasks are updated.

2) Completeness and Optimality Analysis: Based on the de-
tails of the OVS planner, it is known that as long as there exists
a collision-free path between the current path node p and the
vertex p,, the OVS planner will always find a optimal vertex
Pop such that the segment L(p, p,) does not intersect with
any obstacles in O. Then, the OVS planner updates p to pgy
and continues to find a new non-intersecting segment between
the updated p and the vertex p,. By repeating this process,
the OVS planner will always find a series of non-intersecting
segments connecting the initial p to p,. Since each segment
does not intersect with any obstacles, the resulting path formed
by these segments will also be collision-free. Therefore, it can be
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Algorithm 1: Obstacle-Vertex Search Planner.

Input: p,, py, O

Output: the global path Py, of robot
1 P < Ps, Pv < Py
2 Ppath — {ps}
3 Oy < CheckIntersect(L(p, p,), O)

4 while do
5 Pop < SearchOptVertex(p, p,, Oin)
6 if pg,, does not exist then

7 | return (
8 if ChecklIntersect(L(p, poy), O) is () then

9 Ppath — Ppalh U {pgpt}
10 if py,, == p,y then

1 | return Py

12 P < Popes Pv < Py
13 else

4 || Pot Pon
15 | O < ChecklIntersect(L(p,p,), O)

concluded that the OVS planner is complete in path planning. In
this letter, to improve the computational efficiency of construct-
ing the cost matrix for collision-free paths in task planning, the
OVS planner focuses on finding a path that is close to optimal
with lower computational complexity. Therefore, the optimality
of the OVS planner is approximate.

B. Auction-Based Task Planning

In this subsection, we first employ the OVS planner to con-
struct cost matrices for collision-free paths—between robots and
tasks, as well as among tasks. We then propose a memory-aware
strategy for efficient task planning.

The notations used subsequently are consistent with those in
Section III. Furthermore, we denote p; as the position of robot
R; and p; as the position of task j, where s € R and j € T.
Then, let C; € R™*™ be the cost matrix that represents the
connection costs among all tasks, where m is the number of
tasks. Specifically, its element C;(j1, j2) can be computed by

Ct(jlva) = Len[Ppath(pjl»pjz)]vjlan S Ta (8)

where Len[Ppn(pj,, Pj,)] is the length of the collision-free
path Ppan (Pj,, Pj, ), Which is obtained using our OVS planner.
Similarly, the costs between robot R ; and tasks are accounted for
by Cg, : € R¥™ andits element Cg, ;(j) can be computed by

Cr,+(j) = Len[Ppn(pi, pj),i € R,j € T. 9)

We next present how to implement the proposed memory-aware
strategy. By incorporating our strategy into the auction-based
task planning method, we aim to improve computational
efficiency while ensuring that the solution quality is maintained.
Let ¢%,, be the current total travel distance required for R; to
visit all tasks in 7; in order, and éfemp be the robot’s total travel
distance after adding unallocated task j. Additionally, it is

important to note that the marginal reward w ; is also the bid
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Algorithm 2: Auctions with Memory-Aware Strategy.
Illpllt: j7 Zf:uw 7’7’7 Drinaxy Ct, C'Ri,t
Output: the value of w; ; for assigning task j to R;
1 if a new task is added to 7; then
2 if [7;] > 1 then
3 L gcz:ur — gzur + Ct(’];[72]7 7;[71])
4 else
| Loar
6 Liemp < Ly
7 if 7; is () then
L gtemp — CRmt (])
9 else
10 L Ztemp — Ztemp + Cf(’];[il]v.])

1w+ Alem)
12 if liemp + Cr, t(j)
B3| w01 w

A gzur + CRi7t (7;[_1])

> Dipx

then

14 return w; ;

that robot R; places for each unallocated task j, which can be
obtained by (3). The core idea of the memory-aware strategy
is that, during each iteration, robot R; records the bid for each
unallocated task from the previous iteration. Therefore, in the
latest iteration, if R; does not receive any new tasks, its bid
(i.e., w; ;) for each unallocated task j will remain unchanged,
and R; only needs to use the bid from the previous iteration.
According to (3), if we know the robot’s total travel distance
after adding task j, the marginal reward w; ; can be calculated
with O(1) computational complexity. Thus, by remembering
the current total travel distance £ in each iteration, we can
quickly compute the total travel distance Kfemp after adding task
J» and then use (3) to compute w; ; with O(1) complexity.

‘We summarize the implementation of memory-aware strategy
in Algorithm 2. Specifically, before task planning begins, we first
calculate the cost matrix C; for collision-free paths between
tasks, as well as the cost matrix Cg, ; for collision-free paths
between robot R; and the tasks. When calculating w; ; for each
unallocated task j, if robot R; has been assigned a new task
(i.e., 7; is updated), the current total distance £Z,, is updated;
otherwise, it remains unchanged (Lines 1-5). Note that 7;[—1]
and 7;[—2] denote the last and second-to-last elements of 7;,
respectively. Next, we use the matrices C; and Cg, ;, along
with ¢, to compute the total distance (., after adding task
j (Lines 6-10). Finally, by substituting £, into (3), we can
obtain w; ; with O(1) complexity (Line 11). Furthermore, due
to the maximum travel distance D, limitation, if the total
travel distance after completing task j and returning to robot
R;’s depot exceeds D, the bid w; ; will be discounted by a
factor (empirically 0.1) to ensure that task j is assigned to a
more suitable robot (Lines 12-13). Compared with traditional
auction-based methods, such as [8] [20], [21], [22], [23], each
iteration requires the robot to first compute its current total
reward using (1), then calculate the total reward after adding task
J, and finally determine the bid w; ; by taking their difference.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 9, SEPTEMBER 2025

Although [8], [22] adopt a lazy strategy to reduce redundant
computation, they overlook repeated calculations of marginal
reward w; ;. In contrast, the memory-aware strategy effectively
resolves this issue.

In the consistency conflict phase of task planning, we resolve
task conflicts using the minimum variance consistency approach
to minimize the maximum travel distance among robots. Specif-
ically, if multiple robots place the highest bids for the same task
compared to other tasks, we prioritize assigning the task to the
robot that results in the least variance in travel distances. Finally,
we implement the remaining parts of the task planning using
the lazy-based review consensus algorithm (LRCA) proposed
in [8]. In brief, each robot broadcasts the obtained w; ; and the
corresponding task 7 from the current iteration to its neighbors,
and receives similar information from them. Then, the best
task-robot pair is determined locally using the LRCA algorithm.
Due to page limitations, readers are referred to [8] for details.

V. EXPERIMENT RESULTS

In this section, we evaluate the effectiveness of the proposed
method through extensive and challenging experiments. All
code is implemented in Python and executed on an ASUS
desktop equipped with an Intel(R) Core(TM) 17-8700 CPU and
32 GB of memory.

A. Evaluation of Path Planners

We compare the proposed OVS planner with classic state-
of-the-art planners, including the search-based A* [27] and
JPS [28], the sampling-based RRT* [29], and the learning-based
Neural A* [40], to validate its effectiveness in constructing
the cost matrix for task planning. We conduct 1,000 Monte
Carlo tests in three cluttered environments of small, medium,
and large sizes, with areas of 32 x 32 m2, 256 x 256 m2, and
6000 x 4000 m?, respectively, as shown in Fig. 2. In each test,
the robot’s start and goal positions are randomly generated, and
path planning is performed using the five methods. The average
planning time and average path length from the 1,000 tests are
recorded as evaluation metrics. Note that if a single planning
exceeds 1499.99 ms, the path length is recorded as a penalty
of 3499.99 m. Additionally, the grid map resolutions used by
A*,JPS, and Neural A* in these three environments are 0.25 m,
0.5 m, and 5 m, respectively. To improve efficiency, RRT* ends
the iteration once a collision-free path is found. All methods
apply the same smoothing process to the initial collision-free
paths to remove redundant path nodes.

The results are shown in Figs. 2 and 3. Specifically, Fig. 2
shows the collision-free paths of five planners in a pathfinding
test across three scenarios. In Fig. 3, the Time and Length
represent the average planning time and average path length
in 1,000 tests, with the best results highlighted in bold. By
observing Fig. 3(a), it is evident that OVS achieves the shortest
average planning time, remaining under 10 ms in all three
scenarios. In terms of average planning time, OVS outperforms
the other four planners by up to 3 x in the worst case and 7 X in the
best case. Additionally, as shown in Figs. 2 and 3(b), A* achieves
the best performance in terms of average path length in both
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Fig. 2.

(a) and (b) show the collision-free paths generated by five methods in the small and medium scenarios, respectively, with A* yielding the shortest path

in both cases. (c) presents the pathfinding results of the four remaining methods (excluding Neural A*) in the large-scale scenario. Neural A* failed to generate
a collision-free path due to a planning timeout. Among the remaining methods, the OVS planner yielded the shortest path. (d) The same colors denote the same
methods, and the light red circle and star represent the start and goal positions, respectively.
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Fig. 3. (a) The average planning time over 1,000 tests across the three
environments. (b) The average path length across the same 1,000 tests in the
three environments.

small and medium scenarios. However, the average path length
of OVS is also on par with that of A*. In the large scenario, OVS
achieves the shortest average path length, although the result of
A* is also close. Notably, A* does not perform as well because
the coarse resolution (set to 5 m for computational efficiency)
leads to longer collision-free paths. In contrast, Neural A* fails
to generate collision-free paths within the 1499.99 ms limit in
all trials, resulting in a penalty path length of 3499.99 m.

In summary, the OVS planner can efficiently find collision-
free paths while staying close to the optimal ones generated by
planners like A* and JPS, ensuring negligible impact on task
planning quality in most application scenarios.

B. Comparisons in Large-Scale Cluttered Environments

To thoroughly evaluate the proposed MRTPP method, we con-
duct benchmark comparisons in a large-scale, cluttered scenario
against the following state-of-the-art methods:

® OR-Tools [38]: A state-of-the-art heuristic solver widely
applied for vehicle routing problems (VRP). In solving the
MRTPP problem, we incorporate capacity constraints to
minimize maximum costs among robots.

e [LKH3 [36]: A state-of-the-art solver for constrained TSP
and VRP. We formulate the MRTPP problem as an asym-
metric distance-constrained vehicle routing problem.

e Gurobi [37] + LKH3: Gurobi, a well-known commercial
solver, is used to solve a mixed-integer linear programming
(MILP) problem to minimize the maximum travel distance
for the robots to reach a task, followed by LKH3 to solve
a TSP to determine the task execution order.

e CBBA [20]: A classical auction-based method for task
planning.

e [LRCA [8]: A state-of-the-art auction-based method for
solving the MRTPP problem.

In the large-scale cluttered scenario shown in Fig. 4, we
conducted two sets of benchmark comparisons: one with a
fixed number of tasks and the other with a fixed number of
robots. Each MRTPP instance is defined by a constant number of
robots and tasks; for example, T200R20 represents an instance
with 200 tasks and 20 robots. Each instance is tested 10 times,
with task and robot positions randomly generated in the task
area and robot depot area, respectively, for each test. Since the
advantages of the OVS planner have already been validated in
the previous evaluation, we use it to construct the cost matrix for
collision-free paths required for task planning across all solvers,
ensuring fair comparisons. Finally, we record the average task
planning time (Time) and the average maximum travel distance
(Dist.) of the robot team for each instance, along with their
respective standard deviations, as shown in Table I, with the
best results highlighted in bold. Note that the task planning
time does not include the time for constructing the cost matrix.
Additionally, if the solving time exceeds 600 s, it is considered a
failure, with a penalty of 30 km for the maximum travel distance
in the robot team.

From Table I, it can be observed that, in the majority of
instances, the proposed method achieves the shortest average
solving time. Specifically, the proposed method achieves the
shortest solving time when the number of robots does not
exceed 80 in instances with a fixed number of tasks. Similarly, it
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(a), (b), and (c) The task planning results obtained using our method, LKH3, and the LKH3+Gurobi solvers for an instance with 10 robots and 100 tasks,

respectively. The strong blue box indicates the task area, the dark brown box indicates the robot depot area, circles represent tasks, triangles represent robot depots,

and the robot’s color is the same as that of the tasks it visits.

TABLE I
TASK PLANNING STATISTICS FOR LARGE-SCALE CLUTTERED SCENARIOS

OR-Tools LKH3 Gurobi+LKH3 CBBA LRCA Proposed

Group I
Time [s] Dist. [km] Time [s] Dist. [km] Time [s]  Dist. [km] Time [s]  Dist. [km] Time [s]  Dist. [km] Time [s]  Dist. [km]
T200R20 51.834+7.95 17.164£0.93  14.464+13.23 14.55+0.56 0.2240.01 13.43+0.24  601.7+1.4 30.004-0.00 0.2840.01 12.784+0.12  0.14+0.01 12.78+40.12
T200R30 53.074+10.92 15.2940.57  20.50+22.88 14.574+042 0.3040.01 13.484+0.35 602.841.4 30.00+0.00 0.30+£0.01 12.50£0.09  0.19+0.01 12.50+-0.09
T200R40  57.80411.48 15.114+0.46  30.93£25.13 14594046  0.3740.01 13.63+0.22  604.3+1.9 27.67£6.99  0.35£0.01 12.45+0.09 0.25+0.01 12.451+0.09
Fixed T200R50 60.7749.95 14.69+1.02  37.57433.73 14.474+0.38 0.4240.05 13.53+0.37  606.043.0 23.14+1048 0.41+0.02 12.33+£0.06  0.31+0.01 12.331+0.06
Number  T200R60 65.734+10.66 14.34+0.80  41.50427.95 14.58+0.31 0.4540.01 13.47+0.34  607.94+4.5 23.4949.96 0.4940.02 12.334+0.05  0.40+£0.01 12.3340.05
of Tasks  T200R70 68.76+11.33 13.574+0.43  53.28432.05 14.454+0.88  0.5740.08 13.14£0.18  609.7+5.0 21.10+10.91  0.5940.02 12.33£0.05  0.50+0.02 12.33+0.05
T200R80 73.754+18.46 13.884+0.52  74.90+£47.57 14.57+0.71  0.5840.02 13.084+0.19  613.748.5 23.21+£10.38  0.69+0.02 12.33£0.08  0.64+0.07 12.3310.08
T200R90  76.19418.09 13.641+0.40  83.86£57.78 14.601+0.59  0.6410.02 13.01+0.25 613.947.8 2544+9.14  0.82+0.02 12.284£0.06  0.72+0.02 12.28+-0.06
T200R100  66.83+13.85 13.9940.89  143.84£132.4 14.324+049  0.70+0.03 12.964+0.19 612.64£8.6 17.08£10.60 0.95+0.04 12.284-0.04 0.89+0.06 12.2840.04
TIOOR50  17.8642.81 13.6940.58 8.78+5.60  15.174+0.79  0.2840.01 12.774+0.39  602.74+1.6 20.24£1.33  0.16£0.01 12.25+£0.12  0.14:£0.01 12.251-0.12
T150R50 37.454+6.61 14214049 23.69+15.49 14.7540.50 0.33£0.02 13.06+0.35 607.0£1.6 25.6648.70 0.2740.01 12.37+£0.08  0.22+0.01 12.3740.08
T200R50 70.35+9.62  14.85+0.80  38.90£30.51 14.691+0.56  0.4240.05 13.60+0.46  603.243.0 27.87+6.38 0.41£0.01 12.36£0.08  0.31+£0.01 12.361-0.08
Fixed T250R50 87.15£16.25 15.04+0.54  41.17£22.39 14.5240.74  0.50+£0.05 13.95+0.20  605.244.1 30.00£0.00 0.584+0.01 12.4140.06  0.42+0.01 12.4140.06
Number  T300R50 11644338 15.7240.65 67.79+£28.81 14.4240.56  0.604-0.07 14.631+0.26  608.54+4.7 30.00+0.00 0.7940.04 12.41+£0.04  0.54+0.01 12.4110.04
of Robots T350R50  153.24:21.2 16.2040.34  150.84:65.6 14.094:0.36  0.6640.06 14.6940.32  609.544.1 30.004-0.00  1.044-0.07 12.544-0.20  0.66+-0.02 12.544-0.20
T400R50 19434227 16.1740.55  181.4+£62.8 13.904+0.34  0.79+0.07 15.024+0.26  612.845.9 30.00£0.00 1.3540.08 12.69+0.21  0.81+0.02 12.69+0.21
T450R50 28724658 17.394+0.81 283.2+168.7 1545+4.86 0.95+£0.09 15.70£0.27  616.6£6.7 30.004-0.00 1.754£0.06 13.15+£0.55  1.00£0.05 13.151-0.55
T500R50 27784624 17.66+041 516.44255.0 18.66+7.43  1.00£0.05 15.72+0.28  613.1+7.2 30.004-0.00 2.134+0.12 14.524+1.34  1.18+0.11 14.52+1.34

performs best in terms of solving time when the number of tasks
does not exceed 400 in instances with a fixed number of robots.
In other instances, LKH3+Gurobi yields the shortest solving
time, but the proposed method also achieves comparable results.
Additionally, as the MRTPP problem scale increases, the solving
times of OR-Tools and LKH3 solvers exceed 100 s, while the
CBBA algorithm exceeds 600 s. Among all the methods, the
proposed method and the LRCA algorithm achieve the best
results in all cases, followed by the LKH3+Gurobi, LKH3,
OR-Tools, and CBBA solvers in most cases. It is worth noting
that, in most cases, the CBBA algorithm fails to complete the task
planning within 600 s, leading to the worst results. Furthermore,
Fig. 4 shows the task planning results solved by the proposed
method, LKH3, and LKH3+Gurobi, with an instance of 10
robots and 100 tasks. It can be observed that the proposed method
better balances travel distance and task capacity, resulting in the
shortest maximum travel distance. In contrast, while LKH3 and
LKH3+Gurobi provide relatively good results in travel routes,
they struggle to balance the travel distances between robots,
which leads to a longer maximum travel distance. However,
determining the constraints on task capacity and travel distance
for robots while ensuring the solver achieves shorter maximum
travel distances remains challenging for the LKH3 solver. Next,
we analyze the impact of the proposed memory-aware strategy

on computational efficiency by comparing the proposed method
with the LRCA algorithm. As shown in the statistical results in
Table I, for instances with a fixed number of tasks, as the number
of robots increases, the proposed method gradually approaches
the LRCA in terms of solving time while maintaining an advan-
tage. For instances with a fixed number of robots, we observe that
as the number of tasks increases, the computational efficiency
advantage of the proposed method over LRCA becomes more
pronounced, with efficiency improving by nearly twofold.

In conclusion, the proposed method achieves a superior trade-
off between solution quality and computational efficiency com-
pared to other state-of-the-art solvers, making it highly applica-
ble to tasks such as preloaded package delivery and autonomous
exploration in large-scale, cluttered environments. It should be
noted that dynamic collision avoidance between robots is not
considered in this work. We plan to incorporate such capabilities
in future work to facilitate the real-world application of the
proposed method.

VI. CONCLUSION

This letter presents an efficient multi-robot task and path
planning method for a fleet of robots operating in large-scale,
cluttered environments. We first introduce an obstacle-vertex
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search (OVS) path planner to rapidly construct the cost matrix
for task planning. The evaluation of path planners demonstrates
that our OVS planner can generate near-optimal paths while
improving computational efficiency by up to 7x, significantly
reducing the time required for cost matrix construction. Ad-
ditionally, we propose a memory-aware strategy, which is in-
tegrated into an auction-based task planning framework. This
strategy improves the computational efficiency of task planning
by up to 2x without compromising solution quality. Benchmark
comparisons with five existing state-of-the-art task planning
solvers demonstrate that our proposed method achieves the best
overall performance in computation time and solution quality
for solving the MRTPP problem. Our method does not consider
dynamic collision avoidance, but this can be addressed by inte-
grating existing approaches. Moreover, the solution quality may
degrade when a large number of tasks are handled by few robots.
In future work, we aim to address these limitations and further
promote the practical deployment of our approach.

REFERENCES

[1] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
“Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,” IEEE Robot. Autom. Lett., vol. 6, no. 3,
pp- 58165823, Jul. 2021.

[2] X. Li, X. Lu, W. Chen, D. Ge, and J. Zhu, “Research on UAVs recon-
naissance task allocation method based on communication preservation,”
IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 684-695, Feb. 2024.

[3] C. Cao, H. Zhu, Z. Ren, H. Choset, and J. Zhang, “Representation gran-
ularity enables time-efficient autonomous exploration in large, complex
worlds,” Sci. Robot., vol. 8, no. 80, 2023, Art. no. eadf0970.

[4] Y. Du, “Multi-UAV search and rescue with enhanced A* algorithm path
planning in 3D environment,” Int. J. Aerosp. Eng., vol. 2023, pp. 1-18,
Feb. 2023.

[5] A.B. Alhassan, X. Zhang, H. Shen, and H. Xu, “Power transmission line
inspection robots: A review, trends and challenges for future research,”
Int. J. Elect. Power Energy Syst., vol. 118, Jun. 2020, Art. no. 105862.

[6] B.Zhou, Y. Zhang, X. Chen, and S. Shen, “FUEL: Fast UAV exploration
using incremental frontier structure and hierarchical planning,” IEEE
Robot. Autom. Lett., vol. 6, no. 2, pp. 779-786, Apr. 2021.

[7] A.Camisa, A. Testa, and G. Notarstefano, “Multi-robot pickup and deliv-
ery via distributed resource allocation,” IEEE Trans. Robot., vol. 39, no. 2,
pp. 1106-1118, Apr. 2023.

[8] G. Xu et al., “Distributed multi-vehicle task assignment and motion
planning in dense environments,” IEEE Trans. Automat. Sci. Eng., vol. 21,
no. 4, pp. 7027-7039, Oct. 2024.

[9] Z. Liu, H. Wei, H. Wang, H. Li, and H. Wang, “Integrated task allocation
and path coordination for large-scale robot networks with uncertainties,”
IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4, pp. 2750-2761, Oct. 2022.

[10] T. Jin, H. -S. Shin, A. Tsourdos, and S. He, “Integrated target assignment
and trajectory optimization for many-to-many midcourse guidance,” [EEE
Trans. Aerosp. Electron. Syst., vol. 61, no. 1, pp. 853-867, Feb. 2025.

[11] B. Zhou, H. Xu, and S. Shen, “RACER: Rapid collaborative exploration
with a decentralized multi-UAV system,” IEEE Trans. Robot., vol. 39,
no. 3, pp. 1816-1835, Jun. 2023.

[12] J. Son, M. Kim, S. Choi, H. Kim, and J. Park, “Solving NP-hard min-max
routing problems as sequential generation with equity context,” in Proc.
ICML 2023 Workshop: Sampling Optim. Discrete Space, 2023, pp. 1-19.

[13] K. -M. Lo, W. -Y. Yi, P. -K. Wong, K. -S. Leung, Y. Leung, and S.
-T. Mak, “A genetic algorithm with new local operators for multiple
traveling salesman problems,” Int. J. Comput. Intell. Syst., vol. 11, no. 1,
pp. 692-705, 2018.

[14] C. Wei, Z. Ji, and B. Cai, “Particle swarm optimization for cooperative
multi-robot task allocation: A multi-objective approach,” IEEE Robot.
Autom. Lett., vol. 5, no. 2, pp. 2530-2537, Apr. 2020.

[15] J. Li, Y. Xiong, and J. She, “UAV path planning for target coverage
task in dynamic environment,” IEEE Internet Things J., vol. 10, no. 20,
pp. 17734-17745, Oct. 2023.

9119

[16] S. Dong et al., “Multi-robot collaborative dense scene reconstruction,”
ACM Trans. Graph., vol. 38, no. 4, pp. 1-16, 2019.

[17] T. Kusnur et al., “A planning framework for persistent, multi-UAV cov-
erage with global deconfliction,” in Proc. Field Serv. Robot.: Results 12th
Int. Conf., 2021, pp. 459-474.

[18] R.Zlotand A. Stentz, “Market-based multirobot coordination for complex
tasks,” Int. J. Robot. Res., vol. 25, no. 1, pp. 73-101, Jan. 2006.

[19] E. Nunes and M. Gini, “Multi-robot auctions for allocation of tasks with
temporal constraints,” in Proc. AAAI Conf. Artif. Intell., Feb. 2015, vol. 29,
no. 1, pp. 2110-2116.

[20] H. -L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. Robot., vol. 25, no. 4,
pp- 912-926, Aug. 2009.

[21] H. -S. Shin, T. Li, H. -I. Lee, and A. Tsourdos, “Sample greedy based
task allocation for multiple robot systems,” Swarm Intell., vol. 16, no. 3,
pp- 233-260, Sep. 2022.

[22] T.Li, H.-S. Shin, and A. Tsourdos, “Efficient decentralized task allocation
for UAV swarms in multi-target surveillance missions,” in Proc. 2019 Int.
Conf. Unmanned Aircr. Syst., Jun. 2019, pp. 61-68.

[23] O. Shorinwa, R. N. Haksar, P. Washington, and M. Schwager, “Distributed
multirobot task assignment via consensus ADMM,” IEEE Trans. Robot.,
vol. 39, no. 3, pp. 1781-1800, Jun. 2023.

[24] P.Sankaran, K. McConky, M. Sudit, and H. Ortiz-Pena, “GAMMA: Graph
attention model for multiple agents to solve team orienteering problem
with multiple depots,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34,
no. 11, pp. 9412-9423, Nov. 2023.

[25] H. Gao, X. Zhou, X. Xu, Y. Lan, and Y. Xiao, “AMARL: An attention-
based multiagent reinforcement learning approach to the min-max multiple
traveling salesmen problem,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 35, no. 7, pp. 9758-9772, Jul. 2024.

[26] M. Fan, H. Liu, G. Wu, A. Gunawan, and G. Sartoretti, “Multi-
UAV reconnaissance mission planning via deep reinforcement learning
with simulated annealing,” Swarm Evol. Computation, vol. 93, 2025,
Art. no. 101858.

[27] P.E.Hart, N.J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. TSSC-4, no. 2, pp. 100-107, Jul. 1968.

[28] D. Harabor and A. Grastien, “Online graph pruning for pathfinding on
grid maps,” in Proc. AAAI Conf. Artif. Intell., Aug. 2011, vol. 25, no. 1,
pp. 1114-1119.

[29] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894, 2011.

[30] F. Nawaz and M. Ornik, “Multiagent, multitarget path planning in
Markov decision processes,” IEEE Trans. Autom. Control, vol. 68, no. 12,
pp. 7560-7574, Dec. 2023.

[31] W.Honig, S. Kiesel, A. Tinka, J. Durham, and N. Ayanian, “Conflict-based
search with optimal task assignment,” in Proc. Int. Joint Conf. Auton.
Agents Multiagent Syst., 2018, pp. 757-765.

[32] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal assignment and
trajectory planning for large teams of interchangeable robots,” Auton.
Robots, vol. 37, no. 4, pp. 401-415, 2014.

[33] K. Okumura and X. Défago, “Solving simultaneous target assignment and
path planning efficiently with time-independent execution,” Artif. Intell.,
vol. 321, Aug. 2023, Art. no. 103946.

[34] 1. Saha et al., “Optimal makespan in a minute timespan! A scalable multi-
robot goal assignment algorithm for minimizing mission time,” in Proc.
AAAI Conf. Artif. Intell., 2024, vol. 38, no. 9, pp. 10280-10287.

[35] A. Aryan, M. Modi, I. Saha, R. Majumdar, and S. Mohalik, “Optimal
integrated task and path planning and its application to multi-robot pickup
and delivery,” 2024, arXiv:2403.01277.

[36] K.Helsgaun, “An extension of the lin-Kernighan-Helsgaun TSP solver for
constrained traveling salesman and vehicle routing problems,” Roskilde:
Roskilde Univ., vol. 12, pp. 966-980, 2017.

[37] L. Gurobi, Optimization, Gurobi Optimizer Reference Manual, Beaverton,
OR, USA, 2023. [Online]. Available:https://www.gurobi.com

[38] P. L. and F. V., “Or-tools,”, Mountain View, CA, USA, 2023. [Online].
Available: https://developers.google.com/optimization/

[39] M. De Berg, Computational Geometry: Algorithms and Applications.
Berlin, Germany: Springer, 2000.

[40] R. Yonetani, T. Taniai, M. Barekatain, M. Nishimura, and A. Kanezaki,
“Path planning using neural A* search,” in Proc. Int. Conf. Mach. Learn.,
2021, pp. 12029-12039.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 13,2025 at 08:27:52 UTC from IEEE Xplore. Restrictions apply.


https://www.gurobi.com
https://developers.google.com/optimization/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


