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Abstract— The goal of this paper is to strike a feasible
tracking paradigm that can make 3D human trackers appli-
cable on robot platforms and enable more high-level tasks.
Till now, two fundamental problems haven’t been adequately
addressed. One is the computational cost lightweight enough
for robotic deployment, and the other is the easily-influenced
accuracy varied greatly in complex real environments. In this
paper, a robotic-centric tracking paradigm called MATNet is
proposed that directly matches the LiDAR point clouds and
RGB videos through end-to-end learning. To improve the low
accuracy of human tracking against disturbance, a coarse-
to-fine Transformer along with target-ware augmentation is
proposed by fusing RGB videos and point clouds through a
pyramid encoding and decoding strategy. To better meet the
real-time requirement of actual robot deployment, we introduce
the parameter-efficient adaptation tuning that greatly shortens
the model’s training time. Furthermore, we also propose a five-
step Anti-shake Refinement strategy and have added human
prior values to overcome the strong shaking on the robot plat-
form. Extensive experiments confirm that MATNet significantly
outperforms the previous state-of-the-art on both open-source
datasets and large-scale robotic datasets.

I. INTRODUCTION

With the explosive growth of perception solutions, single
object tracking (abbreviated as SOT), has gradually entered
the application scope of intelligent robots and systems.
As the basic building block of many advanced tasks, its
addition greatly expands the application scenarios and task
types, enabling them to have clearer ”eyes”. For example,
it can be widely used in various high-level tasks such as
following in unmanned driving, robot collision prediction,
and human-machine collaboration, which greatly helps to
promote the sustainable development of robot technology. At
present, researches on 2D [1]–[4] and 3D SOT [5]–[13] have
entered a period of steady development and have achieved
fruitful accuracy on well-known open-source datasets [14]–
[16]. Whilst, there are still some crucial bottlenecks when
migrating them to the physical quadruped robot platform.

Since not all tracking scenes of robots are as perfect as
the open-source datasets mentioned above, complex environ-
mental disturbance remains a long-standing problem. In the
actual robot application tasks, the existing 3D trackers [17]–
[19] suffered greatly from illumination, occlusion, rainy
days, and other disturbances, leading to a very big fluctuation
in robust tracking. To solve this, we utilize multi-modalities
features from RGB videos and point cloud to effectively
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alleviate the disturbance caused by complex scenes, instead
of only using 3D LiDAR sensor. To mitigate the risk of over-
fitting on one modality, the correspondence between different
modalities is deeply exploited for accurate modeling andit
achieves a tracking success rate of more than 82%.

Secondly, how to enable trackers to meet the real-time re-
quirements of actual robot deployment becomes an unsolved
but key issue. Nowadays, the trend of replacing CNN with
Transformer [13], [20]–[22] induces the model parameters
to become larger and larger, yielding massive computation
costs. Inspired by [23], we hypothesize that the weight
change during model training also has a low ”intrinsic rank”,
leading to our adaptation tuning approach. By optimizing
rank decomposition matrices of dense layers of a neural
network, we train some dense layers indirectly while keeping
the pre-trained weights frozen, which not only uses relatively
little data for training but also supports online learning when
applied to complex environments.

The third challenge is primarily caused by the bumpy
robot platform itself. Once the current human trackers are
applied to a fast-moving robot, their precision rate will
significantly decrease by an average of 10-20%, and most of
the frames will lose objects. To relieve the difficult scenarios
like violent swaying and jumping of the quadruped robot
platform itself, a well-designed robotic-centric anti-shake
refinement strategy is proposed and the lost target bounding
boxes are supplemented under the guidance of the given
robot’s motion trend. Therefore, the feedback in the learning
process of the algorithm is more anastomotic for the existing
algorithm, thus better overcoming platform specificities.

To summarize, the main contributions of this paper are as
follows:

• A novel multi-modal tracking model is proposed for 3D
human tracking that complements positional and appear-
ance information from 3D point clouds and 2D videos
through end-to-end learning, effectively alleviating the
disturbance caused by complex environments.

• We introduce a parameter-efficient Adaptation tuning to
the task, which reduces considerable computational cost
caused by the Siamese Transformer and significantly
improves real-time performance.

• We well designed the Human-ware Correlation module
and robotic-centric Anti-shake Refinement to promote
tracking accuracy for robotic applications.

• Extensive experiments on both KITTI and robotic plat-
forms show our MATNet achieves state-of-the-art per-
formance and impressive tracking in various scenes.
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Fig. 1. Visualization results of proposed MATNet(red box) and state-of-the-art PTTR (blue box)in various scenes. The goal of 3D human tracking is to
track the right person highlighted in yellow so that the quadruped robot can keep up with the target person.

II. RELATED WORK

A. 3D SOT Tracking

The LiDAR-based 3D SOT is a new task that emerged
in recent years. Since the pioneering tracker SC3D [11],
the Siamese-like Matching paradigm [24]–[28] become the
prevalent backbone, deriving subsequent [10], [29]–[31] that
use the CNN-based network with two branches for deeper
feature extraction and aggregation. In recent years, the
success of Transformer in 3D vision [32]–[34] stimulates
numerous attempts to embed them to reshape tracker design.
More and more researches [12], [20], [35], [36] weighted the
cosine similarity based on the attention after calculating the
region features to improve the tracking performance.

Despite the successful development of LiDAR-based SOT,
challenges still exist and pose threats to successful tracking.
The LiDAR inputs have a deficiency of density variance,
points sparsity, insufficient appearance information, and im-
plicit features in data locality. Therefore, the LiDAR-based
methods require relatively complex data pre-processing and
are sensitive to the sampling quality of raw data. To improve
deficiency, some pioneers tried to combine the LiDAR with
the RGB format due to the promising complementation of
multimodal data, but the relevant work is limited and urgently
needs to be further improved. Our previous work [37], [38]
systematically explored the approach through the Siamese
Point-Video Transformer. Building on the foundation, our
new work restructured the feature extraction and fusion
architecture greatly and focused more on lightweight the

model to be better deployed on the robot platform.

B. Parameter-efficient Adaptation Techniques

There are still some unresolved challenges in training
the multi-modal network to fewer model parameters and
successfully converge. Using multi-modality as input will
inevitably increase the computational cost, as each modality
requires its own feature extraction network, leading to longer
training periods. To address this issue, parameter-efficient
adaptation derived from [23], [39] is a particularly useful
approach. [40] inserts adapters into pre-trained multi-modal
models for less training time. [41], [42] freezes the pre-
trained model and only trains a few additional parameters.
However, none of the existing research has been applied
practically. To the best of our knowledge, this paper is the
first to implement adaptation to robotic tracking tasks. It
is particularly beneficial since there are few robotic-centric
datasets available for sufficient training and adapter-based
fine-tuning from large-scale vehicle-mounted dasasets can
remedy the lack while significantly reducing training time.

III. METHODOLOGY

Considering the appearance video provides rich texture
and the LIDAR sensor is robust to light variations, making
them a suitable complement to each other, we propose
a lightweight human-oriented tracking framework MATNet
for generating relatively dense correspondences between the
RGB videos V ∈RH×W×3 and LIDAR points P∈RN×3((point
cloud sequence with N points)) as dual inputs.
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The overall architecture of the proposed MATNet is shown
in Fig.2, which mainly consists of three parts: (1) Multi-
modal Feature Extraction Module to model the tracked in-
stance with multi-modal adaptation, (2) Coarse-Level Trans-
former for 2D-3D matching, and (3) Fine-level Matching
Module for goal-conditioned feature aggregation and final
3D bounding box generation.

A. Multi-modal Feature Extraction

The conventional Siamese tracking pipeline suffers from
great computational complexity with the separate template
branch Z and search branch X along with two sets of local
descriptors (such as PointNet [43] and PointNet++ [44])
to extract the feature twice. However, once the application
scenario migrates to a multi-modal input scenario, the num-
ber of branches and the number of corresponding feature
extraction networks doubles with each new modality added,
which requires a very large amount of calculation. Therefore,
in this part, we pioneered the process of joining the template
branch and the search branch together to form a single-stream
network, thus greatly reducing the network complexity.

In this formulation, the Feature Pyramid Network (FPN)
is used to extract the video feature while the KPConv-FPN
is used for the point clouds to extract multi-level features.
For each frame of video V , template frames zV and search
frames xV are projected into patch embeddings, namely a
coarse feature FV

c = [ẑV
c , x̂

V
c ] ∈ R(Nz+Nx)×D with 1/16 spatial

resolution of the input image and a fine feature FV
f =

[ẑV
f , x̂

V
f ] ∈ R(Nz+Nx)×D with 1/4 ones. For point cloud feature

ZN and XN input, we perform a multi-layer down-sampling
operator to obtain five point groups Pk ∈RNk×3 with different
resolutions k = 1,2,3,4,5. The point cloud features can be
extracted by five encoder layers and one decoder layer. In
Fig 2, FP

c = [ẑP
c , x̂

P
c ] denotes the coarse matching feature and

FP
f = [ẑP

f , x̂
P
f ] represents the fine-matching feature. Both of

them are encoded into an intermediate representation to help
the model better distinguish the target from its surroundings.

To further lightweight our backbone and better migrate
to the robotic platform, we utilize Adapter-based tuning to
fine-tune the pre-trained Transformer tracker in a symmetric
manner. As shown in Fig.2(c), the adapter is a bottleneck
architecture, which consists of two fully connected (FC)
layers, a GELU activation layer, and a residual connection.
The first FC layer (FC Down) projects the input to a lower
dimension, and the second FC layer (FC Up) projects it
back to the original dimension. We then insert adapters into
the FPN block after each layer with MLP in parallel. The
computation in the i-th fusion stage can be formulated as:

H̄(l)
= H(l−1)+Adapter(CNN(H(l−1))) (1)

H(l) = H̄(l)
+MLP(LN(H̄(l)

))+ r ·Adapter(LN(H̄(l)
)) (2)

where H(l−1) and H(l) are the output feature [FV
i ,FP

i ]i=c, f
of the (l-1)-th and l-th block of FPN, and r is a scaling factor
that regulates the influence of the adapter’s output weight.
In this way, we can efficiently reuse part of the pre-trained
trackers that have achieved excellent success on open datasets

like KITTI and only train lightweight adapters while keeping
the pre-trained weights frozen. When the actual platform
is turned to the bumpy robots, this computation leads to a
noteworthy reduction in the required size of the input train-
ing datasets, thereby substantially enhancing the matching
efficiency while simultaneously preserving accuracy.

B. Coarse-level Transformer

This module is designed to accurately perform one-to-one
assignments through a seq2seq Transformer-based frame-
work and determine the pixel coordinates of the candidate
bounding boxes. As Fig.3. shown, after obtaining the po-
sition embedding [P4,P5] with the coarse feature[FV

c ,FP
c ],

we processed through multiple layers of transformer models,
capturing contextual dependency relationships among tokens.
Similar to PVTrack, it is a hierarchical feature learning net-
work, consisting of each-modality self-attention and multi-
modality cross attention. The attention value is obtained by
calculating the similarity between the query Q and the key
K and then weighting and summing the values V according
to the product of this set of weights [Wq,Wk,Wv] and the
corresponding value, which are indicated as follows:

Ac = Attention(Q,K,V) = φ(Q− softmax(Z) · (Wv)V) (3)

Z = Q̄ · K̄T
=

WqQ
∥WqQ∥2

· WkK
∥WkK∥2

(4)

Matching between 2D videos and 3D point clouds.
The substantial differences in data types between 2D and
3D make it a heterogeneous data-matching problem. In-
spired by [45], [46], we explicitly encode the geometry
and estimate the relative geometric relationship between
2D and 3D using global and explicit cues. This work is
like information retrieval. Specifically, after obtaining the
attention-augmented features [AV

c ,A
P
c ], we first normalize

the feature output and calculate the transition matrix by
S ∈ R(1/k)2HW×N =< normalize(AV

c ),normalize(AP
c )>. Since

not all 3D points can be found on the 2D image, we
extend the matrix S to Ŝ by adding a new row as a bin
filled with a variable. Then, as depicted in Fig.2(b), we
calculate the coarse-level confidence matrix Mc by Softmax
with temperature t and select the coarse candidate regions
(ixc, i

y
c, izc) that beyond the preset threshold thc:

Mc = {(ixc, iyc, izc)|Ŝ = max(So f tmax(Ŝ(·, i/t))), Ŝ > thc} (5)

C. Fine-Level Matching Module

To gain more precise positioning, we implement part-
aware and size-aware processing to improve the precision of
the matching results, which can be depicted by point-to-box
relation. For the 2D image, we crop the window of size w×w
around the highest Mc and concat candidates region with FV

f
to update track queries. For the 3D point cloud, we execute
the k-nearest neighbors (k-NN) for geometric aggregation
and sample a local point cloud Pbbc from P3 based on the
Euclidean distance. Furthermore, a Human-ware Correlation
Head proposed in our previous work PVTrack is used for
filtering the coarse candidates by immediately discarding
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Fig. 2. (a) The overview of MATNet framework. Given Nv video frames and N p point sequences as input, MATNet models the 3D SOT as a bottom-up
learning problem with multimodal summaries. (b) Coarse-level Confidence Matrix is applied to align and fuse each video and point pair by similarity-based
matching. (c) The structure of the Adapter. (d) Human-ware correlation decodes the augmented score indices to output the 3D tracking results.

Fig. 3. The Coarse-level Transformer module and its internal principles. Best viewed in color.

the oversized ones, as illustrated in Fig.2(d). In this way,
the learned features are geometrically discriminative and
can effectively resolve the problem of matching ambiguity,
thereby reducing the number of outlier matches. We name
the filtered box as fine-level 3D BBox.

Robotic-centric Anti-Shake Refinement. Another break-
through of MATNet is the proposed five-step refinement
strategy that is robust to violent platform shaking or rugged
terrain. First, our dynamic model computes the goal velocity
and its next move trends over the last 10 frames using
the robot’s inbuilt speed-measuring module. The process
can be written as S = max{5,∑t−1

i=t−9 ∥Xi −Xi−1∥2}, where
Xi is the i-th 3D location of the target. Secondly, once the
tracking human disappears due to the movement of robots,
the response score ri of foreground BBox will fall below
threshold Ω, and the anti-shake algorithm will be triggered.

On the one hand, the candidate area is adaptively expanded
according to its recorded move trends, namely:W n = n∗S+
2∗bb(1),Hn = n∗S+2∗bb(2),Ln = n∗S+2∗bb(3), where
bb is the three-dimensional (width, height, and length) size of
the individual. Thirdly, we extract points in IW n×Ln×Hn

t ⊂ It
around the centerXi−1 and use new rn to represent the
maximum response rt . Subsequently, note that the tracker re-
sponse of a recovered object must be similar, our refinement
will automatically turn to the next frame if max response rn

still falls below threshold Ω. Otherwise, it will interrupt the
loop so that our system can produce 3D BBoxes of the absent
frames and start tracking again. Finally, with M proposals
generated above, we utilize a 3-layer MLP to select the
highest-score one as the final prediction. The final tracking
output will replace the template input in the next iteration.
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IV. EXPERIMENT

In this section, we first compare our proposed MATNet
with other state-of-the-art methods on open-source tracking
datasets KITTI. We then validate the efficiency of MATNet
on the robot platform Unitree Aliengo, as illustrated in
Fig.4. The robot is equipped with an onboard computing
device, NVIDIA Jetson Xavier NX (21 TOPS, 16GB), one
compact and lightweight LiDAR (Livox Mid-360, 40-line),
and a forward-facing camera (RMONCAM G200, 1080P),
publishing point cloud measurements at 10Hz and video
frames at 30Hz, respectively.

Fig. 4. The Unitree Aliengo robot platform and its onboard sensors.

Implementation Details. All data processing and model
training validation were completed based on an NVIDIA
3090Ti GPU with a global batch size of 64. During the
training phase, we utilize the Adam optimizer with the initial
learning rate set to 1× 10−3 and reduce it by 5 every 30
epochs.

Evaluation protocol.The loss function for T frames in
total can be defined as:

L =
1
T
(λ cls

T

∑
i=1

Lcls
i +λ

reg
∑Lreg

i (bb)) (6)

where Lcls is a standard cross-entropy loss to distinguish
the foreground human-ware BBoxes from the background.
Lreg is defined as the Huber loss between the prediction and
ground-truths. λ cls = 0.4 and λ reg = 0.6 are the correspond-
ing weight coefficients. Besides, we evaluate the models
using the One Pass Evaluation (OPE) and report Success
and Precision as the evaluation metrics of each model.
Specifically, Success defines the overlap as the intersection
over union the Area (IoU) of a bounding box with its ground
truth while Precision measures the Area Under Curve (AUC)
with the error threshold varying from 0 to 2 meters.

A. Comparison with State-of-the-arts on KITTI

KITTI MOT, as one of the most prevalent tracking
datasets, provides 29GB high-quality laser point clouds,
12GB video sequences, and 5MB labels for target tracking.
Due to the lack of an official partition of train/val/test, we
followed the approach of [20] by using sequences 01, 06,
08, 10, 12-19 from KITTI MOT as the validation set and
the remaining sequences as the training set. To equivalently
test human tracking performance, we specifically focus on

two categories: cyclists and pedestrians. Table. I compares
the proposed MATNet with four representative 3D human
tracking methods including [10], [12], [22], [31]. It can be
seen that our MATNet performance exceeds with an average
improvement of 1.93%/ 9.41% (precision/success) in the
pedestrian category and 3.33%/15.0% in the cyclist category.
Our human-ware MATNet achieves the highest score, in
terms of both Success (89.13%) and Precision (82.11%). In
addition, MATNet takes nearly three times less than the latest
Transformer-based tracker PTTR, enabling real-time tracking
(26.1 FPS) while achieving SOTA accuracy.

Robustness performance. We also conducted multiple
comparative and ablation experiments to verify the feasibility
of the algorithm against various complex disturbances with
an average success score of almost 73%. As shown in Fig.5,
MATNet performs exceptionally well under attributes such
as full occlusion, rotation, and multiplayer alternation.

Fig. 5. Success scores of different attributes on the KITTI test set.

B. Application experiment on the quadruped robot

In this part, we validate our method’s efficiency in 30+
challenging on-robot scenarios, including narrow corridors,
rough terrain, forests, dark tunnels, static and dynamic
obstacles, etc. The physically collected datasets achieve a
high diversity of over 15000 frames of point clouds and 38
sequences of RGB videos on the foundation of the PVT-3D
dataset [37]. To better test real scenarios, the target person
engages in different modes of movement (such as walking,
staying, and running) and the robot used for tracking adopts
various gaits initially. As Fig.6. shown, successful tracking
needs to follow the same person for at least 45 seconds.

As shown in Table. I, we compare MATNet with top-
performance approaches on the robot platform. As for easy
scenarios illustrated in Fig.1(e), the prediction form MATNet
can more accurately predict the person’s orientation and
position, mostly by large margins of 5%. Furthermore, we
conduct various specially designed difficult scenes in Fig.1,
such as a person brushing against another person (a), rainy
day (b), entering a dark tunnel (c), going uphill and downhill
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TABLE I
COMPARISON OF MATNET AGAINST STATE-OF-THE-ARTS ON THE KITTI OPEN DATASETS AND ROBOTIC COLLECTION DATASETS.

Datasets KITTI open-source datasets Collected human-tracking datasets from quadruped robot
Category Pedestrian Cyclist Mean∗ Flat Outdoor Flat Indoor Strong Shaking Complex Environment Mean∗

Frame Number 6088 308 / 1528 1382 3567 1211 /

Success

P2B 28.72 35.11 31.92 27.54 25.83 9.36 11.79 18.63
F-Siamese 49.85 72.22 61.03 48.72 45.99 29.63 31.45 38.94

PTTR 50.93 67.94 59.43 48.28 47.61 32.71 36.68 41.32
M2-Track 67.53 70.30 68.61 67.49 66.47 40.26 42.89 54.27

MATNet(Ours) 76.94 87.29 82.11 75.55 74.98 73.28 74.77 74.65
Improvement ↑9.41 ↑15.0 ↑13.5 ↑8.06 ↑8.51 ↑33.0 ↑31.8 ↑20.38

Precision

P2B 49.61 52.17 50.89 48.53 47.44 28.89 33.84 39.68
F-Siamese 70.36 75.18 72.77 70.84 68.02 47.28 51.63 59.44

PTTR 81.66 82.19 81.92 79.26 78.07 50.02 55.20 65.64
M2-Track 86.27 86.73 86.50 84.29 83.26 67.41 70.36 76.33

MATNet(Ours) 88.20 90.06 89.13 87.30 87.06 76.52 78.90 82.44
Improvement ↑1.93 ↑3.33 ↑2.63 ↑3.01 ↑3.80 ↑9.11 ↑7.54 ↑6.11

∗Mean denotes the average results of counter-categories. Bold and underline denote the best and the second-best performance.

Fig. 6. Given a target bounding box in the first frame, MATNet tracker on
quadruped robot recognizes and locates the person in all subsequent frames.

(d), and lighting flickers and blurs s(f). Remarkably, in
this sort of scenario, the majority of existing algorithms
would greatly degenerate below 50% in precision, yielding
intermittent or false tracking. Nevertheless, MATNet can re-
tain approximately 82.44% success score while guaranteeing
real-time mobility. No matter is rainy or sunny, indoors or
outdoors, summer or winter, day or night, the experimental
results show that our improvement for pedestrians is signifi-
cant (6.1%/20.3% in terms of success/precision). This greatly
verifies the great tolerance to complex environments.

Comparison of computational cost. Under the same
configurations, the traditional training time (TT) for MATNet
is 15 hours with 100+ epochs, and the TT after acceleration
is 4 hours with only 45 epochs, which greatly facilitates
successful convergence during training. Besides, the pa-
rameter required is smaller. The model parameter before
the lightweight operation is M-Param, and after adding
the Adapter, the required-to-tuned parameter (A-Param) is
reduced by 2 to 3 times. Instead of training from scratch,
the trackers can be fine-tuned upon the models that are pre-
trained on large-scale LiDAR-Video datasets, which makes
our tracking algorithm more useful in practical applications.

V. CONCLUSIONS

This paper proposes a novel human-oriented 3D SOT
paradigm that can be applied to mobile robots. On the one
hand, it can achieve high-precision tracking and alleviate the

TABLE II
ABLATION STUDIES ON THE EFFECT OF THE COMPONENTS ON ROBOT.

MMF CLT ASR MATNet
Suc/Pre(%) M-Param A-Param TT

- ✓ ✓ 77.3/ 69.5 6.4M 3.1M ∼2h
✓ - ✓ 73.2/ 65.9 6.6M 3.3M ∼4h
✓ ✓ - 62.8/ 55.1 6.5M 3.9M ∼4h
✓ ✓ ✓ 82.4/ 74.7 6.6M 3.9M ∼4h

disturbance in complex environments through multi-modal
fusion and well-designed coarse-level Transformer. On the
other hand, it can effectively overcome the particularity
of the robot platform with the goal-conditioned anti-shake
refinement strategy and correctly frame the target in 3D
BBox through human-ware correlation. Furthermore, the
overall model is simplified a lot by our parameter-efficient
adaptation, greatly lightweighting the model’s training pro-
cess and tuned parameters. Extensive analysis verifies each
component’s effectiveness and the promising robustness to
strong-shaking platforms and challenging scenes. In the
future, we believe that the robotic-centric paradigm can serve
as a primary principle to guide more architectural designs and
bring intelligence systems to more high-level applications
and more complex scenarios.
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