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Abstract
Virtual try-on focuses on adjusting the given clothes to fit a specific person seamlessly while avoiding any distortion of the
patterns and textures of the garment. However, the clothing identity uncontrollability and training inefficiency of existing
diffusion-based methods, which struggle to maintain the identity even with full parameter training, are significant limitations
that hinder the widespread applications. In this work, we propose an effective and efficient framework, termed TryOn-Adapter.
Specifically, we first decouple clothing identity into fine-grained factors: style for color and category information, texture
for high-frequency details, and structure for smooth spatial adaptive transformation. Our approach utilizes a pre-trained
exemplar-based diffusion model as the fundamental network, whose parameters are frozen except for the attention layers. We
then customize three lightweight modules (Style Preserving, Texture Highlighting, and Structure Adapting) incorporated with
fine-tuning techniques to enable precise and efficient identity control. Meanwhile, we introduce the training-free T-RePaint
strategy to further enhance clothing identity preservation while maintaining the realistic try-on effect during the inference.
Our experiments demonstrate that our approach achieves state-of-the-art performance on two widely-used benchmarks.
Additionally, compared with recent full-tuning diffusion-based methods, we only use about half of their tunable parameters
during training. The code will be made publicly available at https://github.com/jiazheng-xing/TryOn-Adapter.
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1 Introduction

Virtual try-on (Han et al., 2018;Wang et al., 2018; Choi et al.,
2021; Morelli et al., 2022) aims to enable users to naturally
try on new category clothes in the target regions by giving
an image of the garment and an image of the person while
preserving the non-target regions. The core of this task lies
in maintaining the pattern and texture of the clothes, termed
clothing identity, unchanged in various conditions. Consid-
ering the scarcity of high-quality paired datasets, the current
works usually follow a two-stage design (Choi et al., 2021;
Morelli et al., 2022; Lee et al., 2022; Xie et al., 2023; Gou
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Fig. 1 Performance comparison of four different methods on VITON-
HD dataset at 512 × 384 resolution, including our TryOn-Adapter,
GANs-based method HR-VITON (Rombach et al., 2022), Diffusion-
based method LaDI-VTON (Morelli et al., 2023), StableVITON (Kim

et al., 2023) and OOTDiffusion (Xu et al., 2024). Our method generates
high-quality results and exhibits strong clothing identity preservation
capability, i.e., consistent color style and logo textures, as well as a
smooth transition between long and short sleeves

et al., 2023): target garment deformation and composite gen-
eration. The former (Ge et al., 2021b; Han et al., 2019; He
et al., 2022) focuses on transferring the original clothing into
the desired form based on the posture and body shape of
the given person. Despite providing a prior warped template,
direct blending produces severe artifacts when encountering
occlusion and large shape differences. Therefore, the latter
is introduced for further refinement with a powerful gen-
erative model. Concretely, most of the previous works (Ge
et al., 2021b; Bai et al., 2022; Lee et al., 2022; Morelli et al.,
2022) have relied on the GANs (Goodfellow et al., 2014), but
they suffer from unstable training (Gulrajani et al., 2017) and
mode collapse (Miyato et al., 2018), leading to the detail loss
in their generated results, especially for the highly patterned
garments, as shown in Fig. 1 column 3. More recently, dif-
fusion models (Song et al., 2020; Ho et al., 2020; Rombach
et al., 2022) have attracted widespread attention and per-
meated into the virtual try-on. Two diffusion-based models
have regarded try-on as an inpainting task. DCI-VTON (Gou
et al., 2023) is built upon the exemplar-based image gen-
eration method, harnessing its ability to preserve irrelevant
areas while focusing on fusing the warped garment into
the target area. LaDI-VTON (Morelli et al., 2023) further
employs the textual-inversion technique to refine the target
areas. Another approach, OOTDiffusion (Xu et al., 2024),
introduces an outfitting UNet to implicitly transform the
given garment. However, they cannot achieve satisfactory
results due to insufficient exploration of identity-preserving
modules, even tuning all parameters of UNet for adaptive
learning. As shown in Fig. 1 column 4 (LaDI-VTON), the

color and textures of their generated clothes are completely
different from the target clothes (row 1), and the transition
from long sleeves to short sleeves exhibits obvious artifacts
(row 2). The same color and texture degradation exhibited in
column 5 (OOTDiffusion).

Although diffusion-based garment composition genera-
tions have progressed, they lack in-depth thinking in two key
aspects. (1) Identity controllability. Previous methods (Yang
et al., 2023; Gou et al., 2023) utilize the class token of
CLIP embeddings obtained from the reference garment
image.However, this global vectorized feature,when directly
integrated into the UNet, fails to retain identity cues. By
contrast, this work decouples the garment characteristics
into three fine-grained factors to simplify identity preser-
vation, i.e., style (color and category information), texture
(high-frequency details such as patterns, logo, and text), and
structure (smooth transition when under different pose or
body shape, as well as a significant difference between the
original and target clothing, such as the aforementioned long
and short sleeves issues). (2) Training efficiency. Diffusion-
based methods usually suffer from low training efficiency,
especially in a fully fine-tuned manner. To tackle this prob-
lem, Parameter-Efficient Fine-Tuning techniques (PEFT),
such as ControlNet (Zhang et al., 2023), T2I-Adapter (Mou
et al., 2023), and GLIGEN (Li et al., 2023b), employing a
small number of training parameters to control the denois-
ing process. It is worthwhile to consider how to introduce
efficient training modules or even training-free mechanisms
into the try-on taskwithout sacrificing performance. Notably,
concurrent work StableVITON (Kim et al., 2023) circum-
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vents full-tuning, yet their tenuous representation of clothing
identity (only a single image) results in continued difficulty
in producing satisfactory outputs. As shown in Fig. 1 column
6, they exhibit inconsistent color style and logo textures.

To realizemore identity-controllable and training-efficient
virtual try-on, we propose a novel paradigm, termed TryOn-
Adapter, which follows the Paint-by-Example framework
and customizes three lightweight components according
to the decoupled factors to effectively control hierarchical
identity cues. Specifically, we start by freezing all the param-
eters in the UNet blocks except for the attention layers,
which transfer the universal pre-trained model to the spe-
cific try-on task with minimum trainable parameters. For
style preservation, we utilize both patch and class tokens
to learn comprehensive style representation, with the former
compensating for the lack of detailed identity in the latter.
Furthermore, due to the limitation of CLIP in capturing the
complex color style, we further enhance the patch tokens
with visual features embedded in theVAEencoder through an
adaptive transfer module. To avoid disturbing the feature dis-
tribution of the pre-trained model, inspired by GLIGEN (Li
et al., 2023b), we insert trainable gated self-attention lay-
ers in all layers to inject the updated patch tokens into the
frozen backbone. Moreover, to preserve the texture, a post-
processed high-frequency feature map is incorporated as a
texture refinement guidance to highlight the local details. For
another factor involving spatial cues, we take the segmenta-
tion map, obtained by a rule-based training-free extraction
method, as the structure condition to explicitly rearrange
the target areas of the body and clothing to conform to
the warped cloth. We follow the T2I-Adapter (Mou et al.,
2023) to inject the above two conditions into UNet by two
lightweight networks incorporated a well-designed position
attention module that helps amplify the spatial cues. During
the inference phase, we introduce a time-partially function
on the training-free technique RePaint (Lugmayr et al., 2022;
Avrahami et al., 2023), termed T-RePaint, to further enhance
the clothing identitywithout compromising the overall image
fidelity. Additionally, a learnable latent blending module is
integrated within the autoencoder to produce more visually
consistent results.

In this way, we preserve the hierarchical identity details
of the given garment without full fine-tuning, as illustrated
in Fig. 1 column 7.

In summary, we present the following contributions.

• Wepropose a novel, effective, and efficient framework for
virtual try-on, TryOn-Adapter, to maintain the identity
of the given garment with low consumption.

• We decouple clothing identity into fine-grained fac-
tors: style, texture, and structure, represented by the
global class token and enhanced patch token embed-
dings, high-frequency feature map, and segmentation

maps, respectively. Each factor incorporates a tailored
lightweight module and injection mechanism to achieve
precise and efficient identity control. Meanwhile, we
introduce a training-free technique, T-RePaint, to further
reinforce the clothing identity preservation while main-
taining the realistic try-on effect during the inference.

• Extensive experiments on two widely used datasets have
shown that our method can achieve outstanding perfor-
mance with minor trainable parameters.

2 RelatedWork

2.1 Image-BasedVirtual Try-On

To avoid distortion of garment image textures and confusion
of the identities as much as possible, the image-level virtual
try-on (Yang et al., 2020; Issenhuth et al., 2020; Han et al.,
2018; Wang et al., 2018; Choi et al., 2021; Morelli et al.,
2022; Chen et al., 2023a; Li et al., 2023b) task is typically
divided into two stages: the target garment deformation stage
and the composite generation stage. For the first stage, the
Thin Plain Spine (TPS) method was commonly employed to
deform clothing in previousworks (Han et al., 2018;Ge et al.,
2021a; Minar et al., 2020; Zheng et al., 2019; Yang et al.,
2020), which is limited to offering only basic deformation
processing. Furthermore, many flow-based works (Ge et al.,
2021b; Han et al., 2019; He et al., 2022; Bai et al., 2022) have
been proposed, aiming to build the appearance flow field
between clothing and corresponding regions of the human
body to better deform the clothing for a more natural fit to
the body. In our work, we adopt the flow-based method PF-
AFN (Ge et al., 2021b) to accomplish the rough deformation
of the clothing in the first stage.

The second stage can be classified into two categories:
the GANs-based methods and the Diffusion-based meth-
ods. GANs-based methods (Ge et al., 2021b; Bai et al.,
2022; Lee et al., 2022; Morelli et al., 2022; Lewis et al.,
2021) inherit the weaknesses of Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014), such as unsta-
ble training (Gulrajani et al., 2017) and mode drop in the
output distribution (Miyato et al., 2018), leading to the
problem of detail loss in their generated results. Specifi-
cally, FashionGAN (Zhu et al., 2017) generates the image
conditioned on textual descriptions and semantic layouts,
TryOnGAN (Lewis et al., 2021) trains a pose-conditioned
StyleGAN2 (Karras et al., 2020) on unpaired fashion images,
and so on.Unlike the former,Diffusion-basedmethods (Yang
et al., 2023; Gou et al., 2023; Morelli et al., 2023; Baldrati
et al., 2023; Li et al., 2023a) with a more stable training
procedure can provide superior image generation quality.
Specifically, MGD (Baldrati et al., 2023) is the first latent
diffusionmodel defined for humancentric fashion image edit-
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ing, conditioned by multimodal inputs such as text, body
pose, and sketches. DCI-VTON (Gou et al., 2023) treats
the virtual try-on task as an inpainting task and adds the
warped clothes to the input of the diffusion model as the
local condition. LaDI-VTON (Morelli et al., 2023) follows
the similar paradigm and further exploits the textual inver-
sion technique for the first time in this task. Another research
avenue focuses on exploring how to replace the warping net-
work with a reference UNet. OOTDiffusion (Xu et al., 2024)
introduces an outfitting UNet to learn garment details in the
initial step, subsequently integrating these details into the
denoisingUNet through outfitting fusion.OutfitAnyone (Sun
et al., 2024) leverages a two-stream conditional diffusion
model to adeptly handle garment deformation. However,
despite incorporating complex network structures, they lack
in-depth thinking on the fine-grained identity, thus rendering
the control of clothing details challenging. Besides, all of
them require extensive full-parameter training,which leads to
the issues of high resource consumption. StableVITON (Kim
et al., 2023), a more recent work, partially trains the pro-
posed zero cross-attention blocks and SD encoder, but they
still directly use the given garment image to provide cloth-
ing cues, which makes it difficult for the network to capture
details.By contrast, ourmethoddecouples the complex cloth-
ing into fine-grained features and tailors them with carefully
chosen fine-tuning techniques to significantly enhance the
preservation of the given garment without incurring exces-
sive training consumption.

2.2 DiffusionModels

Recently, the Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020; Sohl-Dickstein et al., 2015)
has emerged as a critical technology in image synthesis,
renowned for its ability to generate high-fidelity images from
a normal distribution by reversing the noise addition process.
In response to the computational complexity and resource
requirements of DDPM, the Latent Diffusion Model (Rom-
bach et al., 2022) (LDM) efficiently performs diffusion and
denoising in the latent space through its optimized encoder-
decoder architecture, streamlining the generation process.
Based on the unique advantages shown by the Diffusion
model in preserving image details,manyworks in text2image
generation (Gal et al., 2022; Dhariwal and Nichol, 2021; Ho
and Salimans, 2022;Wei et al., 2023; Ramesh et al., 2022; Li
et al., 2023b), image editing (Mou et al., 2023; Zhang et al.,
2023; Saharia et al., 2022; Nichol et al., 2021), and subject-
driven generation (Chen et al., 2023b; Bhunia et al., 2023;
Yang et al., 2023; Shi et al., 2023; Wang et al., 2022) have
recently emerged. The success of these previous works have
provided ample inspiration for image-based virtual Try-On.

3 Method

3.1 Architecture Overview

In this paper, we propose a novel TryOn-Adapter to
preserve the identity of the given garment while requiring
relatively minimal training resources. The non-rigid warping
preservation in virtual try-on is a challenging task. Previous
diffusion-based methods (Morelli et al., 2023; Gou et al.,
2023; Baldrati et al., 2023; Kim et al., 2023; Li et al., 2023a)
do not decompose clothing identity adequately, resulting in
unsatisfactory results, so we tackle this problem by divid-
ing it into three factors, i.e., style, texture, and structure, and
each factor is equipped with a special lightweight design:
The Style Preserving module (Sect. 3.2) aims to preserve the
overall style of the garment. The Texture Highlighting mod-
ule (Sect. 3.3) focuses on refining high-frequency details.
The Structure Adapting module (Sect. 3.3) compensates for
unnatural areas caused by clothing changes. The T-RePaint
(Sect. 3.4) further reinforces the clothing identity preserving
without compromising the overall image fidelity during the
inference.

Specifically, as illustrated in Fig. 2, when given an image
Ip ∈ R

3×H×W of a person and an image Ic ∈ R
3×H ′×W ′

of a target garment, our method aims to generate an image
Î ∈ R

3×H×W , where the person in Ip is depicted wearing
the garment from Ic. For input preprocessing, we first remove
the original clothing from Ip using a provided garment mask
m ∈ {0, 1}1×H×W , resulting in a clothing-agnostic RGB
image Ia ∈ R

3×H×W , which retains non-target regions such
as head and background. To obtain thewarped garment image
Iw
c ∈ R

3×H ′×W ′
and its mask Iw

m ∈ {0, 1}1×H ′×W ′
, we

employ the garment warping model which here we choose
GP-VTON (Xie et al., 2023) to warp the original garment
image Ic into a coarse try-on shape based on the person’s
pose and othermask information in Ip . For the denoising pro-
cess, the UNet model takes the pixel-wise addition of coarse
warped garment image Iw

c and the clothing-agnostic image
Ia , along with the noisy person It and mask m, as inputs.
Besides, the target garment Ic, high-frequency map IH F

extract from Iw
c , and human segmentation map Iseg respec-

tively serve as representations of style, texture, and structure,
enabling fine-grained identity control. Note that our TryOn-
Adapter is trained under a self-reconstruction manner, where
Ic is the exact garment worn by Ip, and Iseg is also obtained
from Ip. During the inference, Ic and the clothing on Ip are
different, and Iseg is generated by the proposed precise yet
user-friendlymethod. For the latent space reconstruction pro-
cess, the independent Enhanced Latent Blending Module is
inserted into the autoencoder to further maintain consistent
visual quality (Sect. 3.4).
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Fig. 2 The overall architecture of our TryOn-Adapter is composed of
five parts: (1) the pre-trained stable diffusion model with fixed parame-
ters except for attention layers; (2) the Style Preserving module aimed
to preserve the overall style of the garment, including color and category

information; (3) the Texture Highlighting module focuses on refining
the high-frequency details. (4) the Structure Adapting module compen-
sates for unnatural areas caused by clothing changes. (5) the Enhanced
Latent Blending Module focuses on consistent visual quality

3.2 Style PreservingModule

For this module, we extract asmuch style information as pos-
sible from the reference image to inject into the denoising
U-Net to control the overall style of the generated garment,
including color and category information. First, we input gar-
ment image Ic through the frozen CLIP visual encoder to get
the class token feature Tcls ∈ R

1×1024 and patch tokens fea-
tures Tpatch ∈ R

256×1024. The former is used as a coarse
condition and added several additional fully connected lay-
ers to decode this feature given by:

hcls = MLPs(Tcls), (1)

where hcls ∈ R
1×1024. Besides, unlike common image edit-

ing tasks, virtual try-on needs to guarantee the identity of
the reference image fully, so we further introduce the lat-
ter to supplement fined style cues. However, although these
two features embody sufficient style cues, they are not sen-
sitive to color information. To enhance the color perception
of patch tokens and guide the alignment of CLIP features
with the output domain of the diffusion model, we design
a style adapter to fuse CLIP patch embeddings Tpatch and
VAEvisual embeddingsFvae ∈ R

4×28×28, as shown in Fig 3.
Formally:

Fpatch = MHA(Tpatch,F′
vae,F

′
vae) + Tpatch, (2)

hpatch = FFN(Fpatch) + Fpatch, (3)

where the Fvae is obtained by the reference image Ic through
the pre-trained Stable Diffusion VAE encoder and F′

vae ∈
R
784×1024 is obtained by Fvae through a series of flatten

and mapping operations. Moreover, MHA and FFN indicate
multi-head attention and feed-forward network. To inject the
coarse feature hcls and fined feature hpatch into UNet, we do
not merge them and replace the text tokens in the original
stable diffusion model, as it was considered a naive solution
that impedes the network from understanding the content
in the reference image and the connection to the source
image, asmentioned inPaint-by-Example (Yang et al., 2023).
Therefore, followed by GLIGEN (Li et al., 2023b), hcls
and hpatch are fed into the diffusion process through cross-
attention and gated self-attention, respectively. We denote
v = [v1, . . . , vM ] as the visual feature tokens of an image.
Therefore, the attention block of our denoising U-net con-
sists of three attention layers, as shown in Fig. 2, which can
be written as:

v = v + SelfAttn(v), (4)

v = v + β · tanh (γ ) · SelfAttn([v,hpatch]), (5)

v = v + CrossAttn(v,hcls), (6)
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Fig. 3 The architecture of the style adapter

where γ is a learnable scalar initialized as 0, and β is a con-
stant to balance the importance of the adapter layer. Through
gated self-attention, we have effectively introduced the guid-
anceof style features to the generationprocesswhile avoiding
the destruction of pre-trained weights.

3.3 Texture HighlightingModule and Structure
AdaptingModule

After the Style Preserving module, the discriminative style
features have been combined into the UNet. However, they
struggle to preserve complex textures, such as patterns and
logos, and exhibit obvious artifacts during the clothing tran-
sition when the original and target clothing are significantly
difference, as well as in some cases involving challenging
poses and body shapes. To address these issues, it is crucial to
integrate explicit spatial conditions andmaintain consistency
between these guidance features and the generated image fea-
tures to achieve perfect preservation. Therefore, inspired by
T2I-Adapter (Mouet al., 2023),we introduce two lightweight
designs, the Texture Highlighting module and the Structure
Adapting module. As shown in Fig. 2, they incorporate the
high-frequency texture information for texture refinement
and utilize the human body segmentation map for unnatu-
ral transition areas correction. Both conditions are encoded
into multi-scale features and injected into the intermediate
features of the denoising U-Net for precise control.

For texture preservation, we extract the high-frequency
map IH F of the warped garment by the sobel operator that

highlights the complex texture and patterns of the garment,
especially the logo and text. Besides,we observe that the edge
information occasionally provides incorrect guidance since
Iw
c is just an offline rough result without adaptive refinement.
To avoid introducing such ambiguous cues, we erode the
edges of the clothes, given by:

IH F = 0.5 × (∣∣Iw
c ⊗ Kx

s

∣∣ + ∣∣Iw
c ⊗ Ky

s
∣∣) � (

Iw
m � Ke

)
,

(7)

where Kx
s , K

y
s , Ke denote the horizontal, vertical Sobel ker-

nels and erosion kernel.⊗,�,� refer to convolution product,
Hadamard product, and erosion operation. The visual illus-
tration for the texture highlighting map generation is as
shown in Fig. 4a.

For structure guidance, we utilize the segmentation map
Iseg , which provides human posture information and explic-
itly indicates the clothing and body areas, serving as the
strong prior information for correcting the discordant areas
that appear after the garment change, such as the transition
between long and short sleeves. Unlike previous meth-
ods (Choi et al., 2021; Li et al., 2023b; Xie et al., 2023; Cui
et al., 2023) that use networks to predict the target segmenta-
tion map, this work avoids redundant off-the-shell networks,
proposing a rule-based training-free segmentation extraction
method to achieve precise results yet user-friendly process.
The core idea of this design is to combine the existing cloth-
agnostic segmentation map I caseg , warped cloth Mask Iw

m , and
the human body densepose (Güler et al., 2018) map Idp to
obtain the decomposed segmentation map. Specifically, we
first form a preliminary composed image Icaw by performing
a per-pixel OR (∨) operation to merge the I caseg with the Iw

m
in the binary logical space, i.e., Icaw = I caseg ∨ Iw

m . Next, we
combine Icaw with the densepose map Idp to complete the
missing arm parts. To remove the overlapping parts between
Icaw and Idp and the noise in Idp itself, we use the per-pixel
AND (∧) operation and connectivity-based filtering (Filterl )
to obtain the modified human pose map I ′

dp. This process
removes noise and irrelevant details by excluding connected
components with pixel counts below the threshold l (here set
to 12), given by:

Filterl(·) = {p ∈ I |si ze(Cp) ≥ l}, (8)

I
′
dp = Filterl(Idp − (Idp ∧ Icaw)), (9)

where I represents the image to be filtered, p represents a
pixel in the image, Cp represents the connected region adja-
cent to pixel p, and si ze(Cp) represents the number of pixels
in the connected component. Finally, the I ′

dp is merged with
Icaw through the per-pixel OR (∨) operation to obtain the
recomposed segmentation map Iseg , i.e., Iseg = Icaw ∨ I ′

dp.

123



International Journal of Computer Vision (2025) 133:3781–3802 3787

Fig. 4 a Visual illustration for the texture highlighting map generation.
b Visual illustration for the target segmentation map generation

Fig. 5 aThe architecture of the texture and segmentation adapter. Every
ResBlock consists of a convolution layer, two resnet layers, and two
position attention modules. b The architecture of the position attention
module

The visual illustration for the target segmentation map gen-
eration is shown in Fig. 4b.

In practice, we follow the network design in T2I-
Adapter (Mou et al., 2023), and add Position Attention
Modules (PAM) inspired by DANet (Fu et al., 2019) to
establish rich contextual relationships on local features in
each resblock is shown in Fig. 5a. The architecture design
of PAM is depicted in Fig. 5b, which enhances the repre-
sentation of spatial information for the texture highlighting
map and the recomposed segmentation map. Concretely,
we introduce a Texture Adapter for the high-frequency
map and a Segmentation Adapter for the segmentation
map to obtain multi-scale conditional features FHF =

{F1
HF ,F2

HF ,F3
HF ,F4

HF }, Fseg = {F1
seg,F

2
seg,F

3
seg,F

4
seg}.

These multi-scale features are correspond to the intermedi-
ate feature Fenc = {F1

enc,F
2
enc,F

3
enc,F

4
enc} in the denoising

UNet encoder. Both adapters have the same network struc-
ture, as shown in Fig. 5a. Finally, the conditional features
FHF , Fseg , and Fenc are weighted and added at each scale to
update Fenc, obtaining F′

enc with:

F′
enc = Fenc + ω · Fseg + (1 − ω) · FHF , (10)

where ω ∈ (0, 1) is a hyperparameter. The intermediate
features of UNet are updated by injecting this explicit infor-
mation, allowing it to focus on complex textural details and
relationships of individual spatial parts.

3.4 DiffusionModel for Virtual Try-On

In thiswork,we implement ourmethodbasedon apre-trained
diffusion model built upon Stable Diffusion (Rombach et al.,
2022), i.e., Paint-by-Example (Yang et al., 2023), and added
the identity preserving modules into this model to control
the generation. The diffusion model includes two parts: an
autoencoder (VAE), which can compress input images into
latent space and reconstruct them, and a U-Net to perform
denoising in the latent space directly. As shown in Fig. 2,
for the first part, we embed the ground-truth image Ip and
inpainting image I ′

a through the pre-trained encoder of VAE
into the latent space, obtaining z0 and z′

a . The forward process
is executed at z0 at a given timestamp t , with:

zt = √
ᾱtz0 + √

1 − ᾱtε, (11)

where zt indicates the noisy featuremapat step t ,αt decreases
with the timestep t , and ε ∈ N (0, I) is the Gaussian noise.
For the generative process, we concatenate zt , z′

a , and the
resized mask m as the U-Net’s input z′

t = [zt , z′
a,m]. The

style features hc = [hcls,hpatch], texture condition FHF ,
and structure guidance Fseg are also injected into the UNet.
Finally, our TryOn-Adapter is optimized via the objective:

Ez,t,hc,FHF ,Fseg,ε∈N (0,I)

[∥∥ε − εθ

(
z′
t , t,hc,FHF ,Fseg

)∥∥2
2

]
,

(12)

where the θ denotes the all learnable parameters.
To further reinforce the clothing identity preservation,

inspired by previous works (Lugmayr et al., 2022; Avrahami
et al., 2023; Corneanu et al., 2024), we utilize a training-
free technique (i.e., RePaint) in the latent space during the
inference. RePaint is aimed at sampling known regions (i.e.,
unknown mappings) and replacing them at each denois-
ing step in the inference process. Warped target garment
images Iw

c contain crucial prior information for preserving
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Fig. 6 Overview of our T-RePaint for T ′ � t < T

the identity, so applying RePaint to them further enhances
the preservation effect. We observe that applying RePaint at
all denoising steps results in noticeable noise at the RePaint
edges and lacks realistic try-on effects in the final gener-
ated image. To address this problem, we propose a T-RePaint
approach, applying RePaint only in the early denoising steps.
Specifically, given a range of time steps [1, T ], the RePaint
process starts from time step T and ends on step T ′ (T ′ < T ).
We feed Iw

c to the VAE encoder to obtain the warped gar-
ment feature zcwini t , and the warped garment mask Iw

m is
resized as mw. We use zT to denote a noise sampled from
the Gaussian distribution, and z0 to denote the final image
synthesis. Since the forward process is defined by Markov
Chain at Eq. 11, we can sample the warped garment feature
at any time step t to obtain the intermediate feature zcwt−1, i.e.,
zcwt−1 ∼ nosie

(
zcwini t , t

)
. Meanwhile, we use c to denote all

conditions in the denoising process based on the diffusion
model, so the unknown regions’ denoising at step t can be
defined as zunknt−1 ∼ denosie (zt , c, t). Thus, we achieve the
reverse stepwith the compositionof zcwt−1 and z

unkn
t−1 controlled

by the content keeping mask mw, given by:

{
zt−1 = mw � zcwt−1 + (1 − mw) � zunknt−1

(
T ′ � t < T

)

zt−1 = zunknt−1

(
1 � t < T ′) .

(13)

Our T-RePaint is shown in Fig. 6 for T ′ � t < T .
As mentioned before, the VAE enables the denoising net-

work to operate in a lower-dimensional latent space, thereby
reducing the computational cost in the diffusion network.
However, due to data loss deriving from the spatial compres-
sion performed by the autoencoder, the latent space might
struggle to capture high-frequency details precisely, which
can easily lead to distortion of faces or hands in the generated
images. For the distortion problem, some previous meth-
ods (Gou et al., 2023; Li et al., 2023a) blend the background
areas from the person image (e.g., face, hands) with the fore-
ground areas (clothing) from the generated image at the pixel
level, but bring about identifiable artifacts and blurred at the
same time. By contrast, inspired by recent works (Morelli

Fig. 7 a: Overview of our Enhanced Latent Blending Module. The
autoencoder is frozen, and only the Latent Blending Fusion operation
is learnable. b The architecture of Latent Blending Fusion operation

et al., 2023; Li et al., 2019; Zhu et al., 2023b; Avrahami et al.,
2023), we propose the Enhanced Latend Blending Module
(ELBM), which utilizes a background mask to directly copy
the background region of the encoders’ features from differ-
ent layers and combines them with the corresponding ones
of the decoder through some skip connections and learnable
parameters. In this way, the VAEDecoder’s difficulty in cap-
turing high-frequency information is alleviated by blending
enhanced background information into the decoding process.
Specifically, we use I0 to denote the original image and m
to denote the background mask. Given the encoder E , the
decoderD and the input I0, the i-th feature map comes from
the encoder and the decoder can be represented asEi andDi ,
respectively. The enhanced latent blending process is formu-
lated as:

D̂i = Di + f N L
c (Ei ) ⊗ m̃, (14)

D̂i = D̂i + f Lc
(
D̂i

)
, (15)

where ⊗ is element-wise multiplication, m̃ = 1 − m. f N L
c

and f Lc represent learnable non-linear and linear convolu-
tion. Unlike LaDI-VTON’s (Morelli et al., 2023) EMASC,
we further integrate the output D̂i of Eq. 14 with a linear
convolution and residual connection, as shown in Eq. 15,
to reduce the probability of a disconnected feeling at the
foreground-background junction. The training process only
employs a frozen autoencoder and trainable convolution lay-
ers under the supervision of reconstruction and VGG loss.
Our ELBM is illustrated in Fig 7. Through this design, the
consistent visual quality of synthesized images has been sig-
nificantly enhanced.
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4 Experiments

4.1 Experimental Setup

Datasets.Wemainly conduct qualitative andqualitative eval-
uations of our TryOn-Adapter on VITON-HD (Han et al.,
2018), which comprises 13,679 image pairs. Each pair com-
prises a front-view upper-body woman and an upper garment
under the resolution of 1024 × 768. Followed by the previ-
ous works (Morelli et al., 2023; Gou et al., 2023; Xie et al.,
2023), we split the dataset into 11,674/2032 training/testing
pairs. To prove that our method can have excellent results
in more diverse scenarios, we further conduct experimental
evaluations on Dreesscode (Morelli et al., 2022), which con-
tains 53,792 front-view full-body person and garments pairs
from different categories, i.e., upper, lower, and dresses.

EvaluationMetrics To quantitatively evaluate ourmodel, we
use variousmetrics for the similarity and realism assessment.
For similarity evaluation, we aim to assess the generated
image’s coherence compared to the ground truth, which can
test the model’s capability of ID preservation. This evalu-
ation is mainly validated on paired images, for which we
employed two widely used metrics: Structural Similarity
(SSIM) for pixel level and Learned Perceptual Image Patch
Similarity (LPIPS) for feature level. For realism assessment,
the aim is to ensure that the generated images exhibit con-
sistent visual quality and realistic try-on effects. Both paired
images and unpaired images should bemeasured, and we use
the Frechet Inception Distance (FID) and Kernel Inception
Distance (KID) as our metrics at the feature level.

Implementation Details We build our diffusion model
based on Paint-by-Example (Yang et al., 2023), including an
autoencoder with latent-space downsampling factor f = 8
and a UNet denoiser. We utilize its pre-trained model and
freeze all parameters except attention layers. We first train
theELBMmodule. For the diffusionmodel, the style preserv-
ingmodule is separately trained with the texture highlighting
and structure adapting modules. We generate the images at
512 × 384 and 1024 × 768 resolutions, and the reference
image Ic is resized at 224×224. We set ω = 0.5 in Sect. 3.3.
For optimizing, we utilize AdamW (Loshchilov and Hutter,
2017) optimizer with the learning rate of 1 × 10−5, and we
trained on 4 NVIDIA Tesla A100 GPUs for 40 epochs. For
the inference, we utilize the PLMS (Liu et al., 2022) sam-
pling method, with 100 sampling steps, and we set T ′ = 50
in T-RePaint (see Sect. 3.4).

4.2 Quantitative and Qualitative Evaluations

Quantitative Evaluations As shown in Table 1, we quanti-
tatively compare our method with the previous traditional

Fig. 8 Qualitative evaluation on the VITON-HD dataset (Choi et al.,
2021) with StableVITON (Kim et al., 2023) and our TryOn-Adapter
at 512 × 384 resolution to compare the impact of RePaint on each
method. The results verify that StableVITON heavily relies on RePaint
to preserve identity

methods at two resolutions, 512 × 384 and 1024 × 768,
on the VITON-HD dataset (Choi et al., 2021), includ-
ing VITON-HD (Choi et al., 2021), PF-AFN (Ge et al.,
2021b), FS-VTON (He et al., 2022), HR-VTON (Lee et al.,
2022), SDAFN (Bai et al., 2022), GP-VTON (Xie et al.,
2023), and diffusion-based methods including TryOnDiffu-
sion (Zhu et al., 2023a), Paint-by-Example (Yang et al.,
2023), MGD (Baldrati et al., 2023), LaDI-VTON (Morelli
et al., 2023), DCI-VTON (Gou et al., 2023), WarpDiffu-
sion (Li et al., 2023a), StableVITON (Kim et al., 2023),
OOTDiffusion1 (Xu et al., 2024). For resolution 512 × 384,
GP-VTON (Xie et al., 2023) has achieved the best perfor-
mance among traditional methods, showing excellent struc-
tural similarity (SSIM) results. However, its performance in
authenticity is not as good as the diffusion-based methods.
In full-tuning diffusion-based methods, due to the specified
adaptation-based architecture for fine-grained identity fac-
tors, our method not only reduces the trainable parameters
to nearly half compared to other methods but also achieves
state-of-the-art performance across all metrics. Besides, our
method has seen a significant performance improvement
compared to our baseline Paint-by-Example (Yang et al.,
2023), thanks to the three identity-preserving modules we
designed. Additionally, in the unpaired setting, which is
closer to real-world application scenarios, our KID and FID
scores show significant advantages compared to other out-
performing methods, such as DCI-VTON (Gou et al., 2023).
Compared with the method StableVITON (Kim et al., 2023),
which also employs the RePaint technique and efficient
training, our method exhibits more excellent performance
compared to StableVITON (Kim et al., 2023) (rows 14, 18).
Besides, the table results show that StableVITON’s ability
to preserve identity heavily relies on RePaint (rows 13, 14)
even though it has more trainable parameters than ours. This
also demonstrates that a single image is insufficient to fully

1 The results of OOTDiffusion are reproduced using the official code
(https://github.com/levihsu/OOTDiffusion.git), but we find that the
generated outcomes vary with changes in the seed. For practicality and
fairness in comparison, we run each case only once with the random
seed in the following quantitative and qualitative experiments.
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Fig. 9 Qualitative comparison on the VITON-HD dataset (Choi et al.,
2021) with VITON-HD (Choi et al., 2021), HR-VTON (Lee et al.,
2022), Paint-by-Example (Yang et al., 2023), LaDI-VTON (Morelli

et al., 2023), DCI-VTON (Gou et al., 2023), StableVITON (Kim et al.,
2023), OOTDiffusion (Xu et al., 2024), and our TryOn-Adapter at
512 × 384 resolution

capture the complexity of clothing identity. Conversely, our
TryOn-Adapter itself has a strong ability to preserve garment
identity (row 17), thanks to our decoupling of the identity
preservation problem. Since our T-RePaint can bring some
performance improvement and incurs no additional cost, we
incorporate it into our approach (row 18). We also con-

duct qualitative comparisons to confirm this phenomenon,
as shown in Fig. 8. Compared to the current work OOTDif-
fusion (Xu et al., 2024), where both the reported results in
its paper (row 15) and our reproduced results (row 16) are
provided, our TryOn-Adapter uses fewer than a third of the
trainable parameters (510M v.s. 1719M), yet achieves better
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Fig. 10 Qualitative comparison on the Dresscode dataset (Morelli et al., 2022) with PF-AFN (Ge et al., 2021b), SDAFN (Bai et al., 2022),
LaDI-VTON (Morelli et al., 2023), and our TryOn-Adapter at 512 × 384 resolution

performance in all metrics. This proves the necessity of our
fine-grained exploration and analysis of identity preservation
in clothing. For resolution 1024×768, we only includemeth-
ods that provide either 1024× 768 results in their paper or a
1024 × 768 checkpoint in their official code. Since most of
the previouswork (Ge et al., 2021b; He et al., 2022; Lee et al.,
2022;Wang et al., 2018;Morelli et al., 2022; Bai et al., 2022;
Li et al., 2023a) does not provide results for FIDp andKIDp

at 1024 × 768 resolution, we have followed suit. As shown
in Table 1, it can be seen that our TryOn-Adapter achieves
state-of-the-art performance even at high resolutions, which
is consistent with the conclusion drawn in 512 × 384 part.

To further quantitatively evaluate our TryOn-Adapter,
we compare our method on the Dresscode dataset (Morelli
et al., 2022) with the previous traditional methods, includ-
ing PF-AFN (Ge et al., 2021b), FS-VTON (He et al.,
2022), HR-VTON (Lee et al., 2022), SDAFN (Bai et al.,
2022), CP-VTON (Wang et al., 2018), PSAD (Morelli et al.,
2022), SDAFN (Bai et al., 2022), GP-VTON (Xie et al.,
2023), and diffusion-based methods including MGD (Bal-
drati et al., 2023), LaDI-VTON (Morelli et al., 2023), and
WarpDiffusion (Li et al., 2023a). As shown in Table 2, our
TryOn-Adapter’s performance has reached the most excel-
lent results among all metrics under various settings.

Qualitative Evaluations Figure 9 shows the qualitative com-
parison of the results produced by different methods in the
unpaired setting on theVITON-HDdataset (Choi et al., 2021)
at 512 × 384 resolution. As depicted in the figure, although
traditional methods like VITON-HD (Choi et al., 2021) and
HR-VTON (Lee et al., 2022) (as in columns 2 and 3) can pre-
serve the identity of the target garment, the resulting garments
exhibit some distortion when worn on a person, appearing
unnatural.As for diffusion-basedmethods, the target garment
can be worn naturally on a person, but it cannot guarantee the
identity of the clothing. Paint-by-Example (Yang et al., 2023)
(as in column 4) and LaDI-VTON (Morelli et al., 2023) (as
in column 5) cannot guarantee the style of the target gar-
ment, especially the color information. DCI-VTON (Gou
et al., 2023) compared to the previous two, has made great
progress in style-preserving but has not effectively addressed
the problem of long and short sleeves (as in column 6, rows
2 and 6), and the patterns and textures of the garments are
not clear enough (as in column 6, rows 3 and 4). Meanwhile,
StableVITON (Kim et al., 2023) follows an efficient training
strategy with ControlNet (Zhang et al., 2023), but it does not
decouple the clothing identity preservation issue. This results
in noticeable color discrepancies (as in column 7, rows 4, 5,
and 6) and a lack of fidelity in fine texture details (as in col-
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Fig. 11 Qualitative results of our TryOn-Adapter on the VITON-HD
dataset (Choi et al., 2021) at the resolutions of 1024×768 and 512×384.
Please zoom in for more details

umn 7, rows 4 and 5) compared to the target clothing in its
output. OOTDiffusion (Xu et al., 2024) introduces numer-
ous training parameters, but the exploration of fine-grained
clothing identity preservation is still insufficient, resulting in
some unsatisfactory generated results. Specifically, its gen-
erated clothing exhibits color deviation (as in column 8, rows
2, 3, 4, 5, and 7) and texture deviation (as in column 8, rows 2
and 3) compared to the original clothing. It encounters issues
with confusion between long and short sleeves (as in col-
umn 8, row 5) and abnormal body structure (as in column 8,
row 2). Compared to the above diffusion-based methods, our
method benefits from the well-designed three adapter mod-
ules, effectively addressing the shortcomings. Consequently,
our method can ensure a commendable preservation of gar-
ment identity (as in column 9, rows 1, 2, 4, and 7), featuring
enhanced color fidelity (as in column 9), sharper illustration
of intricate textures (as in column 9, rows 2, 3, 4, and 5),
and better management of long/short sleeve transformations
while naturally worn (as in column 9, rows 2, 4, and 6).

For further qualitative evaluations, we report in Fig. 10
sample images generated by our model and by the com-
petitors using officially released weights on the Dresscode
dataset (Morelli et al., 2022) at 512 × 384 resolution. Com-
pared to traditional methods such as PF-AFN (Ge et al.,
2021b) and SDAFN (Bai et al., 2022), our method’s try-
on results will have a more realistic try-on effect without
the unnatural signs of pasting from the warped garment onto
the target person. Compared to the diffusion-based method
LaDI-VTON (Morelli et al., 2023), our method has a distinct
advantage in preserving the garment’s identity, including ele-
ments like the style and texture details of the clothing.

Moreover, echoing the 1024 × 768 resolution in quanti-
tative experiments, we provide the try-on results with higher
resolution of our TryOn-Adapter in Fig. 11. Our 1024× 768
resolution outputs are equally impressive as that at 512×384
resolution, demonstrating its ability to consistently attain
superior performance across the resolutions.

User Studyof Virtual Try-On We further evaluate ourmethod
against differentmethods, includingVITON-HD (Choi et al.,
2021), HR-VTON (Lee et al., 2022), Paint-by-Example
(PbE) (Yang et al., 2023), LaDI-VTON (Morelli et al., 2023),
DCI-VTON (Gou et al., 2023), GP-VTON (Xie et al., 2023),
StableVITON (Kim et al., 2023), and OOTDiffusion (Ruiz
et al., 2023) through a user study on different virtual try-on
generation results in the VITON-HD dataset. We randomly
select 300 unpaired sets from the test dataset, each contain-
ing a target garment image and a target person image. We
survey 28 non-experts for this study, asking them to choose
an image with the most satisfactory performance among the
generated results of our model and baselines according to
the following two questions: (1) Which image is the most
photo-realistic? (2) Which image preserves the details of the
target clothing the most? As shown in Fig. 12, our approach
received over 45% support for both questions. The results
demonstrate that our method can generate naturally realistic
images while effectively preserving target garment details
during the virtual try-on process.

4.3 Ablation Study and Further Analysis

Effectiveness of Individual Adaptation Components To
demonstrate the effectiveness of our proposed adaptation, we
conduct ablation experiments on theVITON-HD (Choi et al.,
2021) dataset. To more intuitively verify the effectiveness of
each adaptation module, all results do not employ T-RePaint.
Meanwhile, all tests use ELBM to prevent inaccuracies from
reconstruction affecting result comparisons. We choose two
baselines for comparison. One freezes all training parameters
and uses Paint-by-Example’s (Yang et al., 2023) pre-trained
model for inference, while the other is based on the former
but only trains the attention layers and the CLIP class token’s
linear mapping layer related to the cross attention. As shown
in Table 3, we gradually incorporate our designed adapta-
tions, and the model’s performance strengthens step by step.
As shown in Fig. 13, the visual comparison of our generated
results for each stage will be more intuitive. The frozen base-
line is a semi-finished result (column 2), where the garment
is detached from the body. For the second baseline (column
3), which is only fine-tuned on the attention layers, the gen-
erated clothing style diverges from the target clothing, and
the boundary between the limbs and the garment is unclear.
After adding the style adaptation (column 4), the clothing
can naturally be worn on the person, and the clothing style
has been significantly improved, but the details and textures
of the clothing are not clear enough, and the shadow exists in
the neck area. After combining texture adaptation (column
5), the representation of the clothing’s detailed texture has
been enhanced, but the high-frequency map lacks the ability
to determine whether the shadow on the neck area is skin or
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Fig. 12 User study results on VITON-HD dataset at 512 × 384 reso-
lution. We compare our method with VITON-HD (Choi et al., 2021),
HR-VTON (Lee et al., 2022), Paint-by-Example (PbE) (Yang et al.,

2023), LaDI-VTON (Morelli et al., 2023), DCI-VTON (Gou et al.,
2023), GP-VTON (Xie et al., 2023), StableVITON (Kim et al., 2023),
and OOTDiffusion (Xu et al., 2024)

Table 3 Effectiveness of our Adapter components on the VITON-HD dataset (Choi et al., 2021) at 512 × 384 resolution

Method Params Tunable Params LPIPS↓ SSIM↑ F I Du ↓ K I Du ↓
Frozen 859M 0M 0.227 0.791 23.48 14.67

Frozen + fine-tuned attention layers 859M 84M 0.119 0.849 11.00 2.29

+ style adaptation 1048M 273M 0.079 0.887 8.89 0.94

+ texture adaptation 1129M 354M 0.074 0.892 8.73 0.82

+ segmentation adaptation 1212M 435M 0.071 0.894 8.63 0.79

“Params" and “Tunable Params" indicate the total and trainable parameters in the diffusion model, respectively

Fig. 13 Visual effectiveness of individual adaptation components in our TryOn-Adapter on the VITON-HD dataset (Choi et al., 2021) at 512 ×
384 resolution

a collar. After introducing segmentation adaptation (column
6), the neck shadow issue was successfully resolved.

Analysis on Style Adapter To analyze the impact of our style
adapter designed for patch token in the Style Preservingmod-
ule, we conduct experimental evaluations on the VITON-HD
dataset (Choi et al., 2021).As shown inTable 4,with the addi-
tion of the style adapter, all quantitative metrics have been
improved. For a clear visual representation comparison on
qualitative evaluation, we maintain consistency with previ-
ous ablation studies here by using ELBM and not T-RePaint.
As shown in Fig. 14, it can be seen that after adding the

style adapter, there has been a noticeable improvement in
the color difference between the generated garment (column
4) and the target garment (column 2) compared to the gener-
ated results without the style adapter (column 3).Meanwhile,
the logos and textures on the garment also became clearer
after integrating this module. The above results demonstrate
the significance of integrating VAE embeddings, while also
proving the effectiveness of our style adapter.

Qualitative Evaluation of Texture Highlighting Module and
Structure Adapting Module To verify the robustness of the
Texture Highlighting Module and Structure Adapting Mod-
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Table 4 Quantitative analysis of
the Style Adapter on the
VITON-HD dataset (Choi et al.,
2021) at 512 × 384 resolution

Method LP I PS ↓ SSI M ↑ F I Du ↓ K I Du ↓
w/o style adapter 0.073 0.892 8.69 0.81

Ours 0.069 0.897 8.62 0.78

The bold indicates the highest results in each ablation study

Fig. 14 Visual effectiveness of the Style Adapter on the VITON-HD
dataset (Choi et al., 2021) at 512 × 384 resolution

ule, we supply more convincing visual results as shown in
Fig. 15. Here, we also use ELBM and do not use T-RePaint.
The example on the left in this figure proves that the Texture
Highlighting Module can effectively enhance the texture of
the target garment, especially the details of cartoon patterns.
And, the example on the right demonstrates that the Struc-
ture Adapting Module is capable of addressing the problem
of long and short sleeves well, bringing about a realistic try-
on effect.

Qualitative Comparison Between the Diffusion Model and
GANs To analyze the performance of the Diffusion Model
and GAN in virtual try-on, we compare our TryOn-Adapter
with the latest GANs-based method GP-VTON (Xie et al.,
2023), where both use the same warped garment and the
latter employs the GANs as the generative model as shown
in Fig. 16. The try-on results generated by GP-VTON (Xie

Fig. 15 Qualitative evaluation of Texture Highlighting Module and Structure Adapting Module in our TryOn-Adapter on the VITON-HD dataset
(Choi et al., 2021) at 512 × 384 resolution

Fig. 16 Qualitative Comparison between theDiffusionModel andGAN (GP-VTON (Xie et al., 2023) vs.TryOn-Adapter) on theVITON-HD (Choi
et al., 2021) and Dresscode (Morelli et al., 2022) datasets at 512 × 384 resolution
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Table 5 Quantitative analysis of PAM in Texture and Segmentation
Adapter on the VITON-HD dataset (Choi et al., 2021) at 512 × 384
resolution

Method LP I PS ↓ SSI M ↑ F I Du ↓ K I Du ↓
w/o PAM 0.071 0.895 8.65 0.80

Ours 0.069 0.897 8.62 0.78

The bold indicates the highest results in each ablation study

Fig. 17 Quantitative evaluation of PAM in Texture and Segmentation
Adapter on the VITON-HD dataset (Choi et al., 2021) at 512 × 384
resolution

et al., 2023) (based on GANs) are prone to distortions and
deformations, as seen in the waist area of the first row’s left
image and the logo area of the right image. Furthermore, the
outputs fromGP-VTONlack a realistic sense of actual try-on,
resembling a warped garment pasted onto the target person,
as in the second row, especially with the arm in the sleeve on
the left image,which is almost completely forgotten.Besides,
GP-VTON exhibits noticeable jaggies around the clothing
when zoomed in. Therefore, diffusion models possess more
powerful generative capabilities than GANs.

Analysis on PAM in Texture and Segmentation Adapter To
analyze the impact of the position attention module (PAM)
in Texture and Segmentation Adapter, we conduct experi-
ments on the VITON-HD dataset (Choi et al., 2021). For
the quantitative evaluation, we can see all quantitative met-
rics are improved after adding PAM, as shown in Table 5.
For the qualitative evaluation, we don’t use T-RePaint for
a direct visual comparison. As shown in Fig. 17, the logos
in the generated images are more evident after integrating
PAM, benefiting from the enhanced local spatial represen-
tation by PAM, which allows the Adapters to interpret the
high-frequency information in the images better.

Analysis on Enhanced Latent Blending Module (ELBM) To
analyze the impact of the Enhanced Latent Blending Mod-
ule, we conduct qualitative and quantitative evaluations on
the VITON-HD dataset (Choi et al., 2021). For the quali-
tative evaluation, we compare three approaches at the final
image synthesis stage on virtual try-on: reconstruction, pixel-
blended, and our ELBM. Given the original person image I0
and backgroundmaskm, the reconstruction Ire result is from
the VAE of Stable Diffusion, and the pixel-blended result Ipb

Fig. 18 Qualitative evaluation of Enhanced Latent Blending Module
(ELBM) on the VITON-HD dataset (Choi et al., 2021) at 512 × 384
resolution. The reconstruction result is from the VAE of Stable Diffu-
sion, and the pixel-blended result is from the combination of the original
target person image and the reconstruction result image at the pixel level

Table 6 Quantitative analysis of PAM in Texture and Segmentation
Adapter on the VITON-HD dataset (Choi et al., 2021) at 512 × 384
resolution

Task ELMB f N L
c f Lc L P I PS ↓ SSI M ↑

Reconstruction w/o × × 0.024 0.937

Reconstruction w/ � × 0.021 0.954

Reconstruction w/ � � 0.020 0.956

Try-On (paired) w/o × × 0.076 0.867

Try-On (paired) w/ � × 0.071 0.895

Try-On (paired) w/ � � 0.069 0.897

The bold indicates the highest results in each ablation study

is from the combination of the original target person image
and the reconstruction result image at the pixel level, i.e.,
Ipb = I0 ⊗ (1 − m) + Ire ⊗ m. As shown in Fig. 18, the
reconstruction result (column 1, row 2) exhibits some degree
of distortion and deformation in the human face, whereas the
pixel-blended result (column 2, row 2) preserves the criti-
cal facial features well but introduces noise and shadows at
the junction of the neck due to the rough combination of I0
and Ire. Our ELBM (column 3, row 2) effectively addresses
the above problems, preserving high-frequency background
information, such as the face and hands, while avoiding intro-
ducing any noise that may result from image combination.
Please zoom in for more details.

For the quantitative evaluation, we conduct experiments
on two tasks, including image reconstruction and paired vir-
tual try-on, andwe ablate the impacts of our two convolutions
f N L
c and f Lc in latent blending fusion of ELBM. As shown

123



3798 International Journal of Computer Vision (2025) 133:3781–3802

Fig. 19 Qualitative evaluation comparing the impact of varying numbers of RePaint steps on the VITON-HD dataset (Choi et al., 2021) at 512 ×
384 resolution

Table 7 Quantitative evaluation
comparing the impact of varying
numbers of RePaint steps on the
VITON-HD dataset (Choi et al.,
2021) at 512 × 384 resolution

Method SSI M ↑ LP I PS ↓ F I Du ↓ K I Du ↓
w/o RePaint 0.894 0.071 8.63 0.79

1/4 Steps RePaint 0.896 0.070 8.62 0.78

1/2 Steps RePaint 0.897 0.069 8.62 0.78

3/4 Steps RePaint 0.895 0.071 8.67 0.82

Full Steps RePaint 0.896 0.074 8.99 1.09

The bold indicates the highest results in each ablation study

in Tab 6, the ELBMwe propose not only improves the recon-
struction capabilities of the Stable Diffusion autoencoder in
the reconstruction task but also elevates the overall perfor-
mance of the final virtual try-on pipeline, resulting in superior
evaluation metrics. At the same time, the second and fifth
rows in Table 6 represent LaDI-VTON (Morelli et al., 2023),
while the third and sixth rows represent our proposed ELBM.
Our ELBM exhibits better performance, which demonstrates
the effectiveness of deep fusion in Eq. 15.

Analysis on T-RePaint To evaluate the impact of varying
numbers of RePaint steps, we conduct quantitative and qual-
itative experiments on the VITON-HD dataset (Choi et al.,
2021). For qualitative evaluation, utilizing RePaint for half
of the denoising steps (T ′ = 1/2 T ) during the inference
achieves a balance between preserving the identity of the
garment and realizing a realistic try-on effect, thereby attain-
ing the best generative outcomes, as illustrated in Fig. 19.
Meanwhile, a larger T’ yields a more realistic try-on effect
but poorer texture ID preservation (see columns 2 and 3),
and vice versa. Especially with T’ set to 1, the generated
image’s garment depends heavily on the warped garment,
which ensures ID preservation but can lead to distortions
if the warped garment is distorted. Additionally, employing
RePaint in full steps severely undermines the realism of the
generated images. This is illustrated in Fig. 19 last column,
where there is a noticeable disconnection at the intersection
of skirts and tops, and the shoulders are barely discernible.
For the qualitative evaluation, results across various metrics
also indicate that setting T ′ = 1/2 T , i.e., using RePaint for
half of the steps during the inference, yields the best perfor-
mance, as shown in Table 7.

Table 8 Quantitative comparison between the differentmethods of gen-
erating segmentationmaps on theVITON-HDdataset (Choi et al., 2021)
at 512 × 384 resolution

Method MIoUcloth ↑ MIoUall ↑
VITON-HD (Choi et al., 2021) 0.8997 0.9598

Ours 0.9662 0.9762

MIoUcloth represents the result computed only within the clothing area,
andMIoUall represents the result computed for the entire body exclud-
ing the neck
The bold indicates the highest results in each ablation study

Comparison Between the Different Methods of Generating
SegmentationMaps Todemonstrate the effectiveness of our
designed training-free segmentationmap generationmethod,
we qualitatively and quantitatively compared our generated
results with the results produced by VITON-HD (Choi et al.,
2021) using a trainable segmentation generator network.
As for qualitative comparison, as the Training Set of the
VITON-HD (Choi et al., 2021) dataset provides the Ground
Truth (GT) for the segmentation map, we calculated the
MIoU (Long et al., 2015) for the generated results of dif-
ferent methods against the GT. The calculation of MIoU
includes MIoUcloth and MIoUall , where the former com-
putes only in the clothing area, while the latter computes
in the entire body area. Since the segmentation generation
network of VITON-HD (Choi et al., 2021) does not gener-
ate the neck area, the calculation of MIoUall excludes the
neck area. As shown in Table 8, our method outperforms
VITON-HD in both metrics, demonstrating the effectiveness
of our approach. For the quantitative comparison, we con-
duct experiments on both the Training Set and Testing set
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Fig. 20 Qualitative Comparison between the different methods of generating segmentation maps on the VITON-HD dataset (Choi et al., 2021) at
512×384 resolution. VITON-HD’s predicted results come from a segmentation generator network, while our results are generated by a training-free
method

Table 9 Quantitative
comparison between Full
Fine-tuning and Parameter
Efficient Fine-tuning (PEFT) on
the VITON-HD dataset (Choi
et al., 2021) at 512 × 384
resolution

Method LPIPS ↓ SSIM ↑ FIDu ↓ KIDu ↓ Params (Tunable) Time (1 epoch)

Full Fine-tuning 0.068 0.897 8.63 0.79 1285M 1.38h

PEFT (Ours) 0.069 0.897 8.62 0.78 510M 0.83h

The bold indicates the highest results in each ablation study

(unpaired). As shown in Fig. 20, the results generated by both
methods are very close to the Ground Truth on the Training
Set. However, on the Testing Set, our method shows signifi-
cantly better results. For example, in the first row, the result
generated by VITON-HD is missing a hand, and in the sec-
ond row, the generated cloth style is incorrect. Overall, our
segmentation map generation method is very user-friendly,
demonstrating good performance and requiring no network
training parameters.

Comparison Between Full Fine-Tuning and Parameter Effi-
cient Fine-Tuning (PEFT) Our method is built upon Paint-
by-Example (Yang et al., 2023) and its pre-trained weights,
thus inheriting the ability to manipulate specific areas while
keeping others unchanged. Consequently, we only need to
fine-tune the attention layers and the designed adapters that
receive the critical identity cues to adapt to the try-on task. As
shown in Table 9, full fine-tuning only offers limited perfor-
mance boosting on LPIPS and SSIM but leads to significant
computational costs. We can also infer that the decoupled
clothing identity, in conjunction with the injection mod-
ules we designed, has reduced the training difficulty and
requirements of preserving the given garment. Therefore,
considering the balance between performance and consump-
tion, PEFT emerges as the preferred option.

Fig. 21 Performance comparison of GP-VTON (Xie et al., 2023) and
our TryOn-Adapter in handling poor warped garments on the VITON-
HD dataset (Choi et al., 2021) at the resolutions of 512 × 384

Discussion ofMeeting PoorWarpedGarments To assess the
impact of poor warped garments on our method, we provide
the detailed qualitative analysis in Fig. 21. First, based on
our observations of the warped garments produced by GP-
VTON (Xie et al., 2023), we find that the warped garments fit
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Fig. 22 Qualitative evaluation of our TryOn-Adapter and StableVI-
TON (Kim et al., 2023) on in-the-wild data at 512 × 384 resolution

the target mask area almost accurately, and the texture of the
garments does not shownoticeable degradation. The problem
is that the garment may become excessively stretched (as in
column 3, row 1) or incomplete (as in column 3, rows 2 and
3) after passing through the warping network. To be precise,
the warping network merges the black clothes and pants of
the target person in the first case (as in row 1), resulting in
excessive stretching of the warped garment. In the second
case (as in row 2), the warping network struggles with the
invisible areas of the target garment, which is captured from
a non-frontal angle, leading to missing parts in the left sleeve
of the warped garment. Additionally, the warping network
tends to lose localized clothing parts, as demonstrated in the
third case (as in row 3). GP-VTON utilizing the samewarped
garments as ours directly maps these poor warping results
to the final generation (as shown in column 4). Fortunately,
our generative model effectively addresses these issues (as
shown in column 5). Concretely, to tackle excessive stretch-
ing of the garment, our mask m will confine the generation
range. For incomplete warped garments, such as those miss-
ing sleeves or straps, our designed style adapter will provide
compensation.

Qualitative Evaluation on In-the-Wild Data To demonstrate
the versatility of our TryOn-Adapter, we conduct experi-
ments using an in-the-wild dataset at 512 × 384 resolution
and compare our model’s performance with that of Stable-
VITON (Kim et al., 2023). We leverage network weights
trained on the VITON-HD (Choi et al., 2021) dataset to per-
form inference on these wild data. The results are presented
in Fig. 22. The wild data are web-crawled: the models in the
first2 and second3 rows are sourced from RED, while those
in the third4 and fourth5 rows are obtained from Taobao. The
target garments are collected from both Taobao and eBay.
The results clearly show that our TryOn-Adapter outper-
forms StableVITON (Kim et al., 2023) on the in-the-wild
dataset. Specifically, our approach more effectively main-
tains the color and style of the target garments (as in rows
1, 2, 4), preserves texture details (as in row 2) and logos (as
in rows 1, 3, 4) of clothing, and ensures a more natural fit
on the target person (as in row 2). These experiment results
highlight the robustness of our model.

5 Conclusion

Virtual try-on has gained widespread attention due to signif-
icantly enhancing the online shopping experience for users.
We revisit two critical aspects of diffusion-based virtual
try-on technology: identity controllability, and training effi-
ciency. We propose an effective and efficient framework,
termed TryOn-Adapter, to tackle these three issues. We first
decouple clothing identity into fine-grained factors: style,
texture, and structure. Then, each factor incorporates a cus-
tomized lightweight module and fine-tuning mechanism to
achieve precise and efficient identity control. Meanwhile,
we introduce a training-free technique, T-RePaint, to further
reinforce the clothing identity preservation without compro-
mising the overall image fidelity during the inference. In the
final image try-on synthesis stage, we design an enhanced
latent blending module for image reconstruction in latent
space, enabling the consistent visual quality of the generated
image. Extensive experiments on two widely used datasets
have shown that our method can achieve outstanding perfor-
mance with minor trainable parameters.

Limitations Although we satisfactorily resolve the issues of
efficiently preserving the identity of the given garment and
maintaining consistent visual quality for final try-on synthe-
sis. However, like most previous works, our method is still

2 https://www.xiaohongshu.com/explore/63256fd90000000011016565.
3 https://www.xiaohongshu.com/explore/6620e7bc000000000d031fef.
4 https://m.tb.cn/h.gnbGB3Cx9XZkJpU.
5 https://m.tb.cn/h.gmEvtXdLMlOqFOp.
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a certain distance away from achieving widespread practi-
cal application due to the limitation of the datasets. At the
same time, to avoid the extra data preprocessing, we will
focus more on reference-net-based approaches and aim to
propose innovative methods that balance computational cost
with performance, thereby advancing the virtual try-on field.
Furthermore, there is a lack of targeted quantitative evalu-
ation metrics for virtual try-on tasks. We plan to develop a
more granular evaluation from overall style, local texture,
and structure for virtual try-on assessment, but progress is
slow due to data scarcity.

Data Availability We claim to release the dataset and code upon accep-
tance. The datasets generated and analyzed during the current studywill
be available in our open-source repository.
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