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Abstract— This paper investigates the problem of fixed-wing
unmanned aerial vehicles (UAVs) motion planning with posture
constraints and the problem of the more general symmetrical
situations where UAVs have more than one optimal solution.
In this paper, the posture constraints are formulated in the 3D
Dubins method, and the symmetrical situations are overcome
by a more collaborative strategy called the shunted strategy.
The effectiveness of the proposed method has been validated
by conducting extensive simulation experiments. Meanwhile, we
compared the proposed method with the other state-of-the-art
methods, and the comparison results show that the proposed
method advances the previous works. Finally, the practicability
of the proposed algorithm was analyzed by the statistic in
computational cost. The source code of our method can be
available at https://github.com/wuuyal/SCA.

Index Terms— Collision avoidance, multi-UAV motion plan-
ning, posture constraints.

I. INTRODUCTION

The multi-unmanned aerial vehicle (UAV) motion plan-
ning is essential for UAV swarm systems. In recent years,
the UAV swarm has been in the spotlight as it has been pro-
ficiently applied to many fields like cooperative exploration
[1], formation [2], [3], collaborative search [4], etc. The
fixed-wing UAVs are more qualified for such applications
due to their strengths in endurance and load capabilities.
Hence, fixed-wing UAVs are considered in this article. How-
ever, many practical challenges should be considered. For
example, fixed-wing UAVs have to comply with specific
requirements in yaw angle or pitch angle, called posture
constraints, like turning around, take-off, landing, etc.

The three-dimensional reciprocal velocity obstacles (RVO)
method expanded from [5] has great potential to bridge the
gap in fixed-wing UAVs’ motion planning as its excellent
scalability for the physical constraints. However, some sym-
metrical situations may occur while UAVs are traveling, in
which UAVs have more than one optimal solution, resulting
in deadlock or oscillation. In analyzing the most promising
approaches to geometric collision avoidance in multi-vehicle
systems, J. A. Douthwaite et al. [6] raised that the symmetry
problem will lead to performance degradation. However, any
solutions were not proposed to overcome this challenge.

To bridge the above gap in fixed-wing UAVs’ motion
planning, we proposed a novel shunted collision avoidance
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Fig. 1. Simulation results of the low altitude search task. Maximum heading
rate: 0.774 rad; Maximum pitch rate: 0.670 rad; ET: 8.2 s (ideally: 4.4 s);
ED: 5.683 m (ideally: 4.4 m); AS: 0.989 m/s (ideally: 1.0 m/s); CC: 17.723
ms. (a) Top view. (b) 3D view.

(SCA) method based on our previous work [7]. Unlike our
previous work, we expanded the posture constraints to three-
dimensional space according to the fixed-wing UAVs motion
model. Unlike most of the work in multi-UAV motion plan-
ning, this work considers the more practical constraints and
the situations of symmetry in a three-dimensional workspace.
Here, the posture constraints are overcome by combining
the 3D Dubins method [8] and the RVO algorithm [5] in 3D
domains (RVO3D). Meanwhile, we consider the situations of
symmetry by inspiration from the human traffic rules where
the opposite vehicles will choose the same side to pass, such
as passing on the right side. Finally, the results of numerous
simulations demonstrate the validity and practical potential
of our method. The main contributions can be summarized
as follows.

o A novel shunted strategy is proposed to improve the
smoothness of the UAVs’ trajectory.

o We proposed the shunted collision avoidance (SCA)
algorithm for fixed-wing UAVs’ motion planning, in
which UAVSs’ posture constraints are considered.

o We conducted three simulations on the AirSim platform
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[9] to present the unique performance of our method
and conducted large-scale scenarios to evaluate the
advantages of our method.

The rest of this paper is organized as follows. In Section II,
we reviev the related works. In Section III, we formulate the
UAV motion model, and we summarize the RVO algorithm in
3D domains and its limitations. In Section IV, we introduce
our novel method for fixed-wing UAVs’ motion planning. In
Section V, simulation experiments are conducted, and the
conclusion is in Section VI.

II. RELATED WORKS

This section will summarize the related works in multi-
vehicle motion planning. Generally, the methods can be
categorized into centralized and decentralized approaches.

Most of the centralized approaches are mainly developed
by single-vehicle algorithms. For example, both the Push and
Swap (PS) method [10] and the Conflict Based Search (CBS)
method [11] are developed from the A* algorithm [12],
and the Random sampling algorithm for cooperation [13] is
extended from the Rapidly-exploring Random Tree (RRT)
algorithm [14]. In addition, many approaches have been
proposed to solve planning problems with non-holonomic
constraints [15], [16]. Although the centralized approaches
are logically simple, the methods are usually limited by the
number of vehicles and perfect sensing, resulting in great
difficulty for practice.

Different from centralized methods, each vehicle travels
by observing neighbors’ behavior without communication
in decentralized approaches. In this case, controlling the
multi-vehicle system may be more convenient. As a result, a
variety of decentralized methods are developed to address the
problems of multi-vehicle motion planning, including poten-
tial fields [17], sampling-based method [18], reinforcement
learning [19], [20], and velocity obstacle approaches like [5],
[21], [22], [23], and so forth.

Here, the velocity obstacle approaches are the most as-
sociated with our method in this paper. The early improved
version of the velocity obstacles (VO) method [21] takes a
total effort for collision avoidance like [24], leading to tra-
jectory oscillation. The reciprocal velocity obstacles (RVO)
method [5] overcomes this oscillation problem. Sequentially,
the hybrid reciprocal velocity obstacle (HRVO) algorithm
[23] enabled the vehicle to pass on the same side. Among
the velocity obstacle approaches, one of the most popular is
the optimal reciprocal collision avoidance (ORCA) algorithm
[22] as it enhances the performance of collision avoidance
and computational efficiency.

In addition, some related work considered vehicles’ kine-
matic constraints, dynamic constraints, etc. For example, D.
Bareiss et al. [25] consider non-homogeneous robot systems
in the real world. Instead of simply regarding vehicles as
a circle, R. Mao et al. [26] worked on the collision-free
navigation of wheeled robots by integrating the linear model
predictive control method into ORCA. J. Liu et al. [27]
proposed the Dubins-RVO algorithm for aircraft on the deck
by considering the posture constraints. Despite these above

works can theoretically be expanded to three-dimensional
space, they are only implemented in the two-dimensional
plane. Fortunately, some motion planning methods based on
geometric collision avoidance have also been investigated
for UAVs. For instance, J. Snape et al. [28] proposed the
ORCA3D method in a 3D workspace for simple airplanes
without any kinematic and dynamic constraints. C. Y. Tan
et al. [29] extended the velocity obstacle method for three-
dimensional collision avoidance but was limited to the orig-
inal concept of the velocity obstacles, which may lead to
oscillation.

Although some above works have considered some practi-
cal constraints, most of them cannot be deployed in general
3D workspaces for fixed-wing UAVs.

III. BACKGROUND

In this section, the RVO method in 3D domains and its
limitations are summarized briefly.

A. UAV Model

We assume that there are n fixed-wing UAVs in a three-
dimensional workspace. At the same time, we denote the
pi = [xi, y,-,z,-]T as the position of UAV i and the yx; =
(Wi, %, ¢i]" as the Euler angles (heading angle, flight-path
angle, and bank angle) of UAV i in a north-east-down (NED)
frame. The UAV motion model can be described as

X; = Vjcosy;cos Y;

yi = Vjcosy;siny;

2= —V;siny; (1
Vi = étan 0;

1

where i € N ={1,2,3,...,n} represents the index of UAV, V;
represents the airspeed of UAV i, g is the acceleration due to
gravity at sea level. Then, we defined q; = [x;, y,-,z,-,l,l/,-,}/,-]r
and u; = [V;, ¥;, ;)7 as the state and the control input of UAV
i, respectively. Thus, we can expand the Eqn. (1) as

4 = f(qi,u;) 2

To UAVs can be controlled by computer systems, we
discrete the Eqn. (2) as

Qi1 = fi(Qik,0ik) (3)

where  fi(Qix,0ix) = Qix + Ak,  AQix =
[AX; 4, AV AZi o, AW, AYig) T A = TyVigcos ¥ gcos Wi,
Ayix = TVigcosyigsinWr, Aziy = —TVigsinYg,
AVik = Wik — Vik—1> AYik = Yik — Yix—1, and Ty represents
the sampling period.

Furthermore, we also consider the posture constraints of
UAVs. Based on the work [8], the posture constraints are
formulated as

AWmin < AlI/i,k < Alllmax,A’YInin < A%’,k < A’Vmax (4)

where AWpin, AWimaxs AYmin, and A%, are determined by
the physical properties of UAVs. Especially, the constraints
of yaw angle rate can be described by the minimum turning
radius P, of the trajectory. To simplify, we regard the UAV
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as a sphere whose radius is 0.5 m in this paper. At the
same time, we also assume P, = 1.5 m, AYpin = —45°,
and AV, = 45°. It should be reasonable as the values of
the actual constraint are not so restricted.

B. RVO Method in 3D Domains

We regard UAV A as a sphere whose reference position
is pa and radius is r4, moving at v4 in a 3D workspace.
Similarly, UAV B was also regarded as a sphere whose
reference position is pp and radius is rpg, moving at vp in
the same space.

The mathematical formulation of the VO3D algorithm
could be summarized as follows. We denote a sphere with
D(po,r) in Eqn. (5), where the center is py, the radius is r,
and p is expressed as any point in space. In addition, the ray
A(p,v) is denoted in Eqn. (6) where the starting point is p,
the direction is v, and 7T represents the extension parameter.
And then, we get the obstacles velocity set VO4(vz) in Eqn.
(7), where vap is V4 — vp and rag is ra +rp.

D(pOar):{p|||p7p0”<r}7 (5)
A(p,v)={p+7v|T>0}, (6)
VO3(vg) = {va | A(Pa,Vag) N D(ps,7a) # 0}.  (7)

D(pf‘ff 15 +72) m

~~~~~~~~~~ | ~RVOL (vg,v,)
V0§ (vp)

&

Fig. 2. The RVO3D concept geometric representation of reciprocal velocity
obstacles set RVO%4(vp,v4) of UAV A to UAV B.

Consequently, the basic idea of the RVO concept can be
briefed as follows. When UAV A calculates the collision
avoidance velocity vi‘ at the r+ 1 moment, it believes
that UAV B will also make a specific effort for collision
avoidance. Hence, UAV A no longer holds that the velocity
of UAV B at the moment of 4+ 1 must be vg (VO3D is),
but another velocity after considering the motion of UAV
A, such as VatVp Geometrically, the cone-zone inscribed
in the sphere D(pg,ra + rg) shown in Fig. 2 is translated
at YAZYE for expressing the reciprocal velocity obstacles set
RVO%(vp,va) of UAV A to UAV B (the cone-zone of dark-
gray in Fig. 2). Here, when UAV A calculates the velocity of
collision-free, its relative velocity also changes to v, — YatVe
Hence, the RVO3D concept holds that if the ray v/, — w
intersects the cone-zone of dark-gray in Fig. 2, UAV A and
UAV B will certainly collide in the future. Otherwise, the
two UAVs will be collision-free. Finally, the formulation of
RVO3D is shown as

RVOR(vs,va) = {Vi | (2vh —va) €VO(vE)}.  (8)

C. Limitations of the RVO Method

The RVO concept can guarantee that both UAVs automati-
cally choose the same side to pass, which is named the Same
Side lemma and is the key to achieving collision avoidance.
The Same Side lemma had been proven and deduced in
Formula (9), in which v4 4 u is the optimal velocity outside
UAV B’s reciprocal velocity obstacle for UAV A, and vg —u
is the optimal velocity UAV A’s reciprocal velocity obstacle
for UAV B.

VAo+ud RVOS (Ve,va) & vg—u ¢ RVOE (va,vp).  (9)

*
goal

Fig. 3. The RVO3D method cannot guarantee that every UAV passes on
the same side.

However, symmetrical situations are always more complex
in more practical situations. Let us consider Fig. 3 for
example, where both UAVs’ vectors of velocity minimum
change are no longer opposite vectors of each other, such as
u; # —u’;. In this case, the RVO3D method cannot guarantee
that every UAV passes on the same side. In a word, this above
lemma of passing on the same side is only limited to special
symmetrical situations where are only two UAVs. In addition,
the RVO3D method is limited as it only considers the simple
kinematic constraints without more practical constraints.
However, fixed-wing UAVs have some physical constraints
in both yaw angle and pitch angle, which we define these
constraints as posture constraints.

IV. METHODOLOGY

This section presents our shunted collision avoidance
(SCA) for the motion planning of fixed-wing UAVs.

A. The Shunted Strategy

First, we introduce the notation U, which represents
UAVs’ universal velocity set. At the same time, let RVO be
the set of reciprocal velocity obstacles and AV be the feasible
velocity set. The UAV will achieve collision avoidance
as long as the UAV selects the velocity among the AV.
Considering any pair of UAV i and UAV j in the same 3D
environment, the set AV} (v;,vi) of UAV i can be derived by
Eqn. (10), in which the v; is the current velocity of UAV i
and the v; is the current velocity of UAV j. Based on this
above derivation, the feasible velocity set AV considered all
the neighbors of UAV i could be formulated as the Eqn.
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(11). Then, one optimal velocity v?” Pt
Eqn. (12), where V! is a feasible velocity among AV’and V;
is the desired veloc1ty of UAV i. Finally, let OVi., be the
optimal velocity set of UAV i. It can be deduced by Eqn.
(13), where a threshold parameter Av,,;, empirically is 0.03,
will be set slightly greater than zero.

is calculated through
pref

AV} (v;,vi) = Uj(v;,vi) = RVO' (v}, Vi), (10
=AV] (vj,vi), (11)
Jj#i
v = arg min (|[v;—v/"/)), (12)
V€AV
OVisep = {Vi [ [IVi = {7 | < Avopr,vi €AV} (13)

Then we develop the shunted strategy to guarantee that
UAV i passes on the same side (right side). The details are
as follows. We project the current velocity v; and all the
optimal velocities from three-dimensional space onto the XY
plane and compute their angle 6 in the XY plane, where
0 € [—n,x]. Theoretically, the angle of v; must be larger
than or equal to the 6, of the optimal velocity on the
right side of v;. It also must be smaller than or equal to the
Ojf; of the optimal velocity on the left side of v;. Hence,
the relation is expressed as Oy < 0(V;) < 6.5, in Which

Bright < Ojcf; is always true. These steps can be formulated

as Eqn. (14), where v/°" is the most feasible velocity.

VI =arg  min  (O(vé)).
Vi EOViey

(14)

The shunted strategy is summarized as the following four
steps. The above details are presented in Algorithm 1, where
the N is the set of UAV i’s neighbors.

1) Let a UAV in the 3D domains be UAV i. All feasible
velocity sets AV} between UAV i and neighbor UAV j
are computed using the RVO3D algorithm.

2) Then, the intersection operation for all AV’ achieves
the feasible velocity set AV! of UAV i.

3) An optimal velocity v{*' of UAV i can be calculated by
Eqn. (12). Then, the Eqn. (13) is exploited to determine
the optimal velocity set OVSC 4 of UAV i,

4) Finally, the most feasible optimal velocity v/,,, can be
solved by using the idea of the shunted strategy.

B. The 3D Dubins Path with Collision Avoidance

In fact, the posture constraints are general requirements in
motion planning for fixed-wing UAVs, and the 3D Dubins
method is mainly exploited to solve this problem.

Vana Petr et al. [8] addressed the shortest 3D Dubins
curve with curvature bounds and pitch angle constraints,
improving the calculation speed. We extend this work by
integrating the RVO3D algorithm, in which the static and
dynamic obstacles are investigated in the 3D Dubins method.
The details of implementation are summarized as follows
two points. Firstly, the UAV will recalculate the new 3D
Dubins path if the current path is different from the old 3D
Dubins path. Secondly, calculating the desired velocity in the

Algorithm 1: The Shunted Strategy

pi. vio v/ Upj, Uv; GEN, j#1)
— UAV i config.
Output: The most feasible velocity v, of UAV i

Input :

1 for jin N do

2 RVO; +OperationRVO3D(p;, vi,p;, V) ;
3 end

4 for jin N do

5 AV Ui(v,vi) —RVO(v), Vi)

¢ end

7 AVi = ﬂﬁé,AV" (vj,vi) 5

8 Vi argming (v V") 5

9 for v} in AV! do

10 OVS{CA — {V; ‘ ||V; 7V;)er < Avopt} 5
11 end

12 Vi <— argmin vend oy, (G(Vf“"d)) ;

13 return v ;

RVO3D algorithm is replaced by calculating the 3D Dubin
curve’s adjacent nodes near the UAV’s current position.

We can recognize collision-avoidance action in the first
point with the Eqn. (15), where v/"“/( — 1) is the desired
velocity of any UAV i at the last moment, and v;(¢) is the
current velocity of the UAV i. This Eqn. (15) follows the
fact: For UAV i, it will execute the desired velocity when
there are no obstacles. The second point can be formulated
as follows. For UAV i, let p; be the current position, p goal be
the goal position, and v""*/ s the preferred scalar speed. We
can calculate the desired velocity v/"/ () at t moment using
Eqn. (16) in the RVO3D algonthm At the same time, we
express the 3D Dubins path node at any time ¢ as D(¢), where
the distance between adjacent nodes indicates the sampling
size of the 3D Dubins curve. In this case, the desired velocity

V7 "/ (¢) at t moment can be computed using Eqn. (17). In a
word the Eqn. (16) will be replaced with Eqn. (17) when the
3D Dubins method is introduced into the RVO3D algorithm.

v —1) = vi(t), (15)
Vfref( ) pref (p;g’oul p_)7 (16)
vl (6) =" (D(e+1) — py). (17

The process of implementing posture constraints can be
summarized in the following three steps.

1) First, we judge whether the v”"*/(r — 1) is parallel

to v;(t) and whether both vectors are in the same
direction.

2) If both conditions above are true, UAV i will calculate
the desired velocity with the old 3D Dubins curve.
Otherwise, UAV i will update the 3D Dubins curve to
calculate the desired velocity.

3) Meanwhile, the 3D Dubins curve will not be updated
when the distance between the current position and
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goal position is less than d, where d is 3.0 ppin (Pmin
is the minimum turning radius of the UAV).

V. EXPERIMENTAL RESULTS

In this section, we conducted three simulation experiments
to validate the effectiveness of the proposed algorithm on
the AirSim platform. Then, we compared our method with
other SOTA (state-of-the-art) methods. The results of the
experiments show the validity of the proposed method.

A. Simulation Setup

The parameters of algorithms were set as follows. The
preferred and maximum speeds were set as v""¢/ = 1 m/s
and V™ = 1 m/s, respectively. The maximum observation
range was set as d"** = 10 m. The maximum number of
neighbors was set as N = 15. The time horizon and the
time step were set as 7= 10 s and Ar = 0.1 s, respectively.
All simulations were conducted on an Intel(R) Core(TM)
i7-12700K 3.61 GHz NVIDIA GeForce RTX 3090 device.

Five metrics for quantitative evaluation were listed as
follows.

o Success Rate (SR): the ratio of the number of UAVs
successfully reaching their goals in a specific time limit
without any collision to the total number of UAVs.

« Extra Time (ET): the average extra travel time that per
UAV spends on its actual traveling time compared with
going straight toward its goal.

« Extra Distance (ED): the average extra travel distance
per UAV spends on its actual trajectories length com-
pared with going straight toward its goal.

o Average Speed (AS): the average speed of all UAVs
during operation.

o Computational Cost (CC): the average computational
time per UAV spends on the time of solving new
velocity.

B. Simulation Experiments

In this part, three simulation experiments are conducted on
the AirSim platform [9]. The maximum yaw rate and pitch
rate are used to evaluate the performance of trajectories.

We experimented with simulating an air patrol task with
our SCA algorithm in the first simulation. Here, fourteen
fixed-wing UAVs are deployed uniformly on a circle at a
specific altitude whose radius is 10 m to execute the air patrol
task. They are required to turn around automatically back
to the start position once the patrol task is completed. The
experiment results are presented in Fig. 4. These figures show
that all UAVs completed the air patrol task and returned to
the start position with the initial heading angle. Meanwhile,
these metrics in Fig. 4 show that the smoothness of all
UAVs’ trajectories is excellent, demonstrating our proposed
method’s practical potential in the real world. Note that the
ideal metrics values are computed by the Dubins trajectories
in ideal conditions, the same as the following simulations.

The second simulation was conducted to simulate the
process of take-off and landing with the SCA algorithm.
Here, eight fixed-wing UAVs are located uniformly on a

Fig. 4. Simulation results of air patrol task. Maximum yaw rate: 0.566
rad; Maximum pitch rate: 0.547 rad; ET: 11.0 s (ideally: 8.8 s); ED: 10.914
m (ideally: 8.8 m); AS: 0.998 m/s (ideally: 1.0 m/s); CC: 19.987 ms. (a)
Top view. (b) 3D view.

circle at a specific altitude, and another eight UAVs are
similar at another specific altitude. Both circles’ radius is 4
m, and their height difference is 10 m. Now, all two UAVs in
a vertical position will exchange their position for simulating
the take-off and landing, respectively. Note that obstacle-
free and obstacle cases are considered in this experiment.
The simulation results are presented in Fig. 5. From these
figures, it can be observed that all UAVs successfully finished
the take-off and landing process in both cases. In particular,
from these metrics in Fig. 5, it also can be observed that
the pitch angle constraints are satisfied during all the take-
off and landing processes. The simulation also verified the
potential practice of our proposed method.

The third simulation was conducted with our SCA method
for simulating a low-altitude search task. Around the outside
of a jungle area whose radius is 10 m, sixteen fixed-wing
UAVs travel through the jungle area at a lower altitude and
exchange their position and heading angles with each other.
Note that all the trunks of trees expressed by multiple voxels
are regarded as obstacles (red cube in Fig. 1), and the leaves
are not regarded as obstacles. The experiment results are
shown in Fig. 1. From these figures, it can be found that all
UAVs successfully reached their goal positions and heading
angles. These metrics in Fig. 1 show that the smoothness of
all UAVs’ trajectories is excellent and is possible for UAVs
to follow in the real world.

C. Performance Evaluation

For fairness, the S-RVO3D (Ours.) was compared with
the RVO3D as well as the ORCA3D. Note that we do not
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Fig. 5. Simulation results of take-off and landing. (a) obstacle-free case:
top view on the left and 3D view on the right. Maximum yaw rate: 0.694
rad; Maximum pitch rate: 0.679 rad; ET: 9.1 s (ideally: 5.6 s); ED: 6.489
m (ideally: 5.6 m); AS: 0.863 m/s (ideally: 1.0 m/s); CC: 15.966 ms. (b)
obstacle case: top view on the left and 3D view on the right. Maximum
yaw rate: 0.916 rad; Maximum pitch rate: 0.783 rad; ET: 15.4 s (ideally:
5.6 s); ED: 10.129 m (ideally: 5.6 m); AS: 0.685 m/s (ideally: 1.0 m/s);
CC: 14.792 ms.

TABLE I
COMPARED THE PROPOSED METHOD WITH OTHER METHODS.

Scenarios Metric RVO3D ORCA3D S-RVO3D

Success Rate 0.91 0.99 1.00

Extra Time 7.4 10.5 5.5

Circle Extra Distance 2.741 2.943 2.298
Average Speed 0.893 0.837 0.924
Computational Cost  20.655 9.521 19.228

Success Rate 0.86 0.93 1.00

Extra Time 8.3 6.5 5.5

Ball Extra Distance 3.524 2.454 2.368
Average Speed 0.917 0.927 0.943
Computational Cost ~ 20.838 17.461 19.845

Success Rate 0.99 1.00 1.00

Extra Time 0.2 1.2 0.3

Random Extra Distance 0.118 0.319 0.144
Average Speed 0.996 0.961 0.995
Computational Cost ~ 25.565 8.461 25.872

compare our method with the above variants of RVO and
ORCA as they are developed only in a two-dimensional
workspace. Three scenarios are considered, including circle
(radius is 18 m), ball (radius is 25 m), and random (space
is 30 m x 30 m x 30 m, where 10 times independent
experiments would give an average result rather than results
from only one test.) scenarios. The number of UAVs is 100.
Table I presents the comparison results, and the best results
are highlighted in bold. It can be seen that our method
yields the best performance in most cases except for the
Computational Cost. In the metric of computational cost,
the best results were yielded by the ORCA3D in all cases
due to the introduction of the linear program, but the S-

RVO3D can still provide a real-time response. In the random
benchmark, as the S-RVO3D considers a safer strategy, the
RVO3D method yields the best performance in three metrics
except for Success Rate and Computational Cost.
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Fig. 6. The performance evaluated for the SCA and RVO3D+Dubins
methods on the circle and random scenarios.

Considering the posture constraints, the SCA was com-
pared with the RVO3D+Dubins in a circle (radius is 40 m)
and random (space is 80 m x 80 m x 10 m, where 10 times
independent experiments would give an average result rather
than results from only one test.) scenarios. Fig. 6 presents
the experimental results. In Fig. 6, it can be observed that
our SCA method yields the best performance in almost all
cases. In the circle scenario, although the Success Rate under
the SCA is higher than its competitor, it drops to 99% when
the number of UAVs is 100. It should be that the Dubins
path cannot be computed when UAVs reach the near goal
position and encounter other UAVs, resulting in the stuck.
In the random scenario, except for the Success Rate, both
methods yield comparable performances as the complexity of
the random scenario is less than the circle scenario, resulting
in the path distance of both methods being close to the
optimal path distance.

Overall, all experimental results demonstrated the effec-
tiveness and the practical potential of our proposed method.

VI. CONCLUSIONS

This paper proposes a novel SCA algorithm for fixed-wing
UAVs’ motion planning in a three-dimensional workspace.
The posture constraints of fixed-wing UAVs were defined as
the minimum turning radius and pitch angle constraints. The
extensive simulations show our proposed method’s effective-
ness and practical potential. On the other hand, the proposed
algorithm only regards the UAVs as a sphere, and introducing
the 3D Dubins method also affects the computational power.
In the future, we will mainly improve these shortcomings and
consider the more practical constraints, applying the SCA
algorithm to fixed-wing UAVs in the real world.
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