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Abstract—3D human tracking plays a crucial role in the automa-
tion intelligence system. Current approaches focus on achieving
higher performance on traditional driving datasets like KITTI,
which overlook the jitteriness of the platform and the complexity
of the environments. Once the scenarios are migrated to jolting
robot platforms, they all degenerate severely with only a 20-
60% success rate, which greatly restricts the high-level application
of autonomous systems. In this work, beyond traditional flat
scenes, we introduce Multi-modal Human Tracking Paradigm
(MHTrack), a unified multimodal transformer-based model that can
effectively track the target person frame-by-frame in point and video
sequences. Specifically, we design a speed-inertia module-assisted
stabilization mechanism along with an alternate training strategy
to better migrate the tracking algorithm to the robot platform. To
capture more target-aware information, we combine the geometric
and appearance features of point clouds and video frames together
based on a hierarchical Siamese Transformer Network. Addition-
ally, considering the prior characteristics of the human category,
we design a lateral cross-attention pyramid head for deeper feature
aggregation and final 3D BBox generation. Extensive experiments
confirm that MHTrack significantly outperforms the previous state-
of-the-arts on both open-source datasets and large-scale robotic
datasets. Further analysis verifies each component’s effectiveness
and shows the robotic-centric paradigm’s promising potential when
deployed into dynamic robotic systems.

Index Terms—human tracking, robotic platform, multi-modal,
Transformer, strong disturbance

I. INTRODUCTION

With the continuous development of automation intelli-
gence, specific human tracking as the basic building block
of the above tasks, has attracted extensive attention in the
field of vision involving autonomous driving, scene under-
standing, and robotic manipulation. Currently, most human
trackers [27, 29] focus on driving scenarios where people walk
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on flat paved roads and the recording platforms have neglected
jitter and uncomplicated surroundings, like well-known open-
source datasets KITTI [5], Waymo [24], and Nuscenes [2].
However, not all tracking scenarios are so perfect, which
results in trackers’ severe degeneration in complex environ-
ments, especially on jolting robot platforms with only a 20-
60% tracking success rate. For example, when accomplishing
freight services, the robot needs to follow a specific worker
along the way and it may violently sway, jump, adjust its
gait, or even up and down stairs, which inevitably causes the
collected data to be subjected to severe shaking. Moreover, if
the on-robot tracking algorithm cannot fit the bumpy platform
and continuously keep up with the target person end-to-end,
then the follow-up actions on the robot will result in errors
that link to the accuracy of all subsequent modules, especially
in challenging indoor or outdoor complex surroundings. Till
now, a unified tracking algorithm to handle this problem with
higher task levels has rarely appeared.

In addition, the current tracking algorithms of pure 2D
and pure 3D targets are relatively mature, but illumination,
distortion, occlusion, and the hard defects of a single sensor
are still long-standing problems in this field. Some pio-
neers [4, 11, 16, 31] attempted to merge visual contexts with
other sensors in the 2D object detection and tracking fields.
However, most of them rely too on visual tracking and lack
depth information, which limits them from estimating 3DD
direction and spatial distance between humans and robots.
The multi-sensor application in 2D+3D tracking is still at the
primary stage.

Based on this, this paper proposes a robotic-centric
paradigm for human tracking in various and complex scenar-
ios. To relieve the strong shaking issues on the robot platform
itself, a speed-inertia module-assisted stabilization mechanism
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is proposed along with an alternate training strategy. To handle
the influence of strong disturbance in complex environments, a
new 2D+3D tracking model is proposed by fusing RGB videos
and point cloud data that contain different information at the
same time, thus fully realizing the sufficient complementarity
of information. To further improve the tracking accuracy
for the human category, the cross-attention-based decoder is
proposed to enrich the potential representation of the template
frame with human-ware priors. Experiments show that our
method successfully migrates from the well-known open-
source dataset KITTI to the physical quadruped robot platform
while running in real time.

II. RELATED WORK

A. 2D tracker and the Siamese framework

The development of 2D single object tracking (abbrevi-
ated as SOT) benefits from the rapid development of deep
learning and CNN. Given the initial target position in a two-
dimensional video, the specific purpose of 2D SOT is to
distinguish an arbitrary object in multiple consecutive frames
of the video stream. As an iconic breakthrough, SiamFC [1] in
2016 firstly transitioned the mainstream of 2D tracking from
traditional correlation filtering-based methods to Siamese-
based structures. The end-to-end Siamese framework utilizes
a cross-feature module to calculate similarities between a
template branch and several search branches. Subsequently,
more and more studies [7, 13, 14, 28] have attempted to further
improve tracking performance based on Siamese two-branch
architecture. The various methods [3, 15, 33] include regarding
both appearance and motion, estimating boundary flows, using
contextual structures, attention mechanisms, semantic informa-
tion for discrimination, triplet loss, region proposal networks,
and so on. Nowadays, the 2D SOT is relatively mature with
an average tracking accuracy of over 90%. However, due
to modality limitations, 2D methods lack the key depth and
spatial information, making it difficult to apply to more large-
scale and high-level tracking tasks. In this work, we adopt the
Siamese framework mentioned above for simple and efficient
frame processing.

B. 3D tracker and the limitations of points

3D SOT, which is designed to determine both the location
and 3D size of objects, has a wide range of practical applica-
tions. Given the initial object location as sequence input, the
3D tracking model is to output a three-dimensional bounding
box (abbreviated as 3D BBox) frame-by-frame in the point
cloud format. PointNet [20] is crucial for 3D object tracking
and has laid a solid foundation for its development. In 2019,
SC3D [6] for the first time used pure point cloud input
for target tracking to construct a pure 3D tracker. This type
of method is characterized by directly using deep learning
networks to extract point clouds’ features, deriving subsequent
P2B [21], BAT [34], V2B [9]. Other mainstream studies tried
to project the point clouds into 2D planes (such as birds-
eye views, and front views). Represented by [36], they no
longer attempt to directly process point clouds but use familiar

2D CNN for feature extraction and aggregation. However, the
view conversion process itself will seriously lose data details,
causing difficulty in meeting tracking accuracy requirements.

Till now, there are still some unresolved issues in relying
solely on point clouds. The first is the sparsity of point
clouds. As the distance between objects increases, the point
clouds become increasingly sparse, which greatly hinders
the sufficient feature extraction process. Secondly, calculating
Siamese branches’ similarity is difficult because point clouds
are disordered. Previous work used image priors [12], shape
completion [32], or feature enhancement [30] to address the
issues mentioned above. Although they have achieved better
tracking performance, the different regions of the object are
easy to be ignored or mismatched during the tracking process.
Thirdly, since the human is non-rigid and its size in the point
cloud space is relatively small, relying solely on points may
lead to missed detections of human objects. As a result, an
efficient 3D tracking paradigm is desirable for the precise 3D
description of non-rigid humans.

C. Multi-modal tracker

Except for different data formats, the object tracking process
of multi-modal trackers is almost identical to the above two.
The core step worth exploring is how to better fuse and align
image data and point cloud data to obtain more favorable
information. In recent years, scholars have been exploring
new methods of 2D+3D fusion like [11, 16, 26, 31], but
they are mostly applied for detection tasks or 2D SOT, not
for 3D tracking. To address this issue, this paper explores a
novel alignment-guided attention module for 2D+3D fusion to
sufficiently realize the interaction between multi-modalities.

III. A ROBOTIC-CENTRIC HUMAN TRACKING PARADIGM

The tracking algorithm proposed in this paper models
human tracking as a bottom-up learning problem, as Fig. 1
shows. For the underlying architecture, the algorithm con-
structs a multi-modal tracking module for human targets,
analyzing environmental and target information; For the up-
per architecture, a dynamic promoted-tracking module for
quadruped robots was built, and a collaborative execution
strategy was used to determine the current type of strategy
to execute tracking. Based on these, the tracking paradigm
can obtain the best learning strategy network according to the
scenario of the algorithm application.

A. Multi-modal Tracking Model for Human Target

Fig. 2 (a) illustrates an overview of our Multi-modal Human
Tracking (MHTrack) model. Using RGB videos and point
clouds as dual inputs, MHTrack is proposed to output the
spatial position and orientation of a single target human
body in three-dimensional space while balancing accuracy
and speed. Similar to previous work [8, 18], we use pre-
trained models (CLIP [22] and PointMAE [17]) to extract deep
features for each video frame and point cloud sequence. After
CNN processing, features from untrimmed multimodality are
projected by linear fully connected (FC) layers into a common

Authorized licensed use limited to: Zhejiang University. Downloaded on October 14,2024 at 06:49:29 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Overall architecture. Based on different platforms, the proposed
paradigm will adaptively switch between the multi-modal human tracking
model MHTrack for traditional driving scenes and the promoted MHTrack
for robot-centric scenes, while following platform-based refinements.

C-dimensional embedding space. Specially, we define the
generated video and point features as F p = {fp

i }Ki=1 ∈ RK×C

and F v = {fv
(i,j)} ∈ RH′×W ′×C , respectively. K denotes the

number of point feature groups after point down-sampling and
H ′ ×W ′ denotes the dimension of the video feature map.

To learn more discriminative features, we propose an
Alignment-Guided Self-Attention Module by utilizing the
attention mechanism in Transformer to capture long-range
contextual information of video and point features. In Fig. 2
(b), the network is hierarchical, consisting of each-modality
feature embedding and multi-modality feature interpolation.
For point-modality feature embedding, inspired by STNet [10],
the encoder consists of L non-local feature embedding mod-
ules, which execute self-attention on feature maps at different
scales. Specifically, in the l-th layer, we first execute the edge
convolution using k-nearest neighbors to aggregate geometric
features in the coordinate system, indicated by Ep

l ∈ R
K

2l
×C .

Then, in order to discover long-range details about the point
cloud, we use the self-attention on the feature map Ep

l , where
Xp

l ∈ R
K

2l
×C denotes the position embedding of the initially

given BBox in the first frame. The video-modality feature
embedding follows the same process and generates feature
map Ev

l ∈ R
H′
2l

×W ′
2l

×C and Xv
l ∈ R

H′
2l

×W ′
2l

×C . Formally,
the attention mechanism is defined as:

F p
l = SelfAttention(Ep

l +Xp
l , E

p
l +Xp

l , E
p
l +Xp

l ) (1)

F v
l = SelfAttention(Ev

l +Xv
l , E

v
l +Xv

l , E
v
l +Xv

l ) (2)

In Eq. (1)(2), the query, key, and value are the three inputs
utilized from left to right, accordingly. Till now, however, the
obtained point-wise feature F p

L and video-wise feature F p
L still

differ substantially in dimension. To address the multi-modal
alignment issue, the adaptive feature interpolation is ultilized
progressively to transform the low-dimensional point-wise
feature to the high-dimensional video-wise features. Driven
by previous work [25], the interpolated points p ∈ RN×C

are projected into 2D coordinates p̂ ∈ NH′×W ′×C based on
LiDAR-camera settings and then generate a projected feature
map F p ∈ RH′×W ′×C that have the same dimension as
video-wise one. By applying the multi-layer perception χ
and concatenation operator ⊕ , we obtain the point-video-

fused feature denoted F pv = {fpv
(i,j)} ∈ RH′×W ′×C , which

is written as:

F pv =

H′∑
i=1

W ′∑
j=1

χp(F p
(i,j))⊕ χv(F v

(i,j)) (3)

As for multi-modal feature aggregation, we propose a 3D
Transformer network to yield N0 highest candidate BBoxes
around the target. To make the algorithm not overly dependent
on a single modality and to create a correlation map that
helps locate the target, a cross-attention aggregation operation
is utilized to calculate how similar the template and search
areas are. We simply designate the acquired feature maps of
the template and search region by Yt = F pv

t ∈ RNt×C and
Ys = F pv

s ∈ RNs×C . We create the cross-attention feature Ŷs

by embedding the template Yt (value) into the search area Ys

(query). Specifically, the cross-attention aggregation operation
is formulated as:

Ŷs = CrossAttention(Ys, Yt +Xt, Yt +Xt) (4)

We append the positional embedding of the template Xt ∈
RNt×C to the value Yt ∈ RNt×C as the 3D coordinates of
the template give the positional relationship of the target. In
this way, the potential target in the feature fusion map can
be associated with the template. For regressing, the 3D detec-
tor [19, 23] is used to generate the target center, target size,
yaw angle, and confidence score of N0 candidate BBoxes.

Furthermore, a human-ware head is designed for 3D BBox
filtering and outputting, as Fig. 2 (c) shows. Note that the
human category has some certain size priors(width: 10-40cm,
height: 1.0-2.0m, length: 20-60cm), so we filter the coarse can-
didates by immediately discarding the oversized ones, which
kind of refinement significantly reduces the time consumption
of our network. Finally, with N b BBoxes remaining, we utilize
the Multilayer Perceptions(MLP) head to select the highest
confidence score one as the final tracking result. The output
prediction of i-th frame will be used to update the next frame’s
template, until traversing to the last frame.

B. Promoted Human Tracking for Quadruped Robots

The goal of our promoted robotic-centric model is to max-
imize the probability of bumpy robots and successfully track
the target person when violently shaking. A core component of
the promotion is the speed-inertia module-assisted stabilization
mechanism, which is designed to recover the terminated
targets caused by intense movements. We summarize the
stabilization process into the five steps. To further improve
the performance of the dynamic tracking system on the robot,
we proposed a collaborative alternate training strategy to
determine between the MHTrack module for general scenarios
and the MHTrack-pro module for robot platforms. As Fig. ??
(b) shows, when training MHTrack-pro we fix the parameters
of the MHTrack network and update only the promoted one.
The same goes for the opposite and the collaborative training
will change the target module when the loss is below 60%.
Through alternating training, the tracking strategy not only
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Fig. 2. (a)The MHTrack framework overview. Using Np point cloud sequences and Nv video frames as input, MHTrack generates multimodal summaries of
the key frames. (b) For every video and point pair, an alignment-guided self-attention module is used to align and fuse them. (c) Human-ware Head directly
fed the output features of the Cross-Attention decoder for predicting target locations with no additional matcher. Best viewed in color.

adjusts the sample distribution of each module to better match
the data distribution according to the real scenarios but also
collects more negative samples for constraint during training.

IV. EXPERIEMENTS

In the experimental part, this paper designs two parts, the
accuracy evaluation experiment on the open source dataset and
the application experiment on the quadruped robot platform.

Experimental environment: All data processing and model
training validation were completed based on Fantasy 14.
Its hardware configuration is 2G Hz, Intel Core i5, 16GB
3733MHz LPDDR 4X. In the Linux system, the Python
version is 3.8, the PyTorch version is 1.4.0, and the CUDA
version is 10.0, occupying 4 1080Ti GPU.

Evaluation Protocol. Each scenario is tested through 100
rounds and the results are represented by One Pass Evaluation
(OPE) to measure the success rate and precision rate. The
definition of success is the Intersection over Union between
the 3D predictions and the grounding truth. The definition of
precision is the Area Under Curve (AUC) of the distance error
between the centers of two boxes within the range of 0 to
2 meters. Furthermore, we applied the Adam optimizer for
training. The learning rate was initially 0.002, but after 10
epochs, it decreased fivefold with a batch size of 32.

A. The accuracy evaluation experiment on KITTI

We used KITTI Tracking Datasets (using lidar and camera
data) as the experimental dataset, following the data splitting,
trajectory generation, and evaluation metrics set in refer-
ence [5] for fair comparison. The datasets are divided into
a test set, validation set, and training set in a ratio of 3:1:6,
in which the test set is used to confirm the model’s scalability
and generalization capabilities, while the validation set is used
to modify the model’s hyperparameters.

Table. I gives the comparison results of PVTrack with four
classic algorithms for 3D target tracking. The experimental
results demonstrate that our method achieves the highest score,
in terms of both the success rate (80.22%) and precision rate
(80.81%) of 3D human tracking, surpassing existing methods
in every category related to people. For the category of
Pedestrians, it can be seen that under an optimal threshold
evaluation standard, the proposed algorithm far exceeds tra-
ditional algorithms by more than 20%. For the category of
Cyclists, the leading gap is slightly lower because Cyclists are
relatively small in scale and KITTI lacks enough true labels for
this target. Besides, our promoted MHTrack in Section III-B
surpasses MHTrack in Section III-A by around 6% margin,
which proves the effectiveness of the proposed stabilization
mechanism to learn useful features even though the evaluation
becomes rigorous on datasets.

This paper also focuses on robotic platforms in complex
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TABLE I
COMPARISON OF MHTRACK AGAINST STATE-OF-THE-ARTS ON THE KITTI OPEN DATASETS AND ROBOTIC COLLECTION DATASETS.

Datasets KITTI open-source datasets Collection dataset from quadruped robot
Category Pedestrian Cyclist Mean∗ Flat Outdoor Flat Indoor Strong Shaking Strong Disturbance Mean∗

Frame Number 6088 308 6396 1037 1059 3027 739 5862

Success

SC3D [6] 41.29 52.82 47.10 53.82 44.26 27.48 31.11 39.17
P2B [21] 50.39 62.11 56.25 57.38 55.28 37.19 40.97 47.70
BAT [34] 51.83 66.28 59.10 63.83 61.38 33.67 38.25 49.28

PTTR [35] 62.73 70.25 66.49 65.28 67.33 36.33 50.11 54.76
MHTrack (Ours) 69.38 72.84 71.11 78.26 79.52 58.13 68.13 71.01

MHTrack-pro(Ours) 78.17 82.27 80.22 85.51 86.29 70.28 74.25 79.80
Improvement ↑2.79 ↑3.43 ↑3.11 ↑7.25 ↑6.77 ↑12.15 ↑6.12 ↑7.79

Precision

SC3D 20.27 21.35 20.81 57.27 49.25 28.74 32.20 41.87
P2B 57.82 63.11 60.47 61.74 59.04 33.28 37.19 47.81
BAT 58.12 64.99 61.57 62.69 66.70 35.72 38.44 50.88
BAT 61.27 68.39 64.83 67.77 72.32 44.13 47.23 57.86

MHTrack(Ours) 70.95 74.46 72.70 81.94 81.72 62.67 70.51 74.21
MHTrack-pro(Ours) 78.33 83.29 80.81 87.28 88.06 73.52 76.66 81.38

Improvement ↑2.38 ↑3.83 ↑3.10 ↑5.34 ↑6.34 ↑10.85 ↑6.15 ↑7.17
∗Mean denotes the average results of counter-categories. The finest and second-best performances are indicated by Bold and underline.

Fig. 3. Visualization results. Our MHTrack can track the ground truth human
highlighted in yellow well in different random scenarios by red 3D BBoxes.

environments, using a quadruped robot Jueying X21 to conduct
tracking experiments in more than twenty different indoor and
outdoor scenes, including narrow passages, open areas, uphill
and downhill slopes, and multi-tree bushes. The examples of
scene selection and the tracking effect are shown in Fig. 3. In
various scenarios, our proposed MHTrack tracking system can
accurately frame the target object, and keep up with the correct
object in the form of a 3D BBox within continuous frames,
with a duration of more than 20 seconds. In Table. I, we report
the extensive comparison results on collection datasets from
the jolting quadruped robot.

Our improvement in the anti-shaking performance of the
robot platform is significant, achieving 79.80% / 81.38% in
terms of success/precision. Regardless of the laser-beam num-
bers and the terrain changes, our MHTrack-pro surpasses BAT
by 20% on average and even more under Strong Shaking and

Strong disturbance scenarios, which confirms its robustness to
distractors and appearance changes while showing its tolerance
to high-speed moving scenarios.

Ablations. We respectively ablate the point-ware modality
input, video-ware modality input, Siamese Transformer Net-
work, and Human-ware Head from the proposed model to
understand the components better. Performance deteriorates
when any module is removed, even if each module’s effi-
cacy varies depending on the dataset. The only exception
is the video-ware modality input used in the Alignment-
Guided Self-Attention Module, which causes a slight drop in
KITTI regarding precision. We assume that this happens since
KITTI’s pedestrian lacks static objects, leading to a biased
classifier. Furthermore, the proposed method maintains com-
petitive performance even after module ablation, especially on
collection datasets from quadruped robots. This demonstrates
the promising possibilities of the robotic-centric paradigm
when deployed into dynamic robotic systems.

CONCLUSIONS

In this work, we revisit the 2D and 3D human tracking field
and propose a well-designed robotic-centric paradigm, which
has been demonstrated to be a great addition to traditional
driving scenarios. Particularly, we proposed a novel multi-
modal human tracking paradigm MHTrack, and its promoted
version. On the one hand, based on multi-modal fusion,
the proposed MHTrack can achieve high-precision tracking
by framing the target person in the form of a 3D cube
by the multi-level Siamese Transformer network and the
lateral Human-ware Head. On the other hand, the promoted
robotic-centric paradigm with a stabilization mechanism and
collaborative training strategy can effectively alleviate the
disturbance caused by complex scenes as well as overcome
the particularity of the robot platform itself. In the future, we
believe that more architecture designs can be guided by the
robotic-centric paradigm as a fundamental premise, and it will
bring intelligence systems to more high-level applications and
more complex scenarios.
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