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Delving Deeper Into Mask Utilization in
Video Object Segmentation
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and Zaisheng Pan

Abstract— This paper focuses on the mask utilization of video
object segmentation (VOS). The mask here mains the reference
masks in the memory bank, i.e., several chosen high-quality
predicted masks, which are usually used with the reference
frames together. The reference masks depict the edge and contour
features of the target object and indicate the boundary of the
target against the background, while the reference frames contain
the raw RGB information of the whole image. It is obvious that
the reference masks could play a significant role in the VOS,
but this is not well explored yet. To tackle this, we propose
to investigate the mask advantages of both the encoder and
the matcher. For the encoder, we provide a unified codebase to
integrate and compare eight different mask-fused encoders. Half
of them are inherited or summarized from existing methods,
and the other half are devised by ourselves. We find the best
configuration from our design and give valuable observations
from the comparison. Then, we propose a new mask-enhanced
matcher to reduce the background distraction and enhance the
locality of the matching process. Combining the mask-fused
encoder, mask-enhanced matcher and a standard decoder, we for-
mulate a new architecture named MaskVOS, which sufficiently
exploits the mask benefits for VOS. Qualitative and quantitative
results demonstrate the effectiveness of our method. We hope our
exploration could raise the attention of mask utilization in VOS.

Index Terms— Video object segmentation, reference mask uti-
lization, multi-scale mask fusion, mask-enhanced matcher.

I. INTRODUCTION

N RECENT years, Video Object Segmentation (VOS)

has received great attention due to its wide applications
like video manipulation and editing. This paper focuses on
the semi-supervised video object segmentation task, which
segments target objects over video sequences with only an
initial mask given. This technique has dramatically simpli-
fied video manipulation and editing applications by enabling
users to merely segment the target objects on the first frame
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then the targets in the following frames will be segmented
automatically, as opposed to process the whole video manually
and painstakingly.

There are two kinds of reference information in VOS, i.e.,
reference frames and corresponding reference masks. The for-
mer is some raw RGB images of the previous video sequence,
which have been processed and segmented. It contains the raw
and whole information of the object as well as the background.
The latter is the corresponding predicted masks of the frames
(given mask template for the first frame). It depicts the edge
and contour features of the object and explicitly indicates the
boundary of the target against the background. The two kinds
of information are used for memorizing the historical target
information and current target feature matching. Although the
reference mask is helpful for accurate segmentation in VOS,
we note that it remains an open problem of how to appropri-
ately make use of it and efficiently fuse it with the frames
for better target memorizing and matching. Most previous
methods [1], [6], [7], [8], [9], [10], [11] consider some naive
ways, which only treat masks as simple auxiliary and pay less
attention to further mining the features in masks and effective
fusion with frame features. For example, MaskTrack [6],
RGMP [7] and STM [1] simply concatenate the frame and
the mask as the input of the network. The use of reference
masks in these methods is insufficient since they do not dig
deep into the mask representation, its combination with frame
features, and its influence on the matcher, which could benefit
the segmentation quality.

Until recently, the reference mask utilization in VOS has
aroused some attention [5], [12], [13]. For example, Swift-
Net [12] generates mask features via convolutions and revered
sub-pixel modules for efficient reference encoding. However,
besides mask usage, these methods always have other specific
designs and different experimental settings to improve their
performance, like the network architectures, training and infer-
ence configurations, hyper-parameters, other special modules,
etc. It is hard to figure out the most effective manner of using
the reference masks among these methods and if there is a
better way. Moreover, previous research on mask employment
mainly focuses on the feature embedding part but ignores
the memory retrieval process, which is also crucial to the
segmentation results.

In this paper, we delve deeper into reference mask utiliza-
tion in VOS. First, we list eight different encoders to find
a sufficient way of employing the reference masks in the
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Fig. 1.  Comparison of the attention map between an ordinary matcher
[11, [2], [3], [4], [5] and our mask-enhanced matcher. We first compute
the similarity scores for the pixels inside the ground-truth object area of
the query image, then visualize the normalized soft weights to the first and
previous frames in the first two columns. The third column shows final mask
predictions. Some details are zoomed in with red rectangles. The proposed
mask-enhanced matcher could concentrate more on the target regions and
suppress the background distraction.

encoder part. Half of the eight instantiations are inherited
or summarized from existing methods, and the other half
types are designed by ourselves. Next, to benchmark their
effectiveness, we provide a unified codebase that implements
all the eight instantiations and keeps the same remaining
architectures (matcher and decoder), training/inference con-
figurations and hyper-parameters for every encoder. We will
open-source the codebase to the research community for easy
model re-implementation, analysis and comparison. One of our
designs achieves the best results among the eight instantiations
and is regarded as our final encoder choice. We empirically
conclude two key findings from the comparison: (i) indepen-
dent mask representation with a separate encoder is necessary,
which is more beneficial than using raw masks or simple
downsampling, and (ii) multi-scale fusion of the mask features
and frame features improves the performance, demonstrating
that both the low-level and high-level mask features are useful.

Next, we try to explore the usage of the reference masks
on the matcher. Though this is always omitted by previous
methods, we find it is helpful to eliminate the background
distraction. The conventional matcher in VOS is a non-local-
like block [1] and lots of papers follow this way [1], [2],
[3], [4], [5]. However, the attention map between query frame
and reference sets in this kind of matcher concerns numerous
unnecessary feature pairs (e.g., the relationships among the
backgrounds), thus containing too much background noise and
distractions. We believe this problem could be easily improved
by explicitly introducing the reference mask information into
the matcher. Unlike previous matchers, we propose a new
mask-enhanced matcher, which first uses the mask features
to generate a mask attention map, then applies the mask
attention map on the value embeddings by Hadamard product
to enhance the target region and suppress the backgrounds.
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As shown in Fig. 1, the proposed matcher could concentrate
more on the target object and less on the backgrounds than the
commonly-used matcher [1], [2], [3], [4], [5]. Now, combining
the proposed mask-fused encoder, the mask-enhanced matcher
and a conventional decoder, we formulate a new architecture,
dubbed MaskVOS, which sufficiently exploits the advantages
of the masks for VOS in both the encoder and matcher.
We extensively evaluate our model on three representative and
standard VOS datasets, namely DAVIS16 [14], DAVIS17 [15]
and YouTube-VOS [16], showing its superior performance
over most existing methods.

The main contributions of this paper could be summarized

as follows:

o« We provide a unified testbed for eight different VOS
encoders to investigate an effective mask fusion strategy.
This is the first work to compare a wide range of VOS
models from the perspective of mask utilization under the
same experimental conditions.

o We explore the mask benefits on the matcher and propose
an insightful mask-enhanced matcher to eliminate the
background distraction and enhance the target features
in the matching process.

o« We propose a new network, dubbed MaskVOS, which
sufficiently makes use of the reference masks in both the
encoder and matcher. The effectiveness of our model is
demonstrated on three benchmark datasets, highlighting
the importance of effectively using the mask in VOS.

II. RELATED WORKS
A. Online Learning Methods

Online-learning methods [4], [6], [17], [18], [19], [20],
[21], [22] usually finetune the segmentation network by using
the first frame and corresponding mask during inference to
identify the appearance of the target object in the remaining
video frames. These methods use online adaptation [17],
instance segmentation information [18], data augmentation
techniques [19], or an integration of multiple techniques [21].
OSVOS [20] is the first online approach to exploit deep
learning for the VOS problem, where a multi-stage training
strategy is designed to gradually shrink the focus of the
network from general objects to the one in reference masks.
PreMVOS [21] combined multiple techniques and adapted
the network to the target video domain by finetuning on a
large set of augmented images generated from the first-frame
ground truth. FRTM [22] integrates a lightweight discrimina-
tive target model and a segmentation network for modeling the
target appearance and generating accurate segmentation masks.
STM-cycle [4] design a gradient correction module with a
cyclic mechanism to extend the offline segmentation network
to an online approach. While online learning can achieve high-
quality segmentation and is robust against occlusions, it is
computationally expensive as it requires finetuning for each
video.

B. Tracking-Based Methods

The Siamese network-based trackers have drawn great atten-
tion in recent years, which model tracking as a template
matching task and perform similarity learning. By introducing
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the powerful backbones [23], [24] and elaborated predic-
tion networks [25], [26], [27], [28], Siamese trackers obtain
superior performance and the Siamese-like feature extractor
becomes a default configuration. The VOS task has some
relationships with the visual tracking task, where the common
characteristics are that (1) they both need to track specific
targets and (2) they face similar challenges like similar dis-
tractors and occlusions. The most significant difference is that
visual tracking only needs to output the target’s bounding
box location, while VOS needs to predict finer pixel-wise
masks. There are some works [29], [30], [31] that realize
the relationships between the two tasks and propose to unite
them together, achieving fast inference speed. For example,
SiamMask [29] improves the offline training procedure of
the popular Siamese tracker SiamRPN [26] by augmenting
their loss with a binary segmentation task, narrowing the gap
between tracking and segmentation. SAT [30] fuses object
tracking and segmentation into a unified pipeline. It com-
bines SiamFC++ [27] and proposed an estimation-feedback
mechanism to switch between mask box and tracking box,
making segmentation and tracking tasks enhance each other.
The integration of tracker help to improve the inference speed,
while the accuracy of tracking often limits these methods’
performance.

C. Matching-Based Methods

To capture the information that lies in the historical frames,
many methods [1], [2], [3], [11], [12], [32], [33], [34], [35]
perform feature matching at the pixel level to learn target
object appearances offline and achieve state-of-the-art perfor-
mance. VideoMatch [32] takes the first frame as a reference
set and measures similarity by soft matching with foreground
and background features. After that, FEELVOS [11] and
CFBI [36] perform the nearest neighbor matching between
the current frame and the first and previous frames in the
feature space and utilizes the output of feature matching as
internal guidance of the network. RANet [10] proposes a
ranking attention module to increase the usefulness of the
generated similarity map. To take more temporal cues from
all past frames, STM [1] introduces an external memory
to store past frames’ features and uses the attention-based
matching method to retrieve information from memory. Many
methods [2], [3], [5], [33], [34], [37], [38], [39] are extended
from STM. For instance, to reduce the non-locality, KMN [37]
applies Query-to-Memory matching with a kernelized memory
read. RMNet [34] proposes to replace STM’s global-to-global
matching with local-to-local matching. SwiftNet [12] elab-
orately compresses spatiotemporal redundancy in matching-
based VOS via Pixel-Adaptive Memory. Some methods
[13], [40], [41], [42], [43], [44], [45], [46] use vision
transformers to capture spatial-temporal dependencies among
frames.

We also regard STM as the baseline. Different from the
above methods, we tackle the VOS problem from the per-
spective of reference mask utilization. Most of the existing
methods tend to fuse masks in some direct and naive manners
in the encoder part, and we aim to discuss this problem more
comprehensively.
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IIT. METHOD

In this section, we elaborate on the technical details of our
approach. First, we briefly describe the common VOS pipeline
for a better understanding. Then, we introduce different refer-
ence mask utilization strategies with eight encoders and give
the key observations. Next, we present the proposed mask-
enhanced matcher and the formulated network in detail.

A. Overview of the Common VOS Pipeline

The semi-supervised VOS problem can be defined as: given
a video sequence of and a target mask in the first frame,
the task is to segment sequential frames at every timestamp
according to the reference set which includes several historical
frames with their corresponding predicted masks (groundtruth
for the initial frame). A typical pipeline of the commonly-
used matching-based segmentation usually consists of a query
encoder, a reference encoder, a matcher and a decoder.

1) Query Encoder: The query encoder £ is used to encode
the 7-th query frame to be segmented. It first obtains the feature
representation of the query frame and then embeds it to its
corresponding key and value embeddings (k¢ € RH*WxCk,
ve e R#*WxCo) through two parallel convolution layers,
where H and W are feature height and width, and Cy, C, are
channel dimensions of key and value embeddings, respectively.

2) Reference Encoder: The reference encoder Egr is
designed to memorize the target appearances from reference
sets R = {(I;, M;)}n, where N is the size of the reference
set, including some past frames with their corresponding
masks. Similar to the query encoder, the reference encoder
also outputs key and value embeddings. If there is more
than one element in reference sets, each of them will be
independently encoded. Mathematically, the final output of
the reference encoder is a pair of key and value embeddings
(kR e RN><H><W><C1(7 VR e RNXHXWXCU).

3) Matcher: The matcher M is applied to model the
relationship between the query frame and the reference sets.
It could also be illustrated as retrieving the target information
from a memory bank (reference set). The matcher first calcu-
lates the similarity of every pixel in the query key embedding
k? with every pixel in reference key embedding kR Then,
the similarity matrix is regarded as the affinity matrix to be
multiplied on the reference value vR. Next, the results will be
concatenated with the query value v as the final matching
results y. The matching procedure can be expressed as:

y(p) =1v2(p), D o kl(p). kR @) - Vi@l (D)

Vq

where p and ¢ denote pixels in query and reference key
embeddings, respectively. “-” denotes dot-product and o is
k(PR g) g
%eXp(kQ(p)kR(q))
multi-objects segmentation, the above méltching process will
be implemented for every target in a parallel manner.

4) Decoder: The decoder D receives the output of the
matcher as input, then output segmentation results for each
target in the query frame. It includes a refinement module [7]
that gradually upscales the feature maps with multiple stages.

a softmax function o (k2 (p), k®(q)) =
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Fig. 2. Mask utilization on the encoder. Eight instantiations are implemented. The light purple, faint yellow and light grey rounded rectangles in the

background correspond to early fusion, post fusion and multi-scale fusion, respectively.

At every stage, the output of the previous stage will be
concatenated with a feature map from the query encoder at
the corresponding scale through skip-connections and then fed
into the next stage. A softmax operation is attached on the last
refinement stage and the mask probabilities for each target
in the current frame are acquired. Finally, a soft aggregation
operation [7] is used for merging all predicted maps to obtain
the segmentation results.

B. Reference Mask Utilization on the Encoder

Reference masks are used by most prior methods [1], [6],
[71, [8], [9], [10], [11], [36] in the encoder part to obtain
fine-grained segmentation by default. However, most of the
existing methods tend to absorb the reference masks in some
direct and naive manners, without further exploration. In this
section, we study the mask utilization in the encoder and
try to find the most effective mask fusion way from eight
different kinds of encoders. The encoders are classified into
three categories as early fusion, post fusion and multi-scale
fusion, according to the mask fusion location in the encoders,
as shown in Fig. 2. Half of the eight instantiations are inherited
or summarized from existing methods and the other half are
devised by ourselves. Note that the instantiations from the
previous approaches might not cover all the possible cases
but select several representative methods. Next, to make the
comparison about different mask combination ways as fair

as possible, we provide a unified codebase that keeps the
same remaining architectures (matcher and decoder [1]), train-
ing/inference configurations and hyper-parameters for every
instantiation. Details are as follows.

Early fusion is the most naive and frequently-used way,
which fuses the raw reference masks with reference frames
before feeding into the reference encoder. The majority of pre-
vious methods [1], [2], [6], [7], [9], [33], [35], [37], [39], [47]
lie in this kind. For example, the most representative method
STM [1] and STM-based methods [34], [37], [39] exploit two
encoders, i.e. a 4-channel memory encoder for the reference
frames with the predicted masks encoding and a regular query
encoder for the query frame feature extraction. We realize
one instantiation (listed as I1) from these STM-based methods
as shown in Fig. 2 (a). It simply concatenates the reference
frames with corresponding raw masks along the channel
dimension to form a 4-channel input tensor and then sends
it into a reference encoder. Specifically,

R = {Concate(d;, M;)} N 2)

where I; and M; denotes the frame and mask (groundtruth
for the first frame) of the i-th sample in the reference set R,
respectively. N is the size of R and Concate(-) indicates
the concatenation operation along the channel dimension. The
mask is regarded as a channel of the frame thus only has
the same importance as the three (R, G, B) color channels.
There is no further explicit spatial interaction between frames
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and masks, but the channel fusion is considered inside the
encoder.

Post fusion aggregates the raw mask or mask features
with the frame features after the feature extraction stage for
foreground discovery [5], [8], [9], [10], [11], [34], [36], [40],
[48], [49]. For instance, AGAME [8] concatenates the raw
masks with the frame embeddings to enhance the target
appearances. RaNet [10] utilizes the raw mask to select
foreground (FG) or background (BG) similarity maps as FG
or BG features for segmentation. SSTVOS [40] uses the mask
to get object affinity value from the transformer for predicting
object masks. Formally, in post fusion, we have

FR = f(F!, FM) 3)

where FR, F! and FM denote the features of the reference set,
reference frames and reference masks, respectively. f means
the fusion function and follows [7] for all encoders in this type.
We have summarized two common mask fusion approaches
from exiting methods in this type and implemented their
mask utilization part with two corresponding instantiations,
12 8], [9], [10] and I3 [5]. In detail, 12 (Fig. 2(b)) directly
downsamples the raw masks and fuses them with output ref-
erence frame features from the query/reference shared frame
encoder. Differently, I3 (Fig. 2(c)) proposes to extract the mask
features with an independent network. Besides, we add 14
(Fig. 2(d)) to explore if the mask encoder could be shared
with the frame encoder. Post fusion combines the high-level
features of reference frames and masks, and no low-level
interaction is considered.

Multi-scale fusion is exploited very recently [12] and
means using mask information in multiple locations of the
encoders. Specifically, SwiftNet [12] uses multi-stage down-
sampling blocks for mask embedding and fusion. We imple-
ment one instantiation (I5) from the mask fusion part of
SwiftNet and propose three other instantiations (16, I7 and I8)
for a more in-depth discussion. I5 (Fig. 2(e)) fuses downsam-
pled mask information into the frame features after the first and
fourth ResNet stages. The frame features and mask features are
aligned vertically with the same size and concatenated together
to facilitate multi-scale aggregation. Besides, the query and
reference frames share one encoder. The fusion module (ele-
mentwise sum) and downsampling blocks (reversed sub-pixel
modules and 1x1 convolutions) of I5 are consistent with
SwiftNet. 16 (Fig. 2(f)) employs a separate ResNet to extract
the reference mask features rather than simple downsampling,
then fuses them with the reference frame features in the first
four stages of ResNet. The query and reference frame encoders
are not shared. I7 (Fig. 2(g)) differs from 16 in two folds,
(1) the query and reference frame encoders are shared; (2) the
reference mask encoder is regarded as the mainstream so that
the features of reference frames could be reused. Therefore,
in 17, every frame only needs to forward once through the
frame encoder and could be directly added into the reference
set if necessary. For I8 (Fig. 2(h)), the difference with 16
is that a shared frame encoder is used for the query and
reference frames to reduce the parameters. The fusion modules
in 16, 17 and I8 are the same, which is an AFC block [50].
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Fig. 3.  Detailed pipeline of the proposed MaskVOS. It consists of an
unbalanced Siamese frame encoder for query and reference frame feature
extraction, a mask encoder for mask representation, a memory bank to save
the reference set, a mask-enhanced matcher to retrieve the memory bank and
a decoder to obtain the final segmentation results.

Multi-scale fusion of masks provides multi-level interactions,
enabling sufficient fusion for reference masks and frames.

From the comparison of the above eight instantiations in
Sec. IV-E, we observe that our I8 obtains the best performance
with a shared frame encoder, a separate mask encoder and the
multi-scale fusion. Our empirical evaluation results reveal that
(i) extracting mask representations with a stand-alone feature
encoder is important, which is more helpful than using raw
masks or simple downsampling, and (ii) multi-scale fusion
is the most sufficient manner and achieves the best results,
demonstrating both the low-level and high-level mask features
are useful.

C. MaskVOS

According to the above analyses of the mask influence in the
encoder part, a problem is raised, “Could the reference masks
also benefit the matcher?” To investigate this, we propose a
mask-enhanced matcher, exploiting the mask features during
the memory matching process to further enhance target fea-
tures and weaken the distraction of background areas. Then,
by combining the encoder of I8 from Sec. III-B, the pro-
posed mask-enhanced matcher and an ordinary decoder from
Sec. III-A, we propose a new method, dubbed MaskVOS,
which thoroughly excavates the mask in both the encoder and
matcher parts of VOS. The pipeline of MaskVOS is presented
in Fig. 3.

We first give more details about our encoder here. As shown
in Fig. 2(h) and Fig. 3, the proposed feature extractor consists
of an unbalanced Siamese frame encoder and a light mask
encoder. The former extracts features of query and reference
frames, while the latter takes the reference masks as input and
outputs multi-scale mask features. The Siamese frame encoder
is “unbalanced” since it encodes the query and reference
frames differently. When extracting the features of the query
frame, the Siamese encoder maps the RGB frame to the
embedding space directly. When encoding the reference frame,
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Fig. 4. Detailed architecture of the proposed mask-enhanced matcher as
described in Sec. III-C. The dashed arrow means slicing the last element
along the temporal dimension. The w® and w9 are the mask attention maps
of the reference sets and the query frame.

it fuses the mask features from the mask encoder through the
AFC [50] modules in multiple feature scales.

Most prior arts [2], [3], [4], [5], [39] use the non-local
like matcher [1], but the VOS is actually a local task since
every pixel on the target object mainly has relationships with
neighboring pixels. The attention map between the query
frame and reference sets in this kind of matcher includes plenty
of unnecessary feature pairs, thus containing background noise
and not so focused on the target, as shown in Fig. 1. One of
the solutions is to strengthen the object features and suppress
the backgrounds by directly involving the reference mask
information in the matcher. However, this is always neglected
by the previous works. Instead, we realize this situation and
develop a mask-enhanced matcher, which utilizes the reference
mask features produced by the light mask encoder to reduce
the non-localization. As presented in Fig. 4, we first use the
mask features FM to generate the mask attention maps. The
attention maps are multiplied with the value embeddings,
obtaining the mask-enhanced values. More specifically, for
reference sets, we employ a 1 x 1 convolution layer to F¥
to generate the mask attention map wX directly, and obtain
the aggregated value VR as:

wR = Conv(FM)

PR = wh o vk (4)
where Conv denotes 1 x 1 convolutions. For the attention
map w< of the query frame, we need to transfer the previous
mask features F to the current frame since the mask features
of the current frame is not available yet. Instead of intuitive
time-consuming warping with optical flow, we simply translate
the attention map of the last frame wfl to the current frame
according to the feature similarities between the query frame
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and previous frame (the #-1 frame) from the reference set as:

w2 = o (Conv(k?), Conv(k®))) x wk,
¢ =wlov? (5)

where the subscript —1 denotes the last element of the
reference set, i.e., the #-1 one, note that the (z-1)-th frame
and corresponding mask are always stored in the reference
set. o is the softmax function. o and x denote Hadamard
product and matrix multiplication, respectively. After the value
enhancement, the final matching results of the matcher is:

y(p) =32 (p), Do kC(p), k*(g) - " @1 (6

Vg

where p and ¢ denote pixel in query and reference key
embedding, respectively. y is the output of the matcher. Next,
y will be sent to a decoder which is a common one as described
in Sec. III-A, to obtain the final segmentation results.

IV. EXPERIMENTS

In this section, we first introduce the implementation details
of our approach and the datasets and the evaluation metrics.
Then we perform extensive experiments to demonstrate that
the proposed MaskVOS consistently outperforms or obtains a
comparable performance with the state-of-the-art methods on
three datasets, DAVIS16 [14], DAVIS17 [15] and YouTube-
VOS [16]. Next, we give some qualitative results to show the
effectiveness of our MaskVOS. Finally, we conduct compre-
hensive ablation studies to analyze the effect of the individual
components of our method and some configurations.

A. Implementation Details

We implement two versions of our approach. The first uses
a ResNet-50 [51] (the first four stages) as the backbone of the
frame encoder, and a ResNet-18 (the first four stages) as the
backbone of the mask encoder, except that of 14 is a ResNet-50
since it is shared with the frame encoder. The other one (also
the final version) employs a swin-transformer-small [52] as the
frame encoder’s backbone and a swin-transformer-tiny as the
mask encoder’s backbone. The ResNet and transformer ver-
sions are shorted as MaskVOS+t and MaskVOS, respectively.
All the ResNet and swin-transformer models are pretrained
on ImageNet [53]. Similar to most STM-based methods [1],
[33], [38], we synthesize video clips with length 3 by applying
data augmentations (random affine, color, flip, resize and crop)
on COCO [53] training sets. Then we use these synthetic
videos to pretrain our model. Adam optimizer [54] with a
fixed learning rate of le-5 is used for pretraining. After that,
we train our model on real videos by sampling 3 frames
from each video sequence and applying data augmentation
on those frames. The maximum time interval of sampling
increases by 5 for every ten training epochs. We freeze
all batch normalization layers and use AdamW optimizer
(B = (0.9,0.999), eps = 10~%) with an initial learning rate
4 x 107°. The model is trained with a batch size of 4 and
the input resolution 400 x 400 for 160 epochs on 4 TITAN
RTX GPUs. In the inference stage, our model takes the 480p
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TABLE I

COMPARISON WITH THE STATE-OF-THE-ART ON THE DAVIS16-VAL AND DAVIS17-VAL. ‘OL’ INDICATES THE USE OF THE ONLINE-LEARNING
STRATEGY. ‘“+YT’ MEANS THE USE OF YOUTUBE-VOS FOR TRAINING. THE RUNTIME OF OTHER METHODS WAS
OBTAINED FROM THE CORRESPONDING PAPERS

DAVIS16 val

DAVIS17 val

Methods OL

FPS  J&F(%) JT(%) F%) J&F%) T(%) F(%)
OSVOS [20] v 0.22 80.2 79.8 80.6 60.3 56.7 63.9
OnAVOS [17] v 0.08 85.5 86.1 84.9 67.9 64.5 71.2
PReMVOS [21] v 0.03 86.8 84.9 88.6 77.8 73.9 81.7
STM-cycle(+YT) [4] v - - - - 72.3 69.3 75.3
FRTM(+YT) [22] v 21.9 83.5 - - 76.7 - -
RGMP [7] 7.7 81.8 81.5 82.0 66.7 64.8 68.6
RaNet [10] 30 85.5 85.5 85.4 65.7 63.2 68.2
AGSS [9] - - - - 66.6 63.4 69.8
GC [38] 25 86.6 87.6 85.7 71.4 69.3 73.5
AFB-URR [2] - - - - 74.6 73.0 76.1
AGAME(+YT) [8] 14.3 82.1 82.0 82.2 70.0 67.2 72.7
FEELVOS(+YT) [11] 2.2 81.7 81.1 82.2 71.5 69.1 74.0
STM(+YT) [1] 6.3 89.3 88.7 89.9 81.8 79.2 84.3
KMN(H+YT) [37] 8.3 90.5 89.5 91.5 82.8 80.0 85.6
LCM(+YT) [39] 8.6 90.7 89.9 914 83.5 80.5 86.5
STCN(+YT) [3] - - - - 85.4 82.2 88.6
AOT-L(+YT) [13] 18.7 91.0 89.7 92.3 83.0 80.3 85.7
EGMN(+YT) [33] - - - - 82.8 80.2 85.2
CFBI(+YT) [36] 6 89.4 88.3 90.5 81.9 79.1 84.6
JOINT(+YT) [41] - - - - 83.5 80.8 86.2
SST(+YT) [40] - - - - 82.5 79.9 85.1
RMNet(+YT) [34] 12 88.8 88.9 88.7 83.5 81.0 86.0
GIEL(+YT) [5] - - - - 82.7 80.2 85.3
SwiftNet(+YT) [12] 25 90.4 90.5 90.3 81.1 78.3 83.9
MaskVOSt(+YT) 15.1 90.0 89.2 90.8 83.3 80.0 86.7
MaskVOS(+YT) 9.2 91.1 89.9 92.3 85.5 82.0 89.0

(480 x 854) resolution as input like other methods and adds
a frame and its predicted mask into the memory bank every

five frames. We conduct all inference experiments on a single
TITAN RTX GPU.

B. Datasets and Evaluation Metrics

We evaluate our approach on DAVIS16 [14], DAVIS17 [15]
and YouTube-VOS [16] benchmarks. DAVIS2016 is a single-
object dataset, which contains 30 training video sequences
and 20 validation video sequences. DAVIS2017 is a multi-
objects dataset expanded from DAVIS2016, including 60 train-
ing video sequences and 30 validation video sequences.
YouTube-VOS is a large-scale VOS dataset with 3471 training
videos and 474 validation videos. And each video contains
a maximum of 12 objects. The validation set includes seen
objects from 65 training categories and unseen objects from
26 categories, appropriate for evaluating algorithms’ general-
ization performance. We use the evaluation metrics provided
by the DAVIS benchmark to evaluate our model. J&F evalu-
ates the general quality of the segmentation results, J evaluates
the mask J/oU and F estimates the quality of contours.
We mainly use J&F to explain the performance in the
following experiments.

C. Comparison With the State-of-the-Art

1) DAVIS: Table 1 reports the evaluation results on
DAVIS16-val and DAVIS17-val. Our MaskVOS achieves
the leading performance on both DAVIS16-val (91.1%) and
DAVIS17-val (85.5%), outperforming all the methods in the
Table 1. Specifically, it surpasses all the online-learning meth-
ods with a large margin (4+4.3%~+10.9%), the matching-
based methods such as STM [1], RMNet [34] and CFBI [36],
and the transformer-based methods SST [40] and JOINT [41].
Compared to the baseline STM, MaskVOS improves +1.8%
on DAVIS16-val and +3.7% on DAVIS17-val. Moreover,
our ResNet-based MaskVOS+t also improves the baseline
and already performers better than most methods like
GIEL [5], SwiftNet [12], SST [40], EGMN [33] and so on in
DAVIS17-val, and STM [1], RMNet [34], CFBI [36], etc in
DAVIS16-val. We attribute the performance advances to the
help of the proposed encoder and mask-enhanced matcher,
which can effectively reduce background interference and
enhance the target regions, thus greatly boost the quality of
segmentation mask. On DAVIS17, with a ResNet-50 as the
backbone, our method achieves 11.1 FPS (80.6%). Besides,
compared with other transformer-based methods AOT-L [13],
SST [40] and JOINT [41], our method achieves better results
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TABLE I

COMPARISON WITH THE STATE-OF-THE-ART ON YOUTUBE-VOS 2018 VALIDATION SET. ‘OL’ INDICATES THE USE OF ONLINE-LEARNING STRATEGY.
THE SUBSCRIPTS OF J AND F DENOTE SEEN OBJECTS (s) AND UNSEEN OBJECTS (). THE METRIC
OVERALL MEANS THE AVERAGE OF Js, Ju, Fs, Fu

YouTube-VOS 2018 val

Methods OL
Overall Js5(%) Ju (%) Fs(%) Fu(%)

OSVOS [20] v 58.8 59.8 54.2 60.5 60.7
OnAVOS [17] v 55.2 60.1 46.6 62.7 51.4
STM-cycle [4] v 70.8 72.2 62.8 76.3 71.9
FRTM [22] v 72.1 72.3 65.9 76.2 74.1
RGMP [7] 53.8 59.5 45.2 - -

AGSS [9] 71.3 71.3 65.5 75.2 73.1
AGAME [8] 66.1 67.8 60.8 - -

STM [1] 79.4 79.7 72.8 84.2 80.9
GC [38] 73.2 72.6 68.9 75.6 75.7
CFBI [36] 81.4 81.1 75.3 85.8 83.4
AFB-URR [2] 79.6 78.8 74.1 83.1 82.6
KMN [37] 81.4 81.4 75.3 85.6 83.3
EGMN [33] 80.2 80.7 74.0 85.1 80.9
SST [40] 81.7 81.2 76.0 - -

RMNet [34] 81.5 82.1 75.7 85.7 82.4
GIEL [5] 80.6 80.7 75.0 85.0 81.9
SwiftNet [12] 77.8 77.8 72.3 81.8 79.5
MaskVOS¥ 81.5 80.5 76.0 85.2 84.3
MaskVOS 81.9 81.4 75.9 86.6 83.9

than these methods due to the thorough mask utilization. Our
runtime is a trade-off between latency and accuracy depending
on requirement: if we reduce the input size to half of the input
resolution, it achieves 28.1 FPS (71.1%).

2) YouTube-VOS: Table II shows the comparison with state-
of-the-art methods on YouTube-VOS 2018 validation [16].
On this benchmark, our MaskVOS+ obtains an overall score
of 81.5%, significantly outperforming many state-of-the-arts
models like STM [1], GIEL [5], KMN [37], EGMN [33] and
SwiftNet [12]. Compared with the baseline STM, MaskVOS+}
boosts the performance with a dramatic gain +2.1%. Note that
YouTube-VOS is a really large VOS dataset, thus +2.1% is
actually a significant improvement. By using swin-transfomer
as the backbone, MaskVOS further improves the performance
to 81.9%. It surpasses all the methods in the table. Moreover,
our method performs favorably on both seen and unseen
categories.

D. Qualitative Results

We show the qualitative comparison of our MaskVOS and
the baseline STM [1] in Fig. 5. Benefitting from sufficiently
absorbing the reference masks into both the encoder and
matcher, our method yields more precise segmentation com-
pared to STM. In the first video, even STM can segment out
the primary instances, they lose the label for the bike in the
fifth image and predict a confusion label for the handlebar

when only part of it is visible in the last image. In the
second sequence, STM fails to segment out the skateboard
under occlusions and fast motion. By comparison, our method
can robustly capture the object and succeed in tracking and
segmentation due to our effective mask utilization.

Fig. 6 shows more qualitative examples of our MaskVOS.
We choose challenging videos from DAVIS17 validation sets
and sample important frames (e.g. before and after occlusions,
dramatic deformation and complex motion). As seen in the
figure, our method is robust to these challenges. For example,
the bicycle wheel in the first row is skinny, and it also moves
fast and undergoes, while the segmentation results of our
MaskVOS are correct and robust. The target man in the second
row is dancing in the street with various non-rigid movements,
and our method could easily achieve accurate segmentation.

E. Ablation Study

We analyze the effect of the individual components of our
method and some configurations. Unless specified, we use
the ResNet-50 as our backbone with 480p input resolution,
pretrain on COCO, train with DAVIS17 and YouTube-VOS,
and test on DAVIS17-val.

1) Mask Utilization on Encoders: We first ablate the mask
impact on feature extractors, i.e., comparing all the instan-
tiations (I1-I8). The matcher and decoder of them are the
same as STM for reducing the extra influence and realizing
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Fig. 5.

Qualitative comparison of our method with the baseline STM [1] on the DAVIS2017. Some details are zoomed in with red rectangles. Our model

handles some hard, challenging conditions like object occlusion, motion blur and dramatic appearance changes better than STM due to the full utilization of

reference masks.

Fig. 6. Qualitative results of MaskVOS on the DAVIS17. The chosen scenes represent tough occasions, such as occlusion, shadows, non-rigid motion, small
objects, complicated shapes and drastic changes in shape, which our method manages to handle.

fair comparison on the encoder part. We directly train these
models on DAVIS17 and YouTube-VOS with input resolution
240 x 427 and test them on DAVIS17-val to fully explore
the representation power of these encoders. The three parts
of Table III show the results of early fusion, post fusion and
multi-scale fusion, respectively. Comparing 12 v.s. (I3, 14) or
I5 v.s. (16, 18), we could find that extracting the features of
masks brings a large performance improvement than using
raw masks or simple downsampling. The reason is that mask
representation is supervised and learned by the final VOS loss
function for better results, while the raw masks do not. From
I3 v.s. 14 and 16 v.s. I8, we observe that sharing the query and
reference encoders but giving a stand-alone encoder for the
mask is a superior configuration of the encoder, which reduces

the frame encoder parameters and empowers better embedding
for the mask. Besides, regarding the reference frame encoder
(I8) rather than the mask encoder (I7) as the mainstream
achieves better results since the mask encoder is usually a
small network like ResNet-18, which has lower representa-
tion power than the frame encoder with a larger network.
Moreover, the best multi-scale fusion of the reference mask
and frame (I8) surpasses both the best early fusion (I1) and
post fusion (I4), because the low-level, middle-level and high-
level features are sufficiently interacted in multi-scale fusion.
In conclusion, our I8 achieves the top performance with fewer
parameters than most instantiations.

2) Memory Bank Management: We compare different mem-
ory management rules in Table IV. It could be found that
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TABLE III

IMPACT OF MASK UTILIZATION ON ENCODERS. MODELS ARE TESTED
WITH THE INPUT RESOLUTION OF 240P ON DAVIS17-VAL

Models  Parameters M) J (%) F (%) JT&F (%)
11 38.86 69.7 76.2 73.0
2 38.61 67.5 72.8 70.1
13 41.38 70.8 717.7 74.2
14 41.36 70.3 77.0 73.6
15 59.99 68.0 75.1 71.6
16 44.75 70.0 76.9 73.5
17 29.23 68.5 74.9 71.7
18 36.24 71.3 77.8 74.6
TABLE IV

ABLATIONS ON MEMORY BANK MANAGEMENT. AFTER PRETRAINING ON
COCO, MODELS ARE TRAINED ON DAVIS17 AND YOUTUBE-VOS,
AND ARE TESTED WITH THE INPUT RESOLUTION
OF 480P ON DAVIS17-VAL

Reference ImM Ir JIp Fm Fr  Fp  JT&EF
Sets %) (o) () () (%) (%) (%)
First 668 752 273 739 821 309 70.4
Previous 70.6  80.8 185 765 87.6 21.6 73.6
First & Previous 779 85 11.6 844 940 163 81.2
Every five & First & Previous  80.0  90.5 7.1 86.7 958 11.6 83.3
TABLE V

EFFECTIVENESS OF THE PROPOSED MASK-ENHANCED MATCHER. AFTER
THE PRETRAINING ON COCO, MODELS ARE TRAINED ON
DAVIS17-TRAIN AND TESTED WITH THE INPUT
RESOLUTION OF 480pP ON DAVIS17-VAL

. ImM JIr JIp Fm Fr Fp J&F
Variants ey @y (%) () (R (%) (%)
w/o Q&R 77.1 89.2 12.9 82.6 92.8 18.4 79.9
w/ R 77.2 86.6 12.3 83.1 92.5 17.2 80.1
w/ Q&R 77.8 88.7 10.4 83.5 94.1 16.8 80.6

saving both the first and the previous frame into the mem-
ory is the most important, bringing significant performance
improvements than using either one. This is because our model
is strong enough to handle large appearance changes while
being robust to drifting and error accumulation by effectively
exploiting the memory. Besides, having every five frames
saved in addition to the first and the previous frames further
boosts performance with +2.1% gains. Therefore, we can
save either the first and the previous frames in the memory
for minimal memory consumption or add a new intermediate
memory frame at every five frames for maximal accuracy. The
latter is the configuration of our final model.

3) Effectiveness of the Mask-Enhanced  Matcher:
In Table V, we explore the impact of our proposed matcher,
where models are first pretrained on COCO, then trained
on DAVIS17-train and tested on DAVIS17-val. Specifically,
we have three variants, (i) the ordinary matcher without using
mask enhancement in both query and reference embeddings
(w/o Q&R), (ii) just enhancing the reference embeddings
(w/R), and (iii) enhancing both the query and reference
embeddings (w/ Q&R). We observe that no mask-enhanced
embeddings (i) decays accuracy by —0.7% over both aggre-
gated embeddings (iii). Only enhancing reference (ii) brings
+0.2% over (i) but is still worse than (iii) by —0.5%. The
results demonstrate that the mask enhancement is indeed
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TABLE VI

IMPACTS OF DIFFERENT SIMILARITY COMPUTATIONS. AFTER
PRETRAINING ON COCO, MODELS ARE TRAINED ON
DAVIS17 AND YOUTUBE-VOS, AND ARE TESTED
WITH THE INPUT RESOLUTION OF
480pP ON DAVIS17-VAL

Similarity Jm  JIr Jp Fm Fr Fp  J&F
types %) (B (B () (R () (R
L2 80.0 905 7.1 867 958 11.6 833
dot product  79.6 89.8 92 860 940 127 828
TABLE VII

ABLATIONS ON THE DIFFERENT BACKBONE. AFTER PRETRAINING ON
COCO, MODELS ARE TRAINED ON DAVIS17 AND YOUTUBE-VOS,
AND ARE TESTED WITH THE INPUT RESOLUTION
OF 480P ON DAVIS17-VAL

Backbone TIm IR Ip  Fm Fr Fp J&F MACs  Params
%) () (B) () (%) (%) (%) G) (M)
ResNet-50  80.0 905 7.1 86.7 958 11.6 83.3 192.1 36.4
Swin-small 820 91.7 54 890 962 92 85.5 266.6 59.8
TABLE VIII

ABLATIONS ON DIFFERENT INPUT RESOLUTIONS. AFTER PRETRAINING
ON COCO, MODELS ARE TRAINED ON DAVIS17-TRAIN
AND TESTED ON DAVIS17-VAL

Input JM j’R Jp fM ]:’R Fp TJ&F MACs

resolution (%) (%) (%) (%) (%) (%) (%) (G TS
240p 679 794 118 755 878 170 717 480  28.1
480p 778 887 104 835 941 168 80.6 1921 111

beneficial in the matcher, and it is helpful in both query and
reference embeddings. Our MaskVOS applies mask enhance-
ment in both query and reference embeddings (iii) which has
the best performance. We also visualize the attention maps and
mask predictions of the proposed mask-enhanced matcher (iii)
and the commonly-used matcher (i) in Fig. 1, from which we
can see that the former is more robust for the distraction of
background.

4) Similarity Calculation: Table VI shows results for dif-
ferent ways of similarity calculation in the matcher. Two
memory coverage types are considered here, L2 similarity
and dot product. We observe that L2 similarity yields better
performance by +0.5% than dot product, which is consistent
with the conclusion of [3]. Therefore, we employ L2 similarity
in our final model.

5) Varying the Backbone: Our MaskVOS has two back-
bone configurations, the traditional convolution network
ResNet [51] and one recent typical transformer swin-
transformer [52]. More specifically, ResNet-50 and swin-small
are used for the frame encoder, and ResNet-18 and swin-
tiny are used for the mask encoder. As shown in Table VII,
the transformer-based model achieves better results with a
large improvement of +2.2% over the convolution-based
model. However, the transformer-based model will inevitably
introduce more computational cost, as shown in Table VII.
We provide the two backbone variants for different accuracy-
efficiency requirements and adopt both configurations in
MaskVOS for a fair comparison with previous methods.

6) Varying the Input Resolutions: We now ablate the input
resolutions in Table VIII with 240p and 480p. The models are
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first pretrained on COCO then trained on DAVIS17-train and
tested on DAVIS17-val. The results are intuitive, i.e., a larger
input size results in much better performance (+9.3%). On the
other hand, increasing the input size will inevitably slow down
the inference speed, from 28.1 FPS to 11.1 FPS. Therefore,
we provide both two variants to adapt to different application
requirements.

V. CONCLUSION

This paper delves deeper into mask utilization in both
the encoder and matcher of VOS. We first implement eight
kinds of encoders in a unified platform to investigate effective
strategies of reference masks and frames fusion in the encoder
part. One of our designs yields the best results and indicates
that (i) a stand-alone mask encoder is necessary for better mask
representations, and (ii) multi-scale fusion is beneficial for suf-
ficient interaction between the features of reference masks and
frames. Moreover, we present a new mask-enhanced matcher
to explore the mask impact on the matcher part, decreasing
the background distraction and aggregating the locality of the
matching process. A new network is then proposed, named
MaskVOS, which consists of the mask-fused encoder, the
mask-enhanced matcher and a standard decoder. Our simple
yet effective network sufficiently exploits the reference masks
and achieves state-of-the-art results on three commonly-used
VOS datasets.

We hope this work will push a step further for the VOS
research field, especially the previously neglected mask utiliza-
tion problem. Besides, the unified codebase is also useful for
this task since lots of models could be found and easily imple-
mented in it. We believe the architectures and ideas discussed
in this paper are successful in excavating the advantages of
the reference masks. It could be extended for other video
segmentation tasks such as video instance segmentation and
video panoptic segmentation. We leave this as our future work.
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