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Abstract— Tracking a specific person in 3D scene is gain-
ing momentum due to its numerous applications in robotics.
Currently, most 3D trackers focus on driving scenarios with
neglected jitter and uncomplicated surroundings, which results
in their severe degeneration in complex environments, espe-
cially on jolting robot platforms (only 20-60% success rate).
To improve the accuracy, a Point-Video-based Transformer
Tracking model (PVTrack) is presented for robots. It is the
first multi-modal 3D human tracking work that incorporates
point clouds together with RGB videos to achieve information
complementarity. Moreover, PVTrack proposes the Siamese
Point-Video Transformer for feature aggregation to overcome
dynamic environments, which captures more target-aware in-
formation through the hierarchical attention mechanism adap-
tively. Considering the violent shaking on robots and rugged
terrains, a lateral Human-ware Proposal Network is designed
together with an Anti-shake Proposal Compensation module.
It alleviates the disturbance caused by complex scenes as well
as the particularity of the robot platform. Experiments show
that our method achieves state-of-the-art performance on both
KITTI/Waymo datasets and a quadruped robot for various
indoor and outdoor scenes.

I. INTRODUCTION

3D human tracking is to distinguish an arbitrary person
from consecutive frames, with not only the position but
also 3D size and heading angle of the target. Along the
process of robotics and automation, it has been an essential
building block to many advanced applications in robotic
fields, involving intelligent warehousing, human-machine
collaboration, surveillance, and so on [1, 2]. For example,
when accomplishing freight services, robot needs to follow
a specific worker along the way. Here a core step that links
to the accuracy of all subsequent modules is to frame out
the human as accurately as possible, which considerably
facilitates the robot in follow-up actions, as shown in Fig. 1.

Prior arts on 3D tracking [3–6] mainly follow the Siamese
paradigm, which calculates the similarity between a canon-
ical target template and searching area according to the
geometric matching and have achieved fruitful accuracy
on open-source datasets like KITTI [7] and Nuscenes [8].
Whilst, there are still three crucial bottlenecks that remain
notable. (1) Severer degeneration in complex environments.
(2) Low accuracy for the human category. (3) Incapacity to
violent shaking when migrating to robotic platform.
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Fig. 1. An example scenario (left) of target-person tracking tasks on a
quadruped robot. Even if the platform shakes violently, our system is capable
of integrating multi-modalities from points and video frames (middle) to
generate 3D bounding boxes of the specific person frame by frame (right).

The first challenge is mainly caused by disturbances in
complex scenarios like illumination, distortion, and occlu-
sion, which lead to huge accuracy fluctuations in different
tracking scenarios. We note that almost all state-of-the-art
3D trackers are point-cloud based but the single sensor will
inevitably limit the potential of tracking algorithms. Due to
the lack of vital appearance in pure 3D trackers, they always
neglect comprehensive enough indications so frequently miss
targets. To address the problem, we combine the geometric
and appearance features of point clouds and video frames
together to build a unified 3D tracker.

Secondly, low tracking accuracy in the human category is
still a long-standing problem. Recent studies have focused
on generic tracking tasks like cars and trunks while extreme
deterioration for humans. The size of the human target in
the point cloud space is relatively small and it is easy to
deform due to the non-rigid body, making even the latest
paper M2-Track gain only 61.5% success rate in KITTI
pedestrians. For higher accuracy, we focus on the human-
specific characteristic by designing a well-designed Human-
ware Proposal Network and inheriting the efficient Attention
mechanism from Transformer. Our modification boosts the
precision by around 10% significantly.

For the third challenge, the robustness of current 3D
trackers is unsatisfactory once the application scenario is
changed to a physical robotic platform, such as a quadruped
robot trotting and jumping. There are also a number of
techniques to track objects with mobile robots [9–14], while
most of them are designed for 2D tracking lacking depth
measurements. In this paper, we developed an Anti-shake
Proposal Compensation Module which capable of robotic
vibrations. It is worth noting that we chose the quadruped
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robot as the representative bumpy platform.
To inspire research on this topic, our paper proposes an

efficient 3D human tracking model based on the Siamese
Point-Video Transformer. We well-designed the multi-sensor
fusion on a robotic platform, which not only meets the practi-
cal requirements of tracking humans in various scenarios but
also significantly reduces the missing rate for dynamic mov-
ing robotics. Additionally, we newly constructed a 2D+3D
dataset on a quadruped robot, ‘PVT3D’, which contains 30
video sequences with dense 3D point clouds and more than
20 challenging scenarios indoors and outdoors.

Our contributions are three-fold:
• A multi-modal 3D human tracking framework is pro-

posed that jointly integrates point clouds with RGB
video through the feature alignment and fusion operator,
yielding a great tolerance to complex environments.

• A novel Siamese Point-Video Transformer is proposed
in a longer-contextual perspective, enabling a more
global separation between target and background to
further improve tracking accuracy.

• A goal-conditioned Anti-shake Proposal Compensation
Module is well-designed with a Human-ware Proposal
Network to overcome the violent shaking of robots and
the following target missing.

• We successfully migrated our method from two
open-source datasets KITTI/Waymo to the physical
quadruped robot platform while running in real-time.

II. RELATED WORKS

A. 3D Single Object Tracking

LiDAR-only. As a brand-new task emerged in recent
years, LiDAR-based 3D single object tracking (SOT) is
mainly deep-learning-based. The pioneering SC3D [15] first
proposed a shape completion strategy focuses on extending
the 2D to the 3D tracker, but it can’t achieve end-to-end
training. To improve it, Siamese-like paradigms [16–18] are
carried out unprecedentedly. The derived articles focus on ei-
ther improving the point-wise correlation matchers by feature
enhancement [19] or designing more robust prediction de-
coders [20, 21] with sophisticated structures. During the past
few years, the success of vision Transformer [22–24] and
point Transformer [25, 26] stimulated numerous attempts [4,
6, 27–29] to embed the Transformers into the 3D tracker
designing. However, due to the lack of color and texture of
the point set, the LiDAR-only tracking misses target when
facing disturbances like occlusion, light change, and so on.

Multi-Modality. Plenty of studies attempted to merge
visual contexts with other sensors in the 2D object detec-
tion and tracking fields [30–35]. However, the multisensor
application in 3D SOT is still at the primary stage. Wang
et al. [13] first fused RGB with ultrasonic data through the
extended Kalman filter. Other papers [36–40] tried RGB-D
methods to complement the cardinal lacking information. As
far as we know, the Point-Video-based design for 3D tracking
is few with only [41, 42]. What’s more, they are not human-
specific, so this paper comes just in time.

B. Human Tracking on robot

During the past few years, there are also several on-robot
methods for tracking people [2, 11–13, 43]. Zhang et al. [2]
first complete a human-following task for quadruped robots.
Lin et al. [44] followed a moving target tracking system on
quadrotors with Visual-Inertial Localization. However, most
of them rely on visual tracking and lack depth information,
which limits them to estimating three-dimensional direction
and spatial distance between humans and robots.

III. METHODOLOGY

We model the 3D human tracking problem as a bottom-up
learning problem for a specific person. As shown in Fig. 2,
the proposed Point-Video Transformer Tracking (abbreviated
as PVTrack) mainly consists of three parts: (1) Multi-Modal
feature extraction and fusion, (2) Siamese Point-Video Trans-
former, and (3) 3D Human-ware Proposal and Verification.
To handle the problem of incomplete target, PVTrack utilizes
the Siamese two-branch pipeline to embed the target template
(initialized in the first target bounding box and updated
with the previous frame’s prediction) to enhance the object
features in the search area. In this formulation, given a
dynamic 3D sequence of T frame point clouds P = {pi}Ti=1

and a 3D target bounding box (3DBBox) b1 as template
in the first frame, our goal is to localize the same target
bi = {xi,yi, zi,wi,hi, li,θi}Ti=1 in the search area for the
sequential T − 1 frames. The whole pipeline is end-to-end
trained with only a single stage.

A. Multi-Modal Feature Extraction and Fusion

Since LiDAR points and RGB videos have different view
representations for the same scene, our goal for this section
is to achieve multi-modality alignment and fusion while
realizing the full complementarity of two inputs. Assuming
that the initial input point cloud is P ∈ RN×3 (a point
position sequence with N points), and the RGB image
of a certain frame of video is V ∈ RH×W×3. After in-
putting point clouds and video frames into the network, most
Siamese trackers will directly use local descriptor networks
like PointNet++ [45] as their feature extractors. However, the
traditional backbone is time-consuming and computationally
huge. To improve, we replaced them with two lightweight
Transformer modules, which greatly reduces computational
complexity while acquiring discriminative features. Specifi-
cally, the modified Point-MAE [46] is used to extract point
features, and the MobileFormer [47] is used to extract video
frame ones. The two networks separately output F p =
{fp

i }Ki=1 ∈ RK×C1 and F v = {fv
(i,j)} ∈ RH′×W ′×C2 as

point feature and video frame feature, where K denotes the
number of point feature groups after point down-sampling
and H ′ × W ′ denotes the dimension of feature map. C1

and C2 denote the number of LiDAR channels and RGB
channels, respectively.

Point-Video Feature Alignment and Fusion. As men-
tioned above, the point feature and video frame feature differ
substantially in dimension, and the two modalities are not
aligned optimally for a unified fusion. One intuitive solution
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Fig. 2. The overall framework of the proposed PVTrack. First, modified PointMAE and MobileFormer are separately used as backbones to extract multi-
modal features, and the feature alignment and fusion operator is proposed to better integrate them. Then we propose a Siamese Point-Video Transformer
to embed the template branch into the search area by similarity-based matching. With the augmented score indices, the third part uses a human-aware
proposal network to quickly output the final tracking results. The K,Q,V is short for Key, Query and Value.

is to artificially add a new dimension by repeating the point
feature multiple times until it is consistent with video frame
features. However, this approach loses a significant amount
of information on the spatial correspondence between the
two modalities. In our approach, we propose the Point-Video
Feature Alignment and Fusion operation (PVAF).

First, a general farthest point sampling (FPS) is applied to
output K point groups in total with corresponding center
points {ci}Ki=1. Since the center point and group are not
uniformly dispersed in space, PVAF then interpolates the
point feature {fp

i }Ki=1 back to each point {p′i}Ni=1 in the
original point clouds utilizing inverse distance weight wj .
The process can be described as:

p′i =

K∑
j=1

wjf
p
j , wj =

1
∥pi−cj∥2+ϵ∑K

k=1

∑N
t=1

1
∥pt−ck∥2+ϵ

(1)

Next, PVAF translates the interpolated p′ ∈ RN×C1

into 2D coordinates p̂ ∈ NH‘×W ′×C3 based on LiDAR-
camera settings where C3 denotes the number of projected
point feature channels. All the feature patch p̂(i,j) in 2D
plane generate a projected feature map fp ∈ RH′×W ′×C3

that has the same dimension as the video-wise featurefv .
Finally, we utilize the multi-layer perception (MLP) χ(.) to
extract interaction information and concatenate two modality
features as the point-video-fused feature denoted F pv =
{fpv

(i,j)} ∈ RM×C , where M = H ′ ×W ′and C = C2 + C3.

fpv
(i,j) = χp(fp

(i,j))⊕ χv(fv
(i,j)) (2)

So far, the problem of modality misalignment has been
solved. With the dedicated combination, PVTrack can catch
more target-ware valuable tracking details in a joint manner.
For example, when two people cross each other, only through
a bunch of point sets is difficult to distinguish which one is

the target person since they are very close to each other in
the point cloud view. At this time, through the additional
RGB channel, the color of two persons’ clothing might be a
great auxiliary in locating the target, leading to more accurate
tracking results.

B. Siamese Point-Video Transformer

Another major breakthrough of PVTrack is the hierarchical
attention mechanism from Transformer, allowing encoders
to concentrate more on target-aware feature aggregation in a
global view. As shown in Fig. 3, PVTrack significantly allevi-
ates the inability of general convolutions when capturing key
data (e.g. shape information) through obtaining long-range
interactivity. Under the seq2seq framework, the hierarchical
encoder consists of two main modules: Self-Attention Trans-
former (SA-Trans) and Cross-Attention Transformer (CA-
Trans).

SA-Trans. This module is used to thoroughly fuse the
adjacent features of point clouds and videos that were
physically stitched in the previous section together. On each
encoder layer, SA-Trans uses linear projection layers to trans-
form the input feature vectors (“Query”, “Key”, “Value”)
and calculate the dot products. Subsequently, the attention
map is normalized with a Softmax operation and outputs the
augmented Z. The proposed process can be formulated as:

SA(Q,K,V) = ϕ(Q − softmax(Z) · (Wv)V) (3)

where ϕ represents the linear layer and ReLU operation ap-
plied to the output features, the attention matrix Z is obtained
by input vectors Q,K and linear projections Wk,Wq:

Z = Q̄ · K̄T
=

WqQ
∥WqQ∥2

· WkK
∥WkK∥2

(4)
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Fig. 3. Illustration of the SA-Trans and CA-Trans module. “LN” is short
for Layer Normalization and “FFN” is short for Feed Forward Network. In
SA block, we gain the template-branch attention maps {Ai

t}Li=1 from the
template branch featurefpv

t . The same goes for the search branch. In CA
block, we gain the augmented attention map {Âi

st}Li=1 that integrates two
branches.

To avoid the dominance of a few feature channels with
large magnitudes, we then utilize an L2-normalization to-
gether with a feed-forward network. Using shared weights,
the point-video-fused features of search branch fpv

s and of
template branchfpv

t are projected onto the same latent space,
yielding search-branch attention maps As and template-
branch ones At:

As = SA(fpv
s , fpv

s , fpv
s ), At = SA(fpv

t , fpv
t , fpv

t ) (5)

CA-Trans. The network architecture of CA-Trans follows
the same pattern as SA-Trans, except for differing input
heads and the addition of residual processing to the output.
By learning the similarity between the template and search
area, CA-Trans embeds the template as “Key” and “Value”
into the “Query” search area to generate the refined attention
map Âst to more accurately pinpoint the likely target in the
search region. The multi-layers is indeed an iterative process
that learns coarse-to-fine cross-correlation attention between
the two branches, which are indicated as follows:

Âst = CA(As, At, At) (6)

C. 3D Human Proposal and Vertification

In this part, we construct a 3D Human-ware Proposal
Network (HPN) with human-specific priors as decoders.
Note that the final encoder generates refined ÂL

st, the i
column representing the most similar template feature to
the i-th search feature. So it’s indeed a top score indices.
Using the index, we concatenate the template with the
corresponding search ones in ÂL

s , yielding an intermediate
representation of size M × (C + C). After feeding it into
HPN, the coarse proposals are generated through the P2B-
like network [28], including potential center generation and
clustering. Moreover, we add some essential human-specific
priors to further correct them. That is, HPN filters proposals
by the size requirements (width: 10-40cm, height: 1.0-2.0m,

TABLE I
THE ANTI-SHAKE PROPOSAL COMPENSATION MODULE ON ROBOT

Input: current frame It, response threshold Ω, 3DBBox of previous
10 frames X{x,y,z}, bb{w,h, l} with response score R{r}
1. Initialization: When the target is missing, make n = 0

2. Calculate target speed: S = max{5,
∑t−1

i=t−9 ∥Xi − Xi−1∥2}
3. while(max response rn <Ω×mean(ri)) do:

add Wn = n ∗ S + 2 ∗ bb(1)
add Hn = n ∗ S + 2 ∗ bb(2)
add Ln = n ∗ S + 2 ∗ bb(3)

extract points in IW
n×Ln×Hn

t ⊂ It around centerXi−1

find the max response rt in IW
n×Ln×Hn

t as new rn

turn to the next frame: n = n+ 1
end while

4: Output 3D proposals of the missing frames and resume tracking

length: 20-60cm), and the oversized ones will be immediately
discarded. This process significantly speeds up the module
and iteratively update the target sequence through multi-
layers. However, some targets are still missed as a result
of the robot platform’s violent shaking.

Anti-shake Proposal Compensation Module. To better
overcome the specificity of the quadruped robot platform, we
further introduce an Anti-shake Proposal Compensation as-
sisted with stabilization mechanism to fix the missing propos-
als. It follows two principles: (1) people have limited speed
so they are around spatial locations previously observed,
and (2) the possible proposal region generally expands at
a velocity proportional to the average velocity. Using the
robot’s integrated speed-measuring module, we can get the
target velocity of the previous frame along with its next move
trends. Once the tracking object disappears due to violent
platform shaking or rugged terrain, the prediction algorithm
will be triggered by adaptively expanding the candidate area
as Table. I shown. While keeping up with the approximate
position of the object until reappears, the algorithm also
reduces the computational duplication of analyzing irrelevant
spatial regions.

Finally, with M proposals generated above, we utilize
MLP head to select the highest-score one as the final tracking
result. The output prediction of t-th frame will be used as
the template for the subsequent consecutive frame.

D. Loss functions
The whole sequence with T frames is calculated by

ground-truths Y = {yt}Tt=1 and the prediction from PVTrack
Ŷ = {ŷt}Tt=1 using the matching variance ω.

Ltotal(Ŷ |ω, Y ) =

∑T
t=1 L(ŷt|ω, yt)

T
(7)

For the t-th frame, L consists of the binary cross-entropy
loss Lcls for confidence prediction to distinguish the fore-
ground and the Smooth-L1 loss Lreg for 3DBBox regression.

L(ŷt|ωi , yt) = λclsLcls + λreg

∑
Lreg(b̂,b) (8)

where b consists of (x,y, z,w,h, l,θ) for the target
person that are calculated by ∆x = x̂−x

d ,∆y = ŷ−y
d ,∆z =

ẑ−z
h ,∆θ = sin(θ̂ − θ), and d =

√
w2 + l2. λcls and λreg

are the corresponding weight coefficients.
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IV. EXPERIMENTS
A. Experimental Setup

In the experimental part, We validate the efficiency of
PVTrack on the quadruped robot platform JueYing X20,
illustrated in Fig.4. The robot is equipped with an onboard
computing device, NVIDIA Jetson Xavier NX (21 TOPS,
16GB), a bottom LiDAR (RoboSense, 16-beam), a mounted
LiDAR(Hesai PandarQT, 64-beam), and a forward-facing
camera (Intel RealSense D455), publishing point cloud mea-
surements at 10 Hz and video frames at 30 Hz, respectively.

Fig. 4. The JueYing X20 robot platform and its onboard sensors.

Datasets. We use two kinds of tracking datasets to evaluate
PVTrack. First is the open-source SOT datasets (KITTI
Tracking [7] and Waymo [48]), which are widely adopted
for general 3D tracking tasks. But only using them remains
limited because they just focus on driving scenarios rather
than the robotic perspective. Based on it, we provide a new
on-robot dataset called PVT-3D that contains 30 sequences
of videos and over 10000 frames of point cloud collected
from the campus. Compared with existing datasets, PVT-
3D represents the 3D human tracking more effectively:
1) This is the first 2D+3D human-target tracking dataset
designed for the quadruped robot with synchronized RGB
and LiDAR information. 2) It achieves a high diversity in
20+ challenging scenarios including indoor narrow corridors,
outdoor rough terrains, static and dynamic obstacles, etc.

Evaluation Protocol. We follow the One Pass Evaluation
(OPE) as the evaluation metric to calculate the center bias
and 3D IoU between the predicted and ground-truth BBox.
The success and precision scores are used as the final metric.

Implementation Details. For our network, we use the
Adam optimizer with batch size 256 and an initial learning
rate of 0.001 for training, which decayed by 10 times every
20 epochs. We set N t to 1024 and Ns to 2048 for the input
template and search regions by randomly duplicating and
discarding points. The layer number of the encoders L and
decoders M is set to 3, and The coefficients for the loss
terms are λcls = 0.5 and λreg = 0.5. All experiments are
conducted on the same system with an Intel Core™ i7-9700
CPU and a Nvidia GTX 1080Ti GPU.

B. 3D Tracking on the KITTI/Waymo Dataset

The KITTI and Waymo tracking dataset have 6088 frames
and 510533 frames separately for the pedestrian category. All
scenarios are split into training, validation, and test sets in a
9:1:1 ratio. Table.II gives the comparison results of PVTrack
with state-of-the-art (SOTA) methods. It is worth noting that

most 3D trackers, even the latest STNet and M2-Track,
only gain prediction scores of 40-60 for KITTI pedestrians
and lower for Waymo pedestrians. Compared with them,
our human-ware PVtrack achieves the highest score, in
terms of both Success (73.3%) and Precision (86.9%). The
experimental results demonstrate that the 3D human tracking
field is still at a very low level, and urgently needs to be
further improved. Our PVTrack innovates right on it while
significantly boosting the precision by around 10%.

TABLE II
COMPARISON AMONG OUR PVTRACK AND THE STATE-OF-THE-ART

METHODS ON THE KITTI AND WAYMO TRACKING DATASETS

Tracker KITTI pedestrian Waymo pedestrian run
(ms)Success Precision Success Precision

SC3D [15] 18.2 37.8 14.2 16.2 542
P2B [49] 28.7 49.6 15.6 29.6 23.6

PSRCNN [50] 48.2 75.2 27.8 60.6 36.7
PTTR [28] 50.9 81.6 / / 19.9
STNet [4] 49.9 77.2 38.1 73.2 28.6

M2-Track [5] 61.5 86.2 42.1 67.3 /
PVTrack(Ours) 73.3 86.9 61.3 74.1 20.8

Runtime Analysis.We test the model inference time with
hardware in IV-A. Under the same configurations, PVTrack
achieves the second-fastest runtime of 20.8 ms, including
8ms for processing dual inputs, 12.8 ms for network forward
propagation and 0.5 ms for post-processing.

C. 3D Tracking on the Quadruped Robot

This paper also verifies that PVTrack can be better mi-
grated to quadruped robot tasks. In terms of scene selection,
as shown in Figure 5 (a-d), we used more than ten random
scenes such as open areas, up and down steep slopes, tree-
filled groves, and indoor scenes. In each scene, a target
person walks normally at a constant speed and JueYing
robot follows closely with an adaptive gait. The results show
that regardless of the laser-beam numbers and the terrain
changes, it achieves a tracking success rate of more than
80% within only 256 training episodes. Besides, PVTrack
is fast enough for real-time robot interaction with 35 fps.
Extensive evaluations on robots are given in Table. III.

Generalization to Difficult Scenes. In addition to random
scenes, this paper also conducts physical verification on
many specially designed difficult scenes in PVT-3D (the
last row in Figure 5), like the multi-people occlusion when
passing the corner and the overexposure under street lights,
etc. Especially in night scenes as Fig.5 (f) shows, the human
object in videos flickers and blurs significantly which fails
most other trackers. Remarkably, our PVTrack effectively
suppresses the influence of illumination changes with the
help of multi-modalities, and the red 3D bounding box
always follows the human body consistently more than 75%
of the time, which clearly confirms the robustness of the
dynamic human tracking system to complex environmental
changes.

Generalization to different Human Objects. Sometimes
due to the laser beam’s sparsity and the robot’s height
limitation, the point clouds of the human body cannot be
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Fig. 5. The original videos and tracking performance on JueYing quadruped robot in various scenes (a-f). The blue box represents the PTTR prediction
results, which usually miss and frame the wrong area. While the red box, our PVTrack, robustly tracks the ground truth human highlighted in yellow.

TABLE III
TRACKING RESULTS OF OUR PVTRACK ON QUADRUPED ROBOTS

Point-input Video-input SPVT HPN PVTrack
Success Precision

- ✓ ✓ ✓ 50.8 59.1
✓ - ✓ ✓ 71.3 79.6
✓ ✓ - ✓ 63.2 72.5
✓ ✓ ✓ - 71.9 80.4
✓ ✓ ✓ ✓ 76.5 78.3

entirely scanned in. To verify the effectiveness of PVTrack
on this problem, we invited dozens of representative persons
as testing samples that differ vastly in height, body shape,
and attire as shown in Fig. 6 (a). It turns out that the proposed
network can transfer well to all persons and the targets even
don’t need to follow the classic human-body architecture
(two legs, two arms, one head). For example, if the target
person is wearing a skirt, meaning that her lower body is
barrel-shaped rather than legs, the transfer can also succeed.
Furthermore, when the scanned areas are merely two walking
legs, our approach is still valid and applicable.

Effectiveness of the Anti-shake Design. Considering the
violent shaking and bumping problem of the robot platform,
this article subsequently analyzed the received signals from
the robot controller, as shown in Fig. 6 (b). In the left picture
without the anti-shake proposal compensation module, the
curve has an obvious “sawtooth” due to the frequent missing
target prediction and the unstable input frequency. While
the right one has little fluctuation but is overall smoother
after adding the adjustment module. The relevant response
is stable (within the acceptable range of 10:1 to 4:1), which
further verifies the importance of our anti-shake design

that significantly strengthens the reliability of deploying our
PVTrack into dynamic robotic systems.

Fig. 6. Some ablation study on PVTrack (a) to different human objects
(b) to overcome the specificity of the strong shaking robot platform.

V. CONCLUSIONS
This paper proposes a novel Point-Video-based Trans-

former tracking framework (PVTrack) for the 3D human
tracking task on robots, which merges LiDAR and RGB
as dual-inputs and utilizes a multi-level Siamese Point-Vieo
Transformer to enrich the template and search region features
jointly. Furthermore, a Human-ware Proposal Network with
an Anti-shake Proposal Compensation module is designed
to select the target-ware 3D bounding box. Our method
achieves state-of-the-art results in both open-source datasets
and JueYing quadruped robot platform while running in real-
time. In the future, PVtarck is expected to bring robots to
more intelligent applications and more complex scenarios.
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