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Abstract— This paper focuses on the mask utilization of video1

object segmentation (VOS). The mask here mains the reference2

masks in the memory bank, i.e., several chosen high-quality3

predicted masks, which are usually used with the reference4

frames together. The reference masks depict the edge and contour5

features of the target object and indicate the boundary of the6

target against the background, while the reference frames contain7

the raw RGB information of the whole image. It is obvious that8

the reference masks could play a significant role in the VOS,9

but this is not well explored yet. To tackle this, we propose10

to investigate the mask advantages of both the encoder and11

the matcher. For the encoder, we provide a unified codebase to12

integrate and compare eight different mask-fused encoders. Half13

of them are inherited or summarized from existing methods,14

and the other half are devised by ourselves. We find the best15

configuration from our design and give valuable observations16

from the comparison. Then, we propose a new mask-enhanced17

matcher to reduce the background distraction and enhance the18

locality of the matching process. Combining the mask-fused19

encoder, mask-enhanced matcher and a standard decoder, we for-20

mulate a new architecture named MaskVOS, which sufficiently21

exploits the mask benefits for VOS. Qualitative and quantitative22

results demonstrate the effectiveness of our method. We hope our23

exploration could raise the attention of mask utilization in VOS.24

Index Terms— Video object segmentation, reference mask uti-25

lization, multi-scale mask fusion, mask-enhanced matcher.26

I. INTRODUCTION27

IN RECENT years, Video Object Segmentation (VOS)28

has received great attention due to its wide applications29

like video manipulation and editing. This paper focuses on30

the semi-supervised video object segmentation task, which31

segments target objects over video sequences with only an32

initial mask given. This technique has dramatically simpli-33

fied video manipulation and editing applications by enabling34

users to merely segment the target objects on the first frame35
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then the targets in the following frames will be segmented 36

automatically, as opposed to process the whole video manually 37

and painstakingly. 38

There are two kinds of reference information in VOS, i.e., 39

reference frames and corresponding reference masks. The for- 40

mer is some raw RGB images of the previous video sequence, 41

which have been processed and segmented. It contains the raw 42

and whole information of the object as well as the background. 43

The latter is the corresponding predicted masks of the frames 44

(given mask template for the first frame). It depicts the edge 45

and contour features of the object and explicitly indicates the 46

boundary of the target against the background. The two kinds 47

of information are used for memorizing the historical target 48

information and current target feature matching. Although the 49

reference mask is helpful for accurate segmentation in VOS, 50

we note that it remains an open problem of how to appropri- 51

ately make use of it and efficiently fuse it with the frames 52

for better target memorizing and matching. Most previous 53

methods [1], [6], [7], [8], [9], [10], [11] consider some naive 54

ways, which only treat masks as simple auxiliary and pay less 55

attention to further mining the features in masks and effective 56

fusion with frame features. For example, MaskTrack [6], 57

RGMP [7] and STM [1] simply concatenate the frame and 58

the mask as the input of the network. The use of reference 59

masks in these methods is insufficient since they do not dig 60

deep into the mask representation, its combination with frame 61

features, and its influence on the matcher, which could benefit 62

the segmentation quality. 63

Until recently, the reference mask utilization in VOS has 64

aroused some attention [5], [12], [13]. For example, Swift- 65

Net [12] generates mask features via convolutions and revered 66

sub-pixel modules for efficient reference encoding. However, 67

besides mask usage, these methods always have other specific 68

designs and different experimental settings to improve their 69

performance, like the network architectures, training and infer- 70

ence configurations, hyper-parameters, other special modules, 71

etc. It is hard to figure out the most effective manner of using 72

the reference masks among these methods and if there is a 73

better way. Moreover, previous research on mask employment 74

mainly focuses on the feature embedding part but ignores 75

the memory retrieval process, which is also crucial to the 76

segmentation results. 77

In this paper, we delve deeper into reference mask utiliza- 78

tion in VOS. First, we list eight different encoders to find 79

a sufficient way of employing the reference masks in the 80
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Fig. 1. Comparison of the attention map between an ordinary matcher
[1], [2], [3], [4], [5] and our mask-enhanced matcher. We first compute
the similarity scores for the pixels inside the ground-truth object area of
the query image, then visualize the normalized soft weights to the first and
previous frames in the first two columns. The third column shows final mask
predictions. Some details are zoomed in with red rectangles. The proposed
mask-enhanced matcher could concentrate more on the target regions and
suppress the background distraction.

encoder part. Half of the eight instantiations are inherited81

or summarized from existing methods, and the other half82

types are designed by ourselves. Next, to benchmark their83

effectiveness, we provide a unified codebase that implements84

all the eight instantiations and keeps the same remaining85

architectures (matcher and decoder), training/inference con-86

figurations and hyper-parameters for every encoder. We will87

open-source the codebase to the research community for easy88

model re-implementation, analysis and comparison. One of our89

designs achieves the best results among the eight instantiations90

and is regarded as our final encoder choice. We empirically91

conclude two key findings from the comparison: (i) indepen-92

dent mask representation with a separate encoder is necessary,93

which is more beneficial than using raw masks or simple94

downsampling, and (ii) multi-scale fusion of the mask features95

and frame features improves the performance, demonstrating96

that both the low-level and high-level mask features are useful.97

Next, we try to explore the usage of the reference masks98

on the matcher. Though this is always omitted by previous99

methods, we find it is helpful to eliminate the background100

distraction. The conventional matcher in VOS is a non-local-101

like block [1] and lots of papers follow this way [1], [2],102

[3], [4], [5]. However, the attention map between query frame103

and reference sets in this kind of matcher concerns numerous104

unnecessary feature pairs (e.g., the relationships among the105

backgrounds), thus containing too much background noise and106

distractions. We believe this problem could be easily improved107

by explicitly introducing the reference mask information into108

the matcher. Unlike previous matchers, we propose a new109

mask-enhanced matcher, which first uses the mask features110

to generate a mask attention map, then applies the mask111

attention map on the value embeddings by Hadamard product112

to enhance the target region and suppress the backgrounds.113

As shown in Fig. 1, the proposed matcher could concentrate 114

more on the target object and less on the backgrounds than the 115

commonly-used matcher [1], [2], [3], [4], [5]. Now, combining 116

the proposed mask-fused encoder, the mask-enhanced matcher 117

and a conventional decoder, we formulate a new architecture, 118

dubbed MaskVOS, which sufficiently exploits the advantages 119

of the masks for VOS in both the encoder and matcher. 120

We extensively evaluate our model on three representative and 121

standard VOS datasets, namely DAVIS16 [14], DAVIS17 [15] 122

and YouTube-VOS [16], showing its superior performance 123

over most existing methods. 124

The main contributions of this paper could be summarized 125

as follows: 126

• We provide a unified testbed for eight different VOS 127

encoders to investigate an effective mask fusion strategy. 128

This is the first work to compare a wide range of VOS 129

models from the perspective of mask utilization under the 130

same experimental conditions. 131

• We explore the mask benefits on the matcher and propose 132

an insightful mask-enhanced matcher to eliminate the 133

background distraction and enhance the target features 134

in the matching process. 135

• We propose a new network, dubbed MaskVOS, which 136

sufficiently makes use of the reference masks in both the 137

encoder and matcher. The effectiveness of our model is 138

demonstrated on three benchmark datasets, highlighting 139

the importance of effectively using the mask in VOS. 140

II. RELATED WORKS 141

A. Online Learning Methods 142

Online-learning methods [4], [6], [17], [18], [19], [20], 143

[21], [22] usually finetune the segmentation network by using 144

the first frame and corresponding mask during inference to 145

identify the appearance of the target object in the remaining 146

video frames. These methods use online adaptation [17], 147

instance segmentation information [18], data augmentation 148

techniques [19], or an integration of multiple techniques [21]. 149

OSVOS [20] is the first online approach to exploit deep 150

learning for the VOS problem, where a multi-stage training 151

strategy is designed to gradually shrink the focus of the 152

network from general objects to the one in reference masks. 153

PreMVOS [21] combined multiple techniques and adapted 154

the network to the target video domain by finetuning on a 155

large set of augmented images generated from the first-frame 156

ground truth. FRTM [22] integrates a lightweight discrimina- 157

tive target model and a segmentation network for modeling the 158

target appearance and generating accurate segmentation masks. 159

STM-cycle [4] design a gradient correction module with a 160

cyclic mechanism to extend the offline segmentation network 161

to an online approach. While online learning can achieve high- 162

quality segmentation and is robust against occlusions, it is 163

computationally expensive as it requires finetuning for each 164

video. 165

B. Tracking-Based Methods 166

The Siamese network-based trackers have drawn great atten- 167

tion in recent years, which model tracking as a template 168

matching task and perform similarity learning. By introducing 169
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the powerful backbones [23], [24] and elaborated predic-170

tion networks [25], [26], [27], [28], Siamese trackers obtain171

superior performance and the Siamese-like feature extractor172

becomes a default configuration. The VOS task has some173

relationships with the visual tracking task, where the common174

characteristics are that (1) they both need to track specific175

targets and (2) they face similar challenges like similar dis-176

tractors and occlusions. The most significant difference is that177

visual tracking only needs to output the target’s bounding178

box location, while VOS needs to predict finer pixel-wise179

masks. There are some works [29], [30], [31] that realize180

the relationships between the two tasks and propose to unite181

them together, achieving fast inference speed. For example,182

SiamMask [29] improves the offline training procedure of183

the popular Siamese tracker SiamRPN [26] by augmenting184

their loss with a binary segmentation task, narrowing the gap185

between tracking and segmentation. SAT [30] fuses object186

tracking and segmentation into a unified pipeline. It com-187

bines SiamFC++ [27] and proposed an estimation-feedback188

mechanism to switch between mask box and tracking box,189

making segmentation and tracking tasks enhance each other.190

The integration of tracker help to improve the inference speed,191

while the accuracy of tracking often limits these methods’192

performance.193

C. Matching-Based Methods194

To capture the information that lies in the historical frames,195

many methods [1], [2], [3], [11], [12], [32], [33], [34], [35]196

perform feature matching at the pixel level to learn target197

object appearances offline and achieve state-of-the-art perfor-198

mance. VideoMatch [32] takes the first frame as a reference199

set and measures similarity by soft matching with foreground200

and background features. After that, FEELVOS [11] and201

CFBI [36] perform the nearest neighbor matching between202

the current frame and the first and previous frames in the203

feature space and utilizes the output of feature matching as204

internal guidance of the network. RANet [10] proposes a205

ranking attention module to increase the usefulness of the206

generated similarity map. To take more temporal cues from207

all past frames, STM [1] introduces an external memory208

to store past frames’ features and uses the attention-based209

matching method to retrieve information from memory. Many210

methods [2], [3], [5], [33], [34], [37], [38], [39] are extended211

from STM. For instance, to reduce the non-locality, KMN [37]212

applies Query-to-Memory matching with a kernelized memory213

read. RMNet [34] proposes to replace STM’s global-to-global214

matching with local-to-local matching. SwiftNet [12] elab-215

orately compresses spatiotemporal redundancy in matching-216

based VOS via Pixel-Adaptive Memory. Some methods217

[13], [40], [41], [42], [43], [44], [45], [46] use vision218

transformers to capture spatial-temporal dependencies among219

frames.220

We also regard STM as the baseline. Different from the221

above methods, we tackle the VOS problem from the per-222

spective of reference mask utilization. Most of the existing223

methods tend to fuse masks in some direct and naive manners224

in the encoder part, and we aim to discuss this problem more225

comprehensively.226

III. METHOD 227

In this section, we elaborate on the technical details of our 228

approach. First, we briefly describe the common VOS pipeline 229

for a better understanding. Then, we introduce different refer- 230

ence mask utilization strategies with eight encoders and give 231

the key observations. Next, we present the proposed mask- 232

enhanced matcher and the formulated network in detail. 233

A. Overview of the Common VOS Pipeline 234

The semi-supervised VOS problem can be defined as: given 235

a video sequence of and a target mask in the first frame, 236

the task is to segment sequential frames at every timestamp 237

according to the reference set which includes several historical 238

frames with their corresponding predicted masks (groundtruth 239

for the initial frame). A typical pipeline of the commonly- 240

used matching-based segmentation usually consists of a query 241

encoder, a reference encoder, a matcher and a decoder. 242

1) Query Encoder: The query encoder EQ is used to encode 243

the t-th query frame to be segmented. It first obtains the feature 244

representation of the query frame and then embeds it to its 245

corresponding key and value embeddings (kQ
∈ RH×W×Ck , 246

vQ
∈ RH×W×Cv ) through two parallel convolution layers, 247

where H and W are feature height and width, and Ck, Cv are 248

channel dimensions of key and value embeddings, respectively. 249

2) Reference Encoder: The reference encoder ER is 250

designed to memorize the target appearances from reference 251

sets R = {(Ii , Mi )}N , where N is the size of the reference 252

set, including some past frames with their corresponding 253

masks. Similar to the query encoder, the reference encoder 254

also outputs key and value embeddings. If there is more 255

than one element in reference sets, each of them will be 256

independently encoded. Mathematically, the final output of 257

the reference encoder is a pair of key and value embeddings 258

(kR
∈ RN×H×W×Ck , vR

∈ RN×H×W×Cv ). 259

3) Matcher: The matcher M is applied to model the 260

relationship between the query frame and the reference sets. 261

It could also be illustrated as retrieving the target information 262

from a memory bank (reference set). The matcher first calcu- 263

lates the similarity of every pixel in the query key embedding 264

kQ with every pixel in reference key embedding kR . Then, 265

the similarity matrix is regarded as the affinity matrix to be 266

multiplied on the reference value vR . Next, the results will be 267

concatenated with the query value vQ as the final matching 268

results y. The matching procedure can be expressed as: 269

y(p) = [vQ(p),
∑
∀q

σ(kQ(p), kR(q)) · vR(q)] (1) 270

where p and q denote pixels in query and reference key 271

embeddings, respectively. “·” denotes dot-product and σ is 272

a softmax function σ(k Q(p), k R(q)) =
exp(k Q(p)·k R(q))∑

∀q
exp(k Q(p)·k R(q))

. For 273

multi-objects segmentation, the above matching process will 274

be implemented for every target in a parallel manner. 275

4) Decoder: The decoder D receives the output of the 276

matcher as input, then output segmentation results for each 277

target in the query frame. It includes a refinement module [7] 278

that gradually upscales the feature maps with multiple stages. 279
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Fig. 2. Mask utilization on the encoder. Eight instantiations are implemented. The light purple, faint yellow and light grey rounded rectangles in the
background correspond to early fusion, post fusion and multi-scale fusion, respectively.

At every stage, the output of the previous stage will be280

concatenated with a feature map from the query encoder at281

the corresponding scale through skip-connections and then fed282

into the next stage. A softmax operation is attached on the last283

refinement stage and the mask probabilities for each target284

in the current frame are acquired. Finally, a soft aggregation285

operation [7] is used for merging all predicted maps to obtain286

the segmentation results.287

B. Reference Mask Utilization on the Encoder288

Reference masks are used by most prior methods [1], [6],289

[7], [8], [9], [10], [11], [36] in the encoder part to obtain290

fine-grained segmentation by default. However, most of the291

existing methods tend to absorb the reference masks in some292

direct and naive manners, without further exploration. In this293

section, we study the mask utilization in the encoder and294

try to find the most effective mask fusion way from eight295

different kinds of encoders. The encoders are classified into296

three categories as early fusion, post fusion and multi-scale297

fusion, according to the mask fusion location in the encoders,298

as shown in Fig. 2. Half of the eight instantiations are inherited299

or summarized from existing methods and the other half are300

devised by ourselves. Note that the instantiations from the301

previous approaches might not cover all the possible cases302

but select several representative methods. Next, to make the303

comparison about different mask combination ways as fair304

as possible, we provide a unified codebase that keeps the 305

same remaining architectures (matcher and decoder [1]), train- 306

ing/inference configurations and hyper-parameters for every 307

instantiation. Details are as follows. 308

Early fusion is the most naive and frequently-used way, 309

which fuses the raw reference masks with reference frames 310

before feeding into the reference encoder. The majority of pre- 311

vious methods [1], [2], [6], [7], [9], [33], [35], [37], [39], [47] 312

lie in this kind. For example, the most representative method 313

STM [1] and STM-based methods [34], [37], [39] exploit two 314

encoders, i.e. a 4-channel memory encoder for the reference 315

frames with the predicted masks encoding and a regular query 316

encoder for the query frame feature extraction. We realize 317

one instantiation (listed as I1) from these STM-based methods 318

as shown in Fig. 2 (a). It simply concatenates the reference 319

frames with corresponding raw masks along the channel 320

dimension to form a 4-channel input tensor and then sends 321

it into a reference encoder. Specifically, 322

R = {Concate(Ii , Mi )}N (2) 323

where Ii and Mi denotes the frame and mask (groundtruth 324

for the first frame) of the i-th sample in the reference set R, 325

respectively. N is the size of R and Concate(·) indicates 326

the concatenation operation along the channel dimension. The 327

mask is regarded as a channel of the frame thus only has 328

the same importance as the three (R, G, B) color channels. 329

There is no further explicit spatial interaction between frames 330
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and masks, but the channel fusion is considered inside the331

encoder.332

Post fusion aggregates the raw mask or mask features333

with the frame features after the feature extraction stage for334

foreground discovery [5], [8], [9], [10], [11], [34], [36], [40],335

[48], [49]. For instance, AGAME [8] concatenates the raw336

masks with the frame embeddings to enhance the target337

appearances. RaNet [10] utilizes the raw mask to select338

foreground (FG) or background (BG) similarity maps as FG339

or BG features for segmentation. SSTVOS [40] uses the mask340

to get object affinity value from the transformer for predicting341

object masks. Formally, in post fusion, we have342

FR
= f (FI , FM ) (3)343

where FR, FI and FM denote the features of the reference set,344

reference frames and reference masks, respectively. f means345

the fusion function and follows [7] for all encoders in this type.346

We have summarized two common mask fusion approaches347

from exiting methods in this type and implemented their348

mask utilization part with two corresponding instantiations,349

I2 [8], [9], [10] and I3 [5]. In detail, I2 (Fig. 2(b)) directly350

downsamples the raw masks and fuses them with output ref-351

erence frame features from the query/reference shared frame352

encoder. Differently, I3 (Fig. 2(c)) proposes to extract the mask353

features with an independent network. Besides, we add I4354

(Fig. 2(d)) to explore if the mask encoder could be shared355

with the frame encoder. Post fusion combines the high-level356

features of reference frames and masks, and no low-level357

interaction is considered.358

Multi-scale fusion is exploited very recently [12] and359

means using mask information in multiple locations of the360

encoders. Specifically, SwiftNet [12] uses multi-stage down-361

sampling blocks for mask embedding and fusion. We imple-362

ment one instantiation (I5) from the mask fusion part of363

SwiftNet and propose three other instantiations (I6, I7 and I8)364

for a more in-depth discussion. I5 (Fig. 2(e)) fuses downsam-365

pled mask information into the frame features after the first and366

fourth ResNet stages. The frame features and mask features are367

aligned vertically with the same size and concatenated together368

to facilitate multi-scale aggregation. Besides, the query and369

reference frames share one encoder. The fusion module (ele-370

mentwise sum) and downsampling blocks (reversed sub-pixel371

modules and 1×1 convolutions) of I5 are consistent with372

SwiftNet. I6 (Fig. 2(f)) employs a separate ResNet to extract373

the reference mask features rather than simple downsampling,374

then fuses them with the reference frame features in the first375

four stages of ResNet. The query and reference frame encoders376

are not shared. I7 (Fig. 2(g)) differs from I6 in two folds,377

(1) the query and reference frame encoders are shared; (2) the378

reference mask encoder is regarded as the mainstream so that379

the features of reference frames could be reused. Therefore,380

in I7, every frame only needs to forward once through the381

frame encoder and could be directly added into the reference382

set if necessary. For I8 (Fig. 2(h)), the difference with I6383

is that a shared frame encoder is used for the query and384

reference frames to reduce the parameters. The fusion modules385

in I6, I7 and I8 are the same, which is an AFC block [50].386

Fig. 3. Detailed pipeline of the proposed MaskVOS. It consists of an
unbalanced Siamese frame encoder for query and reference frame feature
extraction, a mask encoder for mask representation, a memory bank to save
the reference set, a mask-enhanced matcher to retrieve the memory bank and
a decoder to obtain the final segmentation results.

Multi-scale fusion of masks provides multi-level interactions, 387

enabling sufficient fusion for reference masks and frames. 388

From the comparison of the above eight instantiations in 389

Sec. IV-E, we observe that our I8 obtains the best performance 390

with a shared frame encoder, a separate mask encoder and the 391

multi-scale fusion. Our empirical evaluation results reveal that 392

(i) extracting mask representations with a stand-alone feature 393

encoder is important, which is more helpful than using raw 394

masks or simple downsampling, and (ii) multi-scale fusion 395

is the most sufficient manner and achieves the best results, 396

demonstrating both the low-level and high-level mask features 397

are useful. 398

C. MaskVOS 399

According to the above analyses of the mask influence in the 400

encoder part, a problem is raised, “Could the reference masks 401

also benefit the matcher?” To investigate this, we propose a 402

mask-enhanced matcher, exploiting the mask features during 403

the memory matching process to further enhance target fea- 404

tures and weaken the distraction of background areas. Then, 405

by combining the encoder of I8 from Sec. III-B, the pro- 406

posed mask-enhanced matcher and an ordinary decoder from 407

Sec. III-A, we propose a new method, dubbed MaskVOS, 408

which thoroughly excavates the mask in both the encoder and 409

matcher parts of VOS. The pipeline of MaskVOS is presented 410

in Fig. 3. 411

We first give more details about our encoder here. As shown 412

in Fig. 2(h) and Fig. 3, the proposed feature extractor consists 413

of an unbalanced Siamese frame encoder and a light mask 414

encoder. The former extracts features of query and reference 415

frames, while the latter takes the reference masks as input and 416

outputs multi-scale mask features. The Siamese frame encoder 417

is “unbalanced” since it encodes the query and reference 418

frames differently. When extracting the features of the query 419

frame, the Siamese encoder maps the RGB frame to the 420

embedding space directly. When encoding the reference frame, 421
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Fig. 4. Detailed architecture of the proposed mask-enhanced matcher as
described in Sec. III-C. The dashed arrow means slicing the last element
along the temporal dimension. The wR and wQ are the mask attention maps
of the reference sets and the query frame.

it fuses the mask features from the mask encoder through the422

AFC [50] modules in multiple feature scales.423

Most prior arts [2], [3], [4], [5], [39] use the non-local424

like matcher [1], but the VOS is actually a local task since425

every pixel on the target object mainly has relationships with426

neighboring pixels. The attention map between the query427

frame and reference sets in this kind of matcher includes plenty428

of unnecessary feature pairs, thus containing background noise429

and not so focused on the target, as shown in Fig. 1. One of430

the solutions is to strengthen the object features and suppress431

the backgrounds by directly involving the reference mask432

information in the matcher. However, this is always neglected433

by the previous works. Instead, we realize this situation and434

develop a mask-enhanced matcher, which utilizes the reference435

mask features produced by the light mask encoder to reduce436

the non-localization. As presented in Fig. 4, we first use the437

mask features FM to generate the mask attention maps. The438

attention maps are multiplied with the value embeddings,439

obtaining the mask-enhanced values. More specifically, for440

reference sets, we employ a 1 × 1 convolution layer to FM
441

to generate the mask attention map wR directly, and obtain442

the aggregated value v̂R as:443

wR
= Conv(FM )444

v̂R
= wR

◦ vR (4)445

where Conv denotes 1 × 1 convolutions. For the attention446

map wQ of the query frame, we need to transfer the previous447

mask features FM to the current frame since the mask features448

of the current frame is not available yet. Instead of intuitive449

time-consuming warping with optical flow, we simply translate450

the attention map of the last frame wR
−1 to the current frame451

according to the feature similarities between the query frame452

and previous frame (the t-1 frame) from the reference set as: 453

wQ
= σ(Conv(kQ), Conv(kR

−1)) × wR
−1 454

v̂Q
= wQ

◦ vQ (5) 455

where the subscript −1 denotes the last element of the 456

reference set, i.e., the t-1 one, note that the (t-1)-th frame 457

and corresponding mask are always stored in the reference 458

set. σ is the softmax function. ◦ and × denote Hadamard 459

product and matrix multiplication, respectively. After the value 460

enhancement, the final matching results of the matcher is: 461

y(p) = [v̂Q
(p),

∑
∀q

σ(kQ(p), kR(q)) · v̂R
(q)] (6) 462

where p and q denote pixel in query and reference key 463

embedding, respectively. y is the output of the matcher. Next, 464

y will be sent to a decoder which is a common one as described 465

in Sec. III-A, to obtain the final segmentation results. 466

IV. EXPERIMENTS 467

In this section, we first introduce the implementation details 468

of our approach and the datasets and the evaluation metrics. 469

Then we perform extensive experiments to demonstrate that 470

the proposed MaskVOS consistently outperforms or obtains a 471

comparable performance with the state-of-the-art methods on 472

three datasets, DAVIS16 [14], DAVIS17 [15] and YouTube- 473

VOS [16]. Next, we give some qualitative results to show the 474

effectiveness of our MaskVOS. Finally, we conduct compre- 475

hensive ablation studies to analyze the effect of the individual 476

components of our method and some configurations. 477

A. Implementation Details 478

We implement two versions of our approach. The first uses 479

a ResNet-50 [51] (the first four stages) as the backbone of the 480

frame encoder, and a ResNet-18 (the first four stages) as the 481

backbone of the mask encoder, except that of I4 is a ResNet-50 482

since it is shared with the frame encoder. The other one (also 483

the final version) employs a swin-transformer-small [52] as the 484

frame encoder’s backbone and a swin-transformer-tiny as the 485

mask encoder’s backbone. The ResNet and transformer ver- 486

sions are shorted as MaskVOS† and MaskVOS, respectively. 487

All the ResNet and swin-transformer models are pretrained 488

on ImageNet [53]. Similar to most STM-based methods [1], 489

[33], [38], we synthesize video clips with length 3 by applying 490

data augmentations (random affine, color, flip, resize and crop) 491

on COCO [53] training sets. Then we use these synthetic 492

videos to pretrain our model. Adam optimizer [54] with a 493

fixed learning rate of 1e-5 is used for pretraining. After that, 494

we train our model on real videos by sampling 3 frames 495

from each video sequence and applying data augmentation 496

on those frames. The maximum time interval of sampling 497

increases by 5 for every ten training epochs. We freeze 498

all batch normalization layers and use AdamW optimizer 499

(β = (0.9, 0.999), eps = 10−8) with an initial learning rate 500

4 × 10−6. The model is trained with a batch size of 4 and 501

the input resolution 400 × 400 for 160 epochs on 4 TITAN 502

RTX GPUs. In the inference stage, our model takes the 480p 503

Authorized licensed use limited to: Zhejiang University. Downloaded on January 04,2023 at 06:40:10 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: DELVING DEEPER INTO MASK UTILIZATION IN VIDEO OBJECT SEGMENTATION 6261

TABLE I
COMPARISON WITH THE STATE-OF-THE-ART ON THE DAVIS16-VAL AND DAVIS17-VAL. ‘OL’ INDICATES THE USE OF THE ONLINE-LEARNING

STRATEGY. ‘+YT’ MEANS THE USE OF YOUTUBE-VOS FOR TRAINING. THE RUNTIME OF OTHER METHODS WAS
OBTAINED FROM THE CORRESPONDING PAPERS

(480 × 854) resolution as input like other methods and adds504

a frame and its predicted mask into the memory bank every505

five frames. We conduct all inference experiments on a single506

TITAN RTX GPU.507

B. Datasets and Evaluation Metrics508

We evaluate our approach on DAVIS16 [14], DAVIS17 [15]509

and YouTube-VOS [16] benchmarks. DAVIS2016 is a single-510

object dataset, which contains 30 training video sequences511

and 20 validation video sequences. DAVIS2017 is a multi-512

objects dataset expanded from DAVIS2016, including 60 train-513

ing video sequences and 30 validation video sequences.514

YouTube-VOS is a large-scale VOS dataset with 3471 training515

videos and 474 validation videos. And each video contains516

a maximum of 12 objects. The validation set includes seen517

objects from 65 training categories and unseen objects from518

26 categories, appropriate for evaluating algorithms’ general-519

ization performance. We use the evaluation metrics provided520

by the DAVIS benchmark to evaluate our model. J&F evalu-521

ates the general quality of the segmentation results, J evaluates522

the mask I oU and F estimates the quality of contours.523

We mainly use J&F to explain the performance in the524

following experiments.525

C. Comparison With the State-of-the-Art 526

1) DAVIS: Table I reports the evaluation results on 527

DAVIS16-val and DAVIS17-val. Our MaskVOS achieves 528

the leading performance on both DAVIS16-val (91.1%) and 529

DAVIS17-val (85.5%), outperforming all the methods in the 530

Table I. Specifically, it surpasses all the online-learning meth- 531

ods with a large margin (+4.3%∼+10.9%), the matching- 532

based methods such as STM [1], RMNet [34] and CFBI [36], 533

and the transformer-based methods SST [40] and JOINT [41]. 534

Compared to the baseline STM, MaskVOS improves +1.8% 535

on DAVIS16-val and +3.7% on DAVIS17-val. Moreover, 536

our ResNet-based MaskVOS† also improves the baseline 537

and already performers better than most methods like 538

GIEL [5], SwiftNet [12], SST [40], EGMN [33] and so on in 539

DAVIS17-val, and STM [1], RMNet [34], CFBI [36], etc in 540

DAVIS16-val. We attribute the performance advances to the 541

help of the proposed encoder and mask-enhanced matcher, 542

which can effectively reduce background interference and 543

enhance the target regions, thus greatly boost the quality of 544

segmentation mask. On DAVIS17, with a ResNet-50 as the 545

backbone, our method achieves 11.1 FPS (80.6%). Besides, 546

compared with other transformer-based methods AOT-L [13], 547

SST [40] and JOINT [41], our method achieves better results 548
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TABLE II
COMPARISON WITH THE STATE-OF-THE-ART ON YOUTUBE-VOS 2018 VALIDATION SET. ‘OL’ INDICATES THE USE OF ONLINE-LEARNING STRATEGY.

THE SUBSCRIPTS OF J AND F DENOTE SEEN OBJECTS (s) AND UNSEEN OBJECTS (u). THE METRIC
OVERALL MEANS THE AVERAGE OF Js ,Ju ,Fs ,Fu

than these methods due to the thorough mask utilization. Our549

runtime is a trade-off between latency and accuracy depending550

on requirement: if we reduce the input size to half of the input551

resolution, it achieves 28.1 FPS (71.1%).552

2) YouTube-VOS: Table II shows the comparison with state-553

of-the-art methods on YouTube-VOS 2018 validation [16].554

On this benchmark, our MaskVOS† obtains an overall score555

of 81.5%, significantly outperforming many state-of-the-arts556

models like STM [1], GIEL [5], KMN [37], EGMN [33] and557

SwiftNet [12]. Compared with the baseline STM, MaskVOS†558

boosts the performance with a dramatic gain +2.1%. Note that559

YouTube-VOS is a really large VOS dataset, thus +2.1% is560

actually a significant improvement. By using swin-transfomer561

as the backbone, MaskVOS further improves the performance562

to 81.9%. It surpasses all the methods in the table. Moreover,563

our method performs favorably on both seen and unseen564

categories.565

D. Qualitative Results566

We show the qualitative comparison of our MaskVOS and567

the baseline STM [1] in Fig. 5. Benefitting from sufficiently568

absorbing the reference masks into both the encoder and569

matcher, our method yields more precise segmentation com-570

pared to STM. In the first video, even STM can segment out571

the primary instances, they lose the label for the bike in the572

fifth image and predict a confusion label for the handlebar573

when only part of it is visible in the last image. In the 574

second sequence, STM fails to segment out the skateboard 575

under occlusions and fast motion. By comparison, our method 576

can robustly capture the object and succeed in tracking and 577

segmentation due to our effective mask utilization. 578

Fig. 6 shows more qualitative examples of our MaskVOS. 579

We choose challenging videos from DAVIS17 validation sets 580

and sample important frames (e.g. before and after occlusions, 581

dramatic deformation and complex motion). As seen in the 582

figure, our method is robust to these challenges. For example, 583

the bicycle wheel in the first row is skinny, and it also moves 584

fast and undergoes, while the segmentation results of our 585

MaskVOS are correct and robust. The target man in the second 586

row is dancing in the street with various non-rigid movements, 587

and our method could easily achieve accurate segmentation. 588

E. Ablation Study 589

We analyze the effect of the individual components of our 590

method and some configurations. Unless specified, we use 591

the ResNet-50 as our backbone with 480p input resolution, 592

pretrain on COCO, train with DAVIS17 and YouTube-VOS, 593

and test on DAVIS17-val. 594

1) Mask Utilization on Encoders: We first ablate the mask 595

impact on feature extractors, i.e., comparing all the instan- 596

tiations (I1-I8). The matcher and decoder of them are the 597

same as STM for reducing the extra influence and realizing 598
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Fig. 5. Qualitative comparison of our method with the baseline STM [1] on the DAVIS2017. Some details are zoomed in with red rectangles. Our model
handles some hard, challenging conditions like object occlusion, motion blur and dramatic appearance changes better than STM due to the full utilization of
reference masks.

Fig. 6. Qualitative results of MaskVOS on the DAVIS17. The chosen scenes represent tough occasions, such as occlusion, shadows, non-rigid motion, small
objects, complicated shapes and drastic changes in shape, which our method manages to handle.

fair comparison on the encoder part. We directly train these599

models on DAVIS17 and YouTube-VOS with input resolution600

240 × 427 and test them on DAVIS17-val to fully explore601

the representation power of these encoders. The three parts602

of Table III show the results of early fusion, post fusion and603

multi-scale fusion, respectively. Comparing I2 v.s. (I3, I4) or604

I5 v.s. (I6, I8), we could find that extracting the features of605

masks brings a large performance improvement than using606

raw masks or simple downsampling. The reason is that mask607

representation is supervised and learned by the final VOS loss608

function for better results, while the raw masks do not. From609

I3 v.s. I4 and I6 v.s. I8, we observe that sharing the query and610

reference encoders but giving a stand-alone encoder for the611

mask is a superior configuration of the encoder, which reduces612

the frame encoder parameters and empowers better embedding 613

for the mask. Besides, regarding the reference frame encoder 614

(I8) rather than the mask encoder (I7) as the mainstream 615

achieves better results since the mask encoder is usually a 616

small network like ResNet-18, which has lower representa- 617

tion power than the frame encoder with a larger network. 618

Moreover, the best multi-scale fusion of the reference mask 619

and frame (I8) surpasses both the best early fusion (I1) and 620

post fusion (I4), because the low-level, middle-level and high- 621

level features are sufficiently interacted in multi-scale fusion. 622

In conclusion, our I8 achieves the top performance with fewer 623

parameters than most instantiations. 624

2) Memory Bank Management: We compare different mem- 625

ory management rules in Table IV. It could be found that 626
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TABLE III
IMPACT OF MASK UTILIZATION ON ENCODERS. MODELS ARE TESTED

WITH THE INPUT RESOLUTION OF 240P ON DAVIS17-VAL

TABLE IV
ABLATIONS ON MEMORY BANK MANAGEMENT. AFTER PRETRAINING ON

COCO, MODELS ARE TRAINED ON DAVIS17 AND YOUTUBE-VOS,
AND ARE TESTED WITH THE INPUT RESOLUTION

OF 480P ON DAVIS17-VAL

TABLE V
EFFECTIVENESS OF THE PROPOSED MASK-ENHANCED MATCHER. AFTER

THE PRETRAINING ON COCO, MODELS ARE TRAINED ON
DAVIS17-TRAIN AND TESTED WITH THE INPUT

RESOLUTION OF 480P ON DAVIS17-VAL

saving both the first and the previous frame into the mem-627

ory is the most important, bringing significant performance628

improvements than using either one. This is because our model629

is strong enough to handle large appearance changes while630

being robust to drifting and error accumulation by effectively631

exploiting the memory. Besides, having every five frames632

saved in addition to the first and the previous frames further633

boosts performance with +2.1% gains. Therefore, we can634

save either the first and the previous frames in the memory635

for minimal memory consumption or add a new intermediate636

memory frame at every five frames for maximal accuracy. The637

latter is the configuration of our final model.638

3) Effectiveness of the Mask-Enhanced Matcher:639

In Table V, we explore the impact of our proposed matcher,640

where models are first pretrained on COCO, then trained641

on DAVIS17-train and tested on DAVIS17-val. Specifically,642

we have three variants, (i) the ordinary matcher without using643

mask enhancement in both query and reference embeddings644

(w/o Q&R), (ii) just enhancing the reference embeddings645

(w/R), and (iii) enhancing both the query and reference646

embeddings (w/ Q&R). We observe that no mask-enhanced647

embeddings (i) decays accuracy by −0.7% over both aggre-648

gated embeddings (iii). Only enhancing reference (ii) brings649

+0.2% over (i) but is still worse than (iii) by −0.5%. The650

results demonstrate that the mask enhancement is indeed651

TABLE VI
IMPACTS OF DIFFERENT SIMILARITY COMPUTATIONS. AFTER

PRETRAINING ON COCO, MODELS ARE TRAINED ON
DAVIS17 AND YOUTUBE-VOS, AND ARE TESTED

WITH THE INPUT RESOLUTION OF
480P ON DAVIS17-VAL

TABLE VII
ABLATIONS ON THE DIFFERENT BACKBONE. AFTER PRETRAINING ON
COCO, MODELS ARE TRAINED ON DAVIS17 AND YOUTUBE-VOS,

AND ARE TESTED WITH THE INPUT RESOLUTION
OF 480P ON DAVIS17-VAL

TABLE VIII
ABLATIONS ON DIFFERENT INPUT RESOLUTIONS. AFTER PRETRAINING

ON COCO, MODELS ARE TRAINED ON DAVIS17-TRAIN
AND TESTED ON DAVIS17-VAL

beneficial in the matcher, and it is helpful in both query and 652

reference embeddings. Our MaskVOS applies mask enhance- 653

ment in both query and reference embeddings (iii) which has 654

the best performance. We also visualize the attention maps and 655

mask predictions of the proposed mask-enhanced matcher (iii) 656

and the commonly-used matcher (i) in Fig. 1, from which we 657

can see that the former is more robust for the distraction of 658

background. 659

4) Similarity Calculation: Table VI shows results for dif- 660

ferent ways of similarity calculation in the matcher. Two 661

memory coverage types are considered here, L2 similarity 662

and dot product. We observe that L2 similarity yields better 663

performance by +0.5% than dot product, which is consistent 664

with the conclusion of [3]. Therefore, we employ L2 similarity 665

in our final model. 666

5) Varying the Backbone: Our MaskVOS has two back- 667

bone configurations, the traditional convolution network 668

ResNet [51] and one recent typical transformer swin- 669

transformer [52]. More specifically, ResNet-50 and swin-small 670

are used for the frame encoder, and ResNet-18 and swin- 671

tiny are used for the mask encoder. As shown in Table VII, 672

the transformer-based model achieves better results with a 673

large improvement of +2.2% over the convolution-based 674

model. However, the transformer-based model will inevitably 675

introduce more computational cost, as shown in Table VII. 676

We provide the two backbone variants for different accuracy- 677

efficiency requirements and adopt both configurations in 678

MaskVOS for a fair comparison with previous methods. 679

6) Varying the Input Resolutions: We now ablate the input 680

resolutions in Table VIII with 240p and 480p. The models are 681
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first pretrained on COCO then trained on DAVIS17-train and682

tested on DAVIS17-val. The results are intuitive, i.e., a larger683

input size results in much better performance (+9.3%). On the684

other hand, increasing the input size will inevitably slow down685

the inference speed, from 28.1 FPS to 11.1 FPS. Therefore,686

we provide both two variants to adapt to different application687

requirements.688

V. CONCLUSION689

This paper delves deeper into mask utilization in both690

the encoder and matcher of VOS. We first implement eight691

kinds of encoders in a unified platform to investigate effective692

strategies of reference masks and frames fusion in the encoder693

part. One of our designs yields the best results and indicates694

that (i) a stand-alone mask encoder is necessary for better mask695

representations, and (ii) multi-scale fusion is beneficial for suf-696

ficient interaction between the features of reference masks and697

frames. Moreover, we present a new mask-enhanced matcher698

to explore the mask impact on the matcher part, decreasing699

the background distraction and aggregating the locality of the700

matching process. A new network is then proposed, named701

MaskVOS, which consists of the mask-fused encoder, the702

mask-enhanced matcher and a standard decoder. Our simple703

yet effective network sufficiently exploits the reference masks704

and achieves state-of-the-art results on three commonly-used705

VOS datasets.706

We hope this work will push a step further for the VOS707

research field, especially the previously neglected mask utiliza-708

tion problem. Besides, the unified codebase is also useful for709

this task since lots of models could be found and easily imple-710

mented in it. We believe the architectures and ideas discussed711

in this paper are successful in excavating the advantages of712

the reference masks. It could be extended for other video713

segmentation tasks such as video instance segmentation and714

video panoptic segmentation. We leave this as our future work.715
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