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Abstract— Event cameras have garnered considerable at-
tention due to their advantages over traditional cameras in
low power consumption, high dynamic range, and no motion
blur. This paper proposes a monocular event-inertial odometry
incorporating an adaptive decay kernel-based time surface with
polarity-aware tracking. We utilize an adaptive decay-based
Time Surface to extract texture information from asynchronous
events, which adapts to the dynamic characteristics of the
event stream and enhances the representation of environmental
textures. However, polarity-weighted time surfaces suffer from
event polarity shifts during changes in motion direction. To
mitigate its adverse effects on feature tracking, we optimize
the feature tracking by incorporating an additional polarity-
inverted time surface to enhance the robustness. Compara-
tive analysis with visual-inertial and event-inertial odometry
methods shows that our approach outperforms state-of-the-art
techniques, with competitive results across various datasets.

I. INTRODUCTION

Accurate environmental perception is essential in robotics.
Traditional vision sensors, like conventional cameras, often
suffer from motion blur during rapid movement and can lose
image details due to their limited dynamic range, thereby
undermining perception accuracy and robustness. Event cam-
eras, equipped with Dynamic Vision Sensors (DVS), offer
a promising solution to these challenges. They generate
events asynchronously whenever a pixel’s brightness change
surpasses a preset threshold. Consequently, event cameras
boast a wide dynamic range, high temporal resolution, low
energy consumption, and immunity to motion blur.

It is commonly recognized that high-textured regions trig-
ger events more frequently than low-textured ones, making
it possible to extract texture details from the event stream.
However, processing these asynchronous events is a chal-
lenging task. For this reason, various event representation
methods have been proposed, and Gallego et al. [1] classify
these event representations into Individual Events, Event
Packet, Event Frame/Image, Time Surface, etc. Time Sur-
face [2], a 2D map representation in which each pixel stores
the timestamp of the corresponding event, is widely utilized
in event-based SLAM or odometry methods [3], [4].

To highlight recent events over past events, time sur-
faces often employ an exponential decay kernel [5], but
this method presents some inherent limitations. Initially, the
exponential decay kernel requires a preset parameter—time
constant η, which requires manual adjustment for different
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Fig. 1: Event cameras have potential advantages over tradi-
tional cameras in high dynamic range and high-speed motion
scenes. Time surfaces with an exponential decay kernel (the
third column) are unable to adjust their internal parameter
(time constant η) in response to the event stream’s dynamic
characteristics, resulting in bold edges and redundant events.
Conversely, adaptive decay-based time surfaces (the fourth
column) offer clear details and less noise.

sequences. It lacks adaptability to the dynamics of the
event stream, and this approach is prone to bold edges
and noticeable trailing when the event frequency is high.
Moreover, it does not filter out events that contribute less
to the texture, resulting in superfluous events within time
surfaces. Furthermore, the motion direction of the event
camera influences the polarities. When sudden changes occur
in the direction of motion, the most recent events may
exhibit opposite polarities. Consequently, this can lead to
fluctuations in the grayscale values of the pixels associated
with these events, potentially disrupting feature tracking.

To tackle the aforementioned challenges, inspired by [6],
we propose a monocular event-based visual inertial odometry
with the adaptive decay-based time surface representation
and polarity-aware tracking. The main contributions of the
paper are concluded as follows:

• We propose a real-time monocular event-inertial odom-
etry based on adaptive decay-based time surface and
polarity-aware tracking within the MSCKF framework
for accurate pose estimation.

• We present an adaptive decay-based time surface to
accommodate the dynamic characteristics of the event
stream. And we propose a polarity-aware tracking
method that improves the stability of feature tracking
by utilizing an additional polarity-inverted time surface.

• We evaluate the proposed method using different
datasets, comparing its accuracy with visual-inertial
odometry and event-inertial odometry methods, and
assessing the efficiency of the adaptive decay and the
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proposed tracking approach. Experimental results show
that our method produces competitive results.

The remainder of this paper is organized as follows: Sec-
tion II provides a brief summary of recent works. Our system
is described in Section III. Section IV presents detailed
experimental settings and results in multiple datasets. Finally,
Section V offers a succinct overview of our system and
outlines future directions.

II. RELATED WORKS

A. Event-based Visual Odometry

Kueng et al. [7] developed a pioneering method for
event-based visual odometry that relies on feature extraction
from grayscale maps and asynchronous event-based tracking,
facilitating 6DoF pose estimation and mapping. However,
this method is confined to feature points detected in image
frames. Another stride in event-based visual odometry by
Kim et al. [8] achieved real-time event-based SLAM by
integrating triplet probabilistic filters for pose estimation,
scene mapping, and intensity estimation, although this ap-
proach demands GPU acceleration due to its computational
intensity. EVO [9] advanced the field by presenting an image-
to-model alignment-based tracking approach to capture rapid
camera movements, recovering semi-dense maps in parallel
processing, although a lengthy start-up phase and poor
accuracy hinder it. EDS [10] improved upon this with an
event generation model to track camera motion, enhancing
the accuracy of visual odometry but at the expense of
increased computational demand and slower optimization
speeds. Lastly, an innovative 6DoF motion compensation
mechanism by Huang et al. [11] allowed deblurred event
frame generation synchronized to RGB images using an
event generation model, addressing the modality disparities
between images and event data.

Geometric approaches inadequately harness event data,
whereas deep learning-based event odometers introduce an
innovative processing paradigm. RAMP-VO [12] is the in-
augural end-to-end framework for event- and image-based
visual odometry, merging asynchronous event streams with
image data through a parallel encoding scheme. Alterna-
tively, DEVO [13] constitutes the premier monocular event-
only odometry system, grounded in deep learning, which
trains on event voxel grids and inverse depth maps under
the guidance of ground truth poses, achieving markedly
enhanced accuracy over conventional techniques. Although
deep learning odometry signifies a stride in precision, cost-
effective accuracy enhancements on computation-constrained
platforms, such as drones, may still benefit from integrating
event data with IMU measurements.

B. Event-based Visual Inertial Odometry

Zhu et al. [14] introduced the pioneering event-based
odometry by integrating an event-driven tracker with IMU
data. However, its real-time application is hindered by com-
putationally demanding feature tracking. Vidal et al. [15]
advanced the field by establishing a tightly integrated frame-
work combining events, frames, and inertial readings for

enhanced state estimation. Complementarily, some research
integrates events and IMU within a continuous-time schema.
Mueggler et al. [16] devised a continuous-time approach for
merging high-frequency event and IMU data for visual iner-
tial odometry. Embracing a sophisticated feature tracker [17],
EKLT-VIO [18] demonstrated accurate performance in Mars-
like and high-dynamic-range sequences and showed good
potential in vision-based exploration on Mars. Dai et al. [19]
presented a comprehensive model marrying continuous-time
inertial data with events, innovating an exponential decay
correlation for events. Guan et al. [20] developed a uniformly
distributed event corner detection algorithm for raw events,
and designed two event representations to perform feature
tracking and loop closure matching for a keyframe-based
visual inertial system. Based on this, Guan et al. [21]
utilized motion compensation for the event stream based on
IMU measurements and introduced line and point feature
constraints, improving odometric precision.

Although time surfaces based on exponential decay can be
additionally motion compensated to enhance performance,
as employed by [11], [21], they still rely on accurate sensor
measurements (e.g. IMU) or accurate odometer estimates.
To make the exponential decay kernel adaptable to the
dynamics of the event stream, we adopted the event activity
model proposed by Nunes et al. [6], and introduced an
adaptive decay kernel for different event cameras and prac-
tical operating conditions. Leveraging such advancements,
we propose a monocular event-inertial odometry with the
adaptive decay kernel and optimize feature tracking for the
problems faced by the polarity-weighted time surface-based
approach, resulting in a more robust and accurate odometry.

III. METHODOLOGY

A. System Overview

The system overview is depicted in Fig. 2. Raw events
are transformed into adaptive decay-based time surfaces
(Sec. III-C) using the proposed Time-Priority strategy. Data
from a monocular event camera and an IMU are fused in
the Multi-State Constraint Kalman Filter (MSCKF) [22],
enabling precise and low-latency pose estimation. Given the
sparse event outputs from the event camera when the system
is in static or slow motion, we utilize a dynamic initialization
method [23] to incorporate feature observations across time
surfaces and IMU measurements for system initialization.
Once initialized, upon receiving a new event packet, the
system leverages IMU measurements to propagate the mean
and covariance of the state to the timestamp of the new event
packet, and augments a cloned IMU pose to the state vector
(Sec. III-B). Afterward, sparse feature observations from
the proposed tracking method (Sec. III-D) are utilized to
update the state (Sec. III-E). Landmarks and old cloned poses
are marginalized out of the state vector for computational
efficiency.

B. State Vector of Event-Inertial Odometry

The state vector xj at timestamp tj of the system is
composed of the inertial state xIj , inertial pose clones xC
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Fig. 2: System overview. The system includes the Time Surface Map Generation Module, the Adaptive Tracking Module
and the State Estimator. The Adaptive Tracking Module fuses the tracking results of Polarity-weighted and Polarity-inverted
time surfaces to alleviate the tracking loss that occurs when the direction of motion or illumination changes.

and the inverse depths of landmarks xf , given by

xj =
[
xT
Ij xT

C xT
f

]T
,

xIj =
[
Ij
G qT GpT

Ij
GvT

Ij bT
aj

bT
gj

]T
,

xC =
[
Ij
G qT GpT

Ij · · · Ij−m

G qT GpT
Ij−m

]T
xf = [ρ1 · · · ρl · · · ρs]

T
,

(1)

where Ij
G q denotes the unit quaternion, and the corresponding

rotation matrix is denoted as R(
Ij
G q) =

Ij
GR. Furthermore,

GpIj and GvIj denote the position and velocity of the IMU
in the global frame at time tj , while baj

and bgj are the
biases of the accelerometer and the gyroscope, respectively.

The sliding window maintains a set of m + 1 cloned
IMU poses at the timestamps of the event packet for feature
triangulation and state update like an RGB-Camera-based
VIO. Stable features tracked across the entire sliding win-
dow frames are considered as SLAM features and will be
augmented to the state vector for extending the time span
of active constraints. In this paper, we use the inverse depth
parameterization and only include maximum s landmarks in
the state for limiting computational complexity. The extrinsic
parameters C

I R,CpI between the IMU and the camera are
precalibrated and assumed to be known. In our practical
experiments, m and s are set to 10 and 50, respectively.

C. Time Surface and Adaptive decay

Event Definition: Events primarily occur in regions with
rich environmental textures, such as edges. When the bright-
ness of a pixel changes beyond a certain threshold, an event
is triggered. An event at timestamp tk with pixel coordinate
[uk, vk]

T is defined as:

ek = {uk, vk, tk, pk} , (2)

where the polarity pk ∈ {−1, 1} indicates whether the
brightness increase or decrease.

Time Surface: As illustrated in Fig. 1, event frames (in the
second column) generated from spatio-temporal neighbor-
hoods of raw event are the primitive method for representing
event positions within an image. This representation method
is highly sensitive to event counts and often struggles to
accurately capture environmental texture due to the lack of
consideration for event timestamps. To address this issue,
the Time Surface [2], which retains event timestamps, is
proposed. To prioritize recent event information, the time
surface is usually used together with an exponential decay
kernel [5]:

τ1(ep, t)
.
= exp (− t− tp

η
) , (3)

where η represents a predefined time constant and ep is any
previous event and tp is its timestamp. The time constant
η needs to be fine-tuned to mitigate interference from past
events. However, this invariant time constant η does not
accommodate all camera motion and should be adjusted with
different motion situations. A constant η results in bold edges
in the time surfaces when the motion is aggressive.

Adaptive Decay Kernel: To reflect the dynamic characteris-
tics of the event stream, [6] proposes the Event Activity α(t)
as follows:

α(t) = τ2(ep, t)α(tp) + n(t, tp) , (4)

where tp is the timestamp of any previous event ep and
n(t, tp) is the count of events within the time interval [tp, t].
Then we can obtain the adaptive decay kernel for the time
surface, which is derived from the exponential decay. Given
the time derivative of Eq. (3):

∂τ1(ep, t)

∂t
= −1

η
exp (− t− tp

η
) = −λ(t)τ1(ep, t) , (5)

where λ represents the decay rate which we expect to be
time-varying and influenced by the event activity. The decay
rate λ(t) is intended to be proportional to the event activity
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Fig. 3: The impact of event activity on tinit. The increased
value of event activity shortens the temporal scope of active
events, thereby mitigating interference from past events.

Fig. 4: The direction of motion influences the polarity of
events. Abrupt changes in motion direction can cause a
reversal in event polarity, which may lead to tracking loss.
Lines are only used to highlight polarity changes.

λ(t) ∝ α(t), solving the Eq. (5) yields the adaptive decay:

τ2(ep, t) =
1

1 + r · α(tp)(t− tp)
, (6)

where α(tp) is the event activity at previous timestamp tp
and r is the coefficient. Eq. (6) introduces the coefficient r,
which differs from [6] where the coefficient r is set to a
constant of 1. However, this setting ignores the influence of
the camera resolution as well as the threshold for triggering
events, resulting in too little decay for redundant events or
too much decay for active events.

The number of event activities increases with event fre-
quency. As inferred from Eq. (6), when the event frequency
increases, events with the later timestamp have less decays.
In other words, if the pixel value remains constant, a higher
event frequency implies that the event timestamps are closer
to t. Event information is retained for a longer period of
time when the event frequency is high. Therefore, modeling
the dynamics of the event stream by introducing the event
activity enables adaptively adjusting the decay for the events
and thus provides high-quality imaging.

Adaptive decay-based Time Surface (ATS) : We then
discuss how to use the adaptive decay τ2(·) to generate an
adaptive time surface with timestamp tj . The adaptive decay
kernel τ2(·) includes the event activity which could reflect
the dynamic characteristics of the event stream. Thus, the
adaptive time surface based on the kernel τ2(·) is more robust

to various event frequencies and naturally provides a novel
and effective way to filter out inactive events and reduce
noise. Specifically, any previous event ep with ν(ep, tj) <
wth is considered inactive (tj is the timestamp of the adaptive
time surface), with ν(ep, t) is defined as:

ν(ep, t) =
1

1 + r · α(t)(t− tp)
, (7)

here wth is a flexible threshold and ν(·) is modified from
Eq. (6) for the convenience of calculation. In practical
computations, α(t) can be approximated by the event activity
associated with the closest event to time t.

When the system receives an event message, as shown in
the Fig. 3, the event activity is calculated recursively, i.e.,
the decay τ2(ek−1, tk) is calculated first from Eq. (6), and
then Eq. (4) is used to calculate the event activity α(tk) at
the event timestamp tk. n(tk, tk−1) is always 1 since there
is only one event in adjacent moments. In this recursive
manner, calculate all event activity at the moment of the
event timestamp and save it with the corresponding event.

And there are two different strategies to determine the
initial event timestamp tinit and the timestamp tj of the
adaptive decay-based time surface:

• Data-Priority [6]: tinit starts with the first event times-
tamp and is typically reset after obtaining a set of active
events when ν(einit, tj) < wth. The method tends to
utilize all events without duplication, but the timestamp
tj of the time surface cannot be predicted in advance. In
addition, the frequency of the time surfaces generated
based on this method is sensitive to the threshold wth.

• Time-Priority: we first estimate tinit based on the the
timestamp tj of the time surface, event activity α(tj)
and predefined threshold wth, as follows:

ν(einit, tj) = wth =⇒ tinit = tj−
1− wth

r · α(tj)wth
. (8)

This approach allows for arbitrary timestamps for time
surfaces and decouples event activity and generation of
the adaptive time surfaces for parallel processing.

Events that are considered active have timestamps between
tinit and tj . We find the latest active events in each pixel,
denoted as el(x) and the pixel value is τ2(el(x), tj) or pl ·
τ2(el(x), tj) if the time surface is polarity-weighted. If the
pixel has no active events, set the value of the pixel to zero.
Finally, all pixel values are mapped to [0, 255].

D. Polarity-aware Feature Tracking

To verify the performance of adaptive decay-based time
surfaces in the odometry, we utilize the Fast corners [24]
and track them with the LK optical flow [25] method. This
approach functions properly within datasets containing event
cameras. However, we observe that abrupt changes in motion
direction may lead to tracking failures as they violate the
assumption of brightness constancy. Diverse motion direc-
tions induce events with opposite polarities at identical scene
positions, leading to fluctuations in pixel values, as illustrated
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in Fig. 1 and Fig. 4. Such fluctuations notably impact the
accuracy of odometry estimation.

Actively inverting event polarities generates a polarity-
inverted time surface map, and this map can be regarded as
an approximation under the condition of maintaining event
polarity, which to some extent mitigates the issue of the
violated brightness constancy assumption. By simultaneously
tracking both the original and polarity-inverted time surfaces
and adaptively merging the tracking results, we ensure con-
tinuous and stable feature tracking. Estimating the velocity
based on IMU measurements to make this determination may
suffer from misjudgments or delays. We track both images
separately and then compare the number of successfully
tracked features. When the number of successfully tracked
features on the polarity-weighted time surface is less than
that on the polarity-inverted map, we merge the both tracking
results. Finally, we apply the RANSAC method to eliminate
outliers and obtain the final matches by estimating the
fundamental matrix from the matched features.

E. Update with Tracked Features

When tracking results are available, we select features
within the sliding window for triangulation and system
update. The system update follows two principles. Firstly,
we aim to triangulate using as much data as possible to
ensure accuracy, thereby ensuring positive gains from sys-
tem updates. Secondly, stable tracked points are selectively
included in the state vector for continuous estimation, aim-
ing to improve system accuracy while maintaining control
over increased computation time. Based on these principles,
features are categorized into SLAM and MSCKF types.

Specifically, for the current time surface feature tracking,
if tracking fails or reaches the maximum length (equal to the
sliding window), suggesting that landmark observations are
maximized, we attempt to triangulate. For a landmark Gpf

associating with a successfully triangulated feature, we have

Gpf =
Ij−m

G RT

(
C
I R

T 1

ρl
π−1(

[
ui

vi

]
) + CpI

)
+ CpIj−m

,

(9)

where π(·) represents the back projection function that
transforms a pixel to the normalized image plane. The inverse
depth ρl is defined in the anchor frame. For instance, the
SLAM feature always selects the oldest frame {Cj−m} in
the sliding window as the anchor frame. Consequently, the
position Gpf could be computed using the observation ek
in the anchor frame. It’s worth noting that for the MSCKF
feature, the anchor frame is determined as the first observed
frame. Given the new observation (e.g. ei) in the latest frame
{Cj}, the nonlinear measurement model is given by:

zEi = he

(
xCj ,

Gpf

)
+ nEi = π(Cjpf ) + nEi (10)

Cjpf = C
I R

Ij
GR

(
Gpf − GpIj

)
+ CpI (11)

where the measurement noise is associated with the event
pixel noise and follows a white Gaussian distribution
N (0,Qe). Features tracked throughout the entire sliding
window are augmented into the state vector, continuously

updating the system with subsequent landmark observa-
tions—referred to as SLAM features. Other successfully tri-
angulated points, termed MSCKF features, are updated using
the efficient MSCKF nullspace projection [22], avoiding the
inclusion of landmarks in the state vector and thus reducing
system complexity.

IV. EXPERIMENTS

In this section, we perform extensive experiments to
evaluate the efficacy of the proposed method. Initially, we
conduct comparisons with classical visual-inertial odome-
try approaches, specifically two optimization-based meth-
ods: ORB-SLAM3 [26] and VINS-Mono [27], along with
a filtering-based method, OpenVINS [28], on the HKU
dataset [29]. Subsequently, we compare our method with
event-inertial odometry [14], [15], [19], [20], [30], [31] on
the DAVIS 240C dataset [32], which is collected using the
event camera (with a resolution of 240×180) and an internal
IMU. Additionally, we conducted ablation experiments on
different decay kernels and feature tracking methods, on the
dataset [20]. Both datasets [20], [29] contain the DAVIS 346
event camera with a resolution of 346 × 260. Finally, we
assess the time consumption of the system to evaluate its
real-time performance. The experiments are conducted with
the left camera if the stereo event camera is available.

The experiments are carried out on a desktop computer
equipped with an Intel Core i7-8700 CPU running Ubuntu
20.04 and ROS Noetic. Accuracy metrics for odometry
evaluation consist of Mean Position Error (MPE, %, per
100 meters), Mean Yaw Error (MYE, deg/m) and Absolute
Trajectory Error (ATE, m), while the trajectories are aligned
with the ground truth using SE(3) Umeyama alignment [33]
before evaluation. Taking into account the differences be-
tween event cameras and to obtain better environmental
textures, r in Eq. (6) is set to 0.2 in the DAVIS 240C dataset
and 0.1 for another two datasets.

A. Odometry Accuracy Evaluation and Comparison

Comparison with VIO: We first test the accuracy of three
visual odometry methods with the proposed odometry to
validate the superiority of event cameras in challenging
environments. The results are presented in Tab. I. VINS-
Mono [27] and OpenVINS [23] failed in all sequences in
this dataset, while ORB-SLAM3 [26] (using the monocular
visual-inertial method) demonstrates a larger MPE in all
sequences, with an average MPE of 1.023. Our method
exhibits consistent performance across all sequences with an
average MPE of 0.453. From the above results, our event-
based odometry is more accurate than conventional camera-
based methods in environments with high dynamic ranges
and intense motion.
Comparison with EIO: Next, we compare the accuracy
of this method with other event-based approaches. The
estimated and ground-truth trajectories were aligned with
the subset [5-10]s. The results are presented in Tab. II.
The proposed method achieves an average MPE of 0.35,
indicating an error of 0.35m for 100m motion. The test
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TABLE I: Comparison of MPE (Unit: %) results between the proposed method and visual-inertial odometry. Notably, both VINS-Mono [27]
and OpenVINS [23] failed across all sequences. Our method demonstrates better adaptability in high-speed and HDR scenes.

Sequence hku agg rota hku agg small flip hku agg tran hku agg walk hku dark normal hku hdr agg hku hdr circle hku hdr slow hku hdr tran rota

ORB-SLAM3 [26] 0.711 1.895 0.841 1.389 0.695 0.623 1.451 0.635 0.971
Ours 0.276 0.807 0.211 0.350 0.524 0.271 0.714 0.430 0.496

TABLE II: Comparison of Odometry MPE (Unit, %) on the DAVIS 240C dataset [32]. The methods tested below are all EIO methods.
The MPE results are obtained from respective articles, with Alzugaray’s results specifically cited from [34]. Because of the differences
in the calculation of rotational errors for these methods used for comparison, only MYEs of the proposed method are included.

Sequence Length (m) Zhu’s [14] Rebecq’s [30] Vidal’s [15] Alzugaray’s [31] Guan’s [20] Dai’s [19] Ours

boxes 6dof 69.852 3.61 0.69 0.44 2.03 0.61 1.5 0.32 (0.02)
boxes translation 65.237 2.69 0.57 0.76 2.55 0.34 1.0 0.36 (0.01)

dynamic 6dof 39.615 4.07 0.54 0.38 0.52 0.43 1.5 0.49 (0.05)
dynamic translation 30.068 1.90 0.47 0.59 1.32 0.26 0.9 0.59 (0.05)

hdr boxes 50.088 1.23 0.92 0.67 1.75 0.40 1.8 0.31 (0.02)
hdr poster 55.437 2.63 0.59 0.49 0.57 0.40 2.8 0.18 (0.02)

poster 6dof 61.143 3.56 0.82 0.30 1.50 0.26 1.2 0.31 (0.03)
poster translation 49.265 0.94 0.89 0.15 1.34 0.40 1.9 0.23 (0.04)

Average 52.588 2.58 0.69 0.47 1.45 0.39 1.58 0.35 (0.03)

results demonstrate that our method outperforms others in
three sequences and shows comparable performance in the
remaining sequences. The estimated trajectories of sequence
hdr boxes and hdr poster are shown in Fig. 5. The figure
shows that our odometry can provide good pose estimates,
but can still find a partial difference between the estimated
trajectory and the ground truth. When the event camera
moves slowly, the output events are not sufficient to reflect
the texture of the environment, which inevitably leads to
inadequate features and inaccurate tracking. Compared to
other event-inertial odometry methods, our approach es-
timates poses more accurately. The adaptive decay-based
method enables high-quality texture for feature extraction
and tracking, enhancing odometry accuracy with the pro-
posed tracking method.

B. Decay Comparison and Parameter Setting

In this section, we analyze how different decay functions
(exponential and adaptive decay) for time surface represen-
tations affect odometry accuracy. Specifically, we evaluate
various time constants η for the exponential decay kernel and
compare them with the adaptive decay kernel (as shown in
Tab. III). The experiments utilize a dataset publicly available
in [20], including a DAVIS 346 event camera.

Comparison of different decays: Tab. III reveals that dif-
ferent time constants η affect the accuracy of the odometry.
Usually, a larger time constant will keep more information
from older events but also introduce unwanted disturbances.
Setting η to 90ms may result in coarser and overlapping
edges, leading to lower precision. However, in sequences
such as vicon hdr1 and vicon hdr2, slightly larger time
constants can retain more information, with η set to 60ms ex-
hibiting slightly higher accuracy compared to η set to 30ms.
The odometry with exponential decay-based time surface
achieves the relatively best average accuracy when the time
constant η is 30ms. But it is inevitably prone to bold edges
and trailing when the event camera motion suddenly becomes
faster. The experimental results show that the odometry with

Fig. 5: Trajectory Estimates Comparison for hdr boxes (top)
and hdr poster (down) in the DAVIS 240C Dataset [32]

the adaptive decay-based time surface achieves the lowest
average ATE of 0.182m. The adaptive decay, which adjusts
the decay rate according to the dynamics of the event stream,
facilitates the creation of high-quality time surface maps,
providing better odometry accuracy than exponential decay.

Comparison of Different Thresholds wth: The threshold
wth provides a novel solution for filtering out events that
contribute little to the texture and saving the time surface
generation time. From Eq. (8), tinit is first estimated based
on the event activity to bound the time range of active events.
If the event activity remains constant, a larger threshold wth
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TABLE III: Comparison of odometry ATE (m) for different time
surface representations. TS stands for exponential decay, while
ATS stands for adaptive decay. The parameter η denotes the time
constant in the exponential decay, tested at values of 30, 60, and
90 ms. The threshold wth for the adaptive decay is consistently set
to 0.01, and (T ) denotes the improved tracking algorithm.

Sequence TS TS TS ATS ATS (T)
η = 30 η = 60 η = 90 wth = 0.01 wth = 0.01

vicon aggressive hdr 0.377 0.397 0.450 0.155 0.163
vicon dark1 0.248 0.294 0.251 0.124 0.111
vicon dark2 0.120 0.163 0.191 0.253 0.187

vicon darktolight1 0.273 0.309 0.359 0.177 0.219
vicon darktolight2 0.235 0.353 0.249 0.209 0.187

vicon hdr1 0.277 0.263 0.426 0.267 0.180
vicon hdr2 0.365 0.282 0.866 0.232 0.220
vicon hdr3 0.187 0.280 0.269 0.123 0.122
vicon hdr4 0.229 0.272 0.520 0.192 0.171

vicon lighttodark1 0.393 0.362 0.405 0.228 0.226
vicon lighttodark2 0.306 0.501 0.596 0.227 0.211

Average 0.274 0.316 0.417 0.198 0.182

Fig. 6: Comparison of threshold wth settings for adaptive
decay-based time surfaces: 0.01, 0.05, and 0.1. A median blur
with the kernel size of 1 is used to emphasize the difference.
The threshold wth needs to be set reasonably to ensure a
sufficient number of events while reducing interference.

tends to utilize events within a smaller time interval, oc-
casionally hindering the formation of desired environmental
textures. Conversely, a smaller threshold tends to use events
within a larger time interval, enriching image information
but introducing interference from old events. Fig. 6 depicts
adaptive time surface maps with different threshold settings.
A large threshold of 0.1 results in insufficient texture, while
a small threshold of 0.01 incorporates older events that
cause trailing effects. It requires a reasonable setting of the
threshold wth according to practical requirements to achieve
optimal texture performance. And a good threshold wth

setting usually accommodates all sequences in the dataset
without having to set it individually for each sequence. It is
important to note that the pixel values for pixels containing
active events are determined by the decay kernel and the
active event, rather than the threshold wth.

C. Polarity-aware Feature Tracking Evaluation

Subsequently, we investigate the effectiveness of the po-
larity weighting and the polarity-aware feature tracking pro-
cess, as presented in Tab. III. Experimental results indicate
some improvement when using polarity weighting, achieving
average ATE of 0.210m. Polarity weighting enhances the
distinction between brighter and darker pixels in the time

TABLE IV: Average Execution Time of Each Step in milliseconds

Operation ATS
Generation

Feature Detection
& Tracking

MSCKF Feature
Update

SLAM Feature
Update Others Total

Average
Time (ms) 5.4 6.7 1.3 0.2 2.4 16.0

surface maps, particularly accentuating nearby edges. While
offering the above benefits, it also introduces challenges for
feature tracking, mainly when the event camera’s motion
direction changes abruptly, causing shifts in event polarity
and undermining the assumption of intensity constancy. Our
method incorporates the tracking results of time surfaces with
inverted polarity, which somewhat mitigates the problem of
tracking failures due to abrupt changes in the direction of
motion, and thus achieves an improvement in the accuracy.

D. Computational Efficiency

Finally, we conduct a detailed analysis of the time con-
sumption for each operation in the proposed method, as
outlined in Tab. IV. The analysis is conducted on a typical
sequence vicon aggressive hdr, which has aggressive motion
speed and includes high dynamic range scenes. The reported
results represent the average values obtained from multiple
tests. The statistical results indicate that the average time
required for generating an adaptive time surface map is
5.4ms, while the adaptive tracking module is 6.7ms. The
total time required for the system to complete one update is
16ms, indicating its capability for real-time performance.

V. CONCLUSIONS AND FUTURE WORK

Cameras frequently experience motion blur during rapid
movement and are constrained by a limited dynamic range.
Event cameras, with novel dynamic vision sensors, offer
potential solutions to these problems by tracking changes in
pixel brightness. However, the asynchronous output of event
cameras poses challenges in leveraging event information.
We propose a monocular event-inertial odometry with an
adaptive decay kernel-based time surface and an MSCKF in
the back-end for state propagation and update. The adaptive
decay highlights recent events according to the dynamic
characteristics of the event stream and can also filter out
inactive events. Polarity-weighted time surfaces suffer from
polarity shifts when motion direction changes abruptly, and
we refine feature tracking by incorporating an additional
polarity-inverted time surface map to improve robustness.
Extensive experiments demonstrate the competitive accuracy
of our proposed method. The number of events may decrease
during slow motion, resulting in inadequate textures that pose
challenges to stable feature tracking. We will continue to
work on improving its robustness and accuracy.
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