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Abstract—In recent years, LIDAR has emerged as one of the
primary sensors for mobile robots, enabling accurate detection
of 3D objects. On the other hand, 4D millimeter-wave Radar
presents several advantages which can be a complementary
for LiDAR, including an extended detection range, enhanced
sensitivity to moving objects, and the ability to operate seamlessly
in various weather conditions, making it a highly promising
technology. To leverage the strengths of both sensors, this paper
proposes a novel fusion method that combines LiDAR and 4D
millimeter-wave Radar for 3D object detection. The proposed
approach begins with an efficient multi-modal feature extraction
technique utilizing a pillar representation. This method captures
comprehensive information from both LiDAR and millimeter-
wave Radar data, facilitating a holistic understanding of the
environment. Furthermore, a Pillar Attention Fusion (PAF)
module is employed to merge the extracted features, enabling
seamless integration and fusion of information from both sensors.
This fusion process results in lightweight detection headers
capable of accurately predicting object boxes. To evaluate the
effectiveness of our proposed approach, extensive experiments
were conducted on the VoD dataset. The experimental results
demonstrate the superiority of our fusion method, showcasing
improved performance in terms of detection accuracy and ro-
bustness across different environmental conditions. The fusion of
LiDAR and 4D millimeter-wave Radar holds significant potential
for enhancing the capabilities of mobile robots in real-world
scenarios. The proposed method, with its efficient multi-modal
feature extraction and attention-based fusion, provides a reliable
and effective solution for 3D object detection.

Index Terms—3D Object Detection, Multiple Sensors Fusion

I. INTRODUCTION

While there has been remarkable progress in 2D object
detection [1, 16, 17] leading to significant advancements in
robotics perception, when it comes to tasks involving 3D en-
vironmental perception, the use of point clouds which provide
rich geometric features but less appearance cues has proven to
be more effective in supporting semantic annotation and scene
understanding [9, 18, 24]. Further research indicates that when
relying solely on LiDAR for perception, the performance will
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(b) Radar-only

(c) LiDAR&Radar

Fig. 1. Example 3D detection result from the VoD validation set. (a): LIDAR
detection results based on PointPillars [9], missing the detection of a cyclist
which is a small object.(b):Radar detection results based on PointPillars,
missing the detection of a car which is stationary. (c):LiDAR&Radar detection
results based on our fusion model, which maintain detection for large objects
while enhance sensitivity to moving objects.

be limited by the lack of appearance information from a single
sensor and the sparse point cloud description.

To enhance the robustness of algorithms in coping with
diverse driving environments, some works have focused on
the multi-sensors for object detection, mostly fusing camera
images with LiDAR point clouds [7, 10]. However, camera
and LiDAR systems are susceptible to adverse conditions,
such as dust storms or precipitation, posing significant risks
for autonomous driving. Given the strong penetrative capa-
bilities of 4D Radar, which enables long-range observations
in harsh conditions, the multi-modal fusion of LiDAR and
Radar becomes both necessary and meaningful.But research
on the fusion of LiDAR and Radar for 3D object detection

Authorized licensed use limited to: Zhejiang University. Downloaded on September 30,2024 at 03:35:07 UTC from IEEE Xplore. Restrictions apply.



is still scarce, primarily due to the rarity of publicly available
datasets containing ample LiDAR and Radar data with high-
quality annotations. Additionally, the disparity in the quantity
of points between LiDAR and Radar data poses challenges for
effective fusion.

Addressing these issues, the presented Pillar Attention Fu-
sion (PAF) module of LiDAR and Radar algorithm in our
work effectively fuses multi-model information by introducing
an attention mechanism. This mechanism enhances features
within a single modality using the channel attention mod-
ule and fuses pseudo-image features of LiDAR and Radar
through a spatial attention module. We conducted experiments
on View-of-Delft (VoD)[13] which is a high-quality multi-
sensor automotive dataset for multi-class 3D object detection.
Referring to the official settings of the VoD dataset, we
evaluated the model proposed in this paper for three classes of
objects: cars, pedestrians, and cyclists under different difficulty
levels. The results are significantly improved compared with
the single-modal 3D object detection using PointPillars [9] as
the baseline.

The contributions are summaried as follow:

o We propose a novel framework for multi-modal 3D object

detection with LiDAR and 4D millimeter-wave Radar.

e Our proposed pillar attention fusion module effectively
integrates LiDAR and Radar point cloud data, while
maintaining the detection efficiency for pure LiDAR
baselines, integrating Radar to improve the model’s de-
tection ability, especially for moving objects.

e Our experiments on the VoD dataset show that the
detection results of our multi-modal fusion method are
significantly better than single modality methods.

II. RELATED WORK
A. Multi-modal 3D Object Detection

In recent years, 3D object detection algorithms based on
multi-modal fusion have achieved fruitful results. Proposal-
level fusion represented by MVOD [3] and AVOD [8] first
generates respective 3D proposals on different modal data,
and then combines these 3D proposals into deep-fusion mod-
ules, the final candidate area is generated to complete the
subsequent objects classification and 3D-box regression tasks.
Result-level fusion represented by F-PointNets [14] and F-
ConvNet [22] first uses a SOTA model in 2D target detector to
obtain the 2D detection results of the image, and then converts
these 2D detection frames into 3D frustums through the pro-
jection matrix between multi-sensors.Finally detect the point
cloud in these frustums through 3D detection technology to
achieve 3D box regression. Point-level fusion, represented by
PointPainting [20] and PointAugmenting [21], first establishes
the pixel-by-pixel correspondence between the point cloud and
the image, and then attaches the score of the detection or
segmentation in image through the 2D perception module to
the corresponding point of its pixel to obtain the painted or
augmented point cloud data. After that, input the painted point
cloud into any advanced single-modal 3D object detection
network to achieve better results than before.

It is worth mentioning that our survey shows that there are
very few papers related to 3D object detection that integrate
the different modal data of LiDAR and Radar, but Radar can
well complement LiDAR in detecting moving objects under
strong confrontation conditions. Therefore, the contribution
of our work is to propose an attention-based framework that
fuses LiDAR and Radar, and proves that it can achieve better
performance than single modality through experiments on the
VoD dataset.

B. Feature Fusion with Attention

The attention mechanism is a method inspired by the
human visual system, which has proven successful in various
computer vision tasks such as image classification, object
detection, semantic segmentation, face recognition, and med-
ical image processing [5, 6, 23]. Specifically, this mechanism
adaptively weights features in order to guide attention to key
areas in an image while disregarding irrelevant parts. The
derivatives of attention mechanism can be classified as four
basic methods of channel attention, spatial attention, temporal
attention and branch attention with the two mixed methods
of channel&spatial attention and spatial&temporal attention
according to the data domain.

Different channels in feature maps usually represent dif-
ferent objects, so the channel attention which can adaptively
recalibrate the weight of each channel is regarded as an
instance selection process deciding to focus on which objects
in a scene [6]. Similar to the channel attention, the spatial
attention can also be considered as an adaptive spatial region
selection mechanism choosing which locations in the space
to focus on [26]. As a dynamic time selection mechanism,
the temporal attention can decide which frames to concentre
on in a temporal domain. Previous work often emphasize
how to simultaneously capture short-term and long-term cross-
frames feature dependencies [12]. A relatively novel one is the
branch attention which focuses on specific branches within
a multi-branch network like a dynamic branch selection. On
the basis of the above primary methods, the channel&spatial
attention combines the advantages of the channel attention and
spatial attention, selecting critical objects and regions while
emphasizing spatial and channel information features [23].
Spatial&temporal attention blends the advantages of spatial
attention and temporal attention to adaptively select important
regions and key frames. Some works [4] calculate temporal
and spatial attention separately, while others [5] create joint
spatial and temporal attention maps.

Compared to previous works that focused solely on attention
within a single modality, our study aims to enhance the
fusion effect across multiple modalities through the attention
mechanisms. By integrating information from various sensors,
we can get richer insights and more robust performance in
complex tasks.

III. FusioN OF LIDAR&RADAR FOR OBJECT DETECTION

In this work, we propose an object detection framework
based on PointPillars that fuses LiDAR and Radar point
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Fig. 2. The overall framework of our proposed LiDAR&Radar fusion model.(1)Pillar Encoder: Encode the input point clouds of LiDAR and Radar into
pillars and generating corresponding pseudo-images. (2)Pillar Attention Fusion(PAF): The core module we proposed for fusing pseudo-images from LiDAR
and Radar, which is detailed in Fig. 3. (3)3D Box Regression: Adopting the subsequent networks in PointPillars to achieve 3D detection through our fused

feature map.

cloud inputs(Fig. 2). First, the transformation matrix between
LiDAR and Radar is established through the extrinsics of
the sensors and the Radar point clouds are projected into
the LiDAR coordinate system. After aligning the multi-modal
inputs, the LiDAR and Radar input point clouds are voxelized
respectively and extracted into 2D feature maps or pseudo-
images ' € RE*H*W and enhance the attention of pseudo-
images to specific objects by the channel attention module.
Then concatenate the LiDAR and Radar channel-attentioned
pseudo-images into a feature map F € R2CXH*W (o obtain
the weight of the feature map in space domain by a spatial
attention module and reweight the channel-attentioned LiDAR
and Radar feature maps with the weight. Finally fuse directly
the two reweighted feature maps, and the fused feature map is
obtained as input to the subsequent 2D-CNN and SSD modules
to regress the 3D box.

A. Multi-modal Pointcloud Encoder

For multi-modal fusion, a crucial step is the alignment
of multi-modal data, and the degree of data alignment has
a significant impact on the final detection results. In this
work, we draw inspiration from the methods employed in
PointPainting [20], which project the Radar point cloud into
LiDAR space with the extrinsics of multi-sensors. The raw
Radar point cloud contains seven aspects of information, we
filter and select five types of features: 3D location (z,y, 2),
reflectivity (RCS), and absolute radial velocity (v,..) based on
the official settings of VoD and the test results.

After aligning LiDAR and Radar data in the LiDAR co-
ordinate system and filtering out unnecessary features from
the raw Radar data, we convert these two modal point clouds
to pseudo-images separately following PointPillars. The point
cloud is firstly discretized into grids in the x-y plane and all
points falling into the same grid are considered to constitute
a pillar. Given the sparsity of the point cloud, the majority
of the pillars are empty and non-empty pillars will in general
have few points in them. Further processing involves filtering
out non-empty P pillars, subsampling or supplementing the
points in within each pillar to achieve a total of IV points

and obtain the corresponding index vectors. Following the
encoder process, pillar features of dimensions RP*P>*N can
be constructed from the original point cloud data, where D
represents the feature dimension of the raw input (4 for LIDAR
and 5 for Radar). Then utilize a simplified PointNet [15]
to generate point-wise features RE*F*N for the points in
pillars and perform a max pooling layer to produce pillar-wise
features of RC*F. The sparse pseudo-image F' € RE>*HxW
can be generated by scattering the dense features to the z-y
plane based on the grid positions corresponding to each pillar.

B. Pillar Attention Fusion Module

After converting the point clouds outputted by LiDAR and
Radar into pseudo-images that are aligned as much as possible,
the key step lies in how to fuse them. The fusion process needs
to preserve the detection capabilities of LiDAR while lever-
aging the advantages of Radar in detecting moving objects. In
this work, we propose a Pillar Attention Fusion(PAF) module
as shown in Fig.3, which incorporates attention mechanisms to
enable the network to learn the fusion of LiDAR and Radar on
its own. To enhance the representational capacity of features,
the pseudo-images of LiDAR and Radar are individually
subjected to channel-wise attention, focusing more on channels
containing crucial information, retaining valuable features, and
discarding less relevant ones. The separate process of channel
attention is as follows:

F =M/(F)®F (1)

in which F’ represents the feature maps for each modality
after applying channel attention. M, is the channel attention
module composed of two parallel max pooling and average
pooling layers followed by an MLP with two hidden layers and
finally a sigmoid activation to generate the channel attention
map M,(F) € REX1x1,

Subsequently, the pseudo-images enhanced with channel-
wise attention from different modalities are concatenated in
the channel domain, resulting in a single pseudo-image F' e
R2CxHXW With LiDAR and Radar modalities aligned, this
pseudo-image effectively combines features from LiDAR and
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Fig. 3. Pillar Attention Fusion(PAF) Module. The channel attention module
directs the model to focus more on specific feature channels that are more
meaningful for detecting targets. Fusion through the spatial attention model
allows the model to learn which modality’s features to emphasize at different
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Radar points at the same 3D positions. A spatial attention
mechanism is then employed to enable the network to learn
the importance of LiDAR and Radar features at each spatial
position. After calculating the spatial attention module gener-
ates weights W41 Which represent the importance of each
position, the pseudo-image before concatenation is reweighted
and summed to obtain the final fused feature map F". The
fusion process of spatial attention is as follows:

Wspatial = MS (F[//iDAR D F;?adar) (2)
F” = Wspatial & Fl//iDAR + (1 - Wspatial) ® F/Radar (3)

where FLZ par and Fl/%a dar Tepresents the individual channel
attention feature maps. M is the spacial attention modulere-
ducing channel dimensionality through global max pooling
and mean pooling seperately, and concatenating the results
with applying a convolutional layer and a sigmoid activation
to generate the spatial attention map Wparia € RVXW,

C. 3D Box Regression

Up to this step, we have achieved the multi-modal fusion
of LiDAR and Radar. We choose to adopt the framework
from PointPillars for the subsequent 3D bounding box re-
gression and perform top-down subsampling on the fused
feature map through 2D CNN. Each subsampled feature is
combined through upsampling and concatenation, resulting
in a concatenation of features from different strides. Then
input the final global feature into the Single Shot Detector
(SSD) [11], where 2D Intersection over Union (IoU) is utilized
to match prior boxes with ground truth. Subsequently, perform
regression for object height and elevation given 2D match.

IV. EXPERIMENTS
A. Datasets and Metrics

In this study, we verify the effectiveness of the proposed
model on the View-of-Delft (VoD) dataset [13]. The VoD
dataset [13] is a comprehensive dataset that provides synchro-
nized data of images, LiDAR point cloud, and 4D Radar point
cloud. It consists of 8,600 scans and includes 3D bounding box
annotations for over 26,000 pedestrians, 10,000 cyclists, and
26,000 cars. Notably, the VoD dataset offers three types of 4D
Radar point cloud: single-scan, three-scan, and five-scan. For
our evaluation, we utilize the original features extracted from

the Radar point cloud, which consist of seven dimensions [13].
The feature vector is represented as:

[%y,Z,RCS,UnU?«mT] “4)

in which (z,y, z) denote the coordinates of the Radar points,
RCS represents the Radar signal reflection-intensity, v,. is the
radial Doppler velocity relative to the ego vehicle, v,. is
the absolute Doppler velocity, and 7 indicates the time ID
indicating which scan the point belongs to.

To preserve the originality of radar data, we utilize the
single-scan Radar point cloud data. Our evaluation focuses on
three distinct object categories: cars, pedestrians, and cyclists
[13] and divides the detection difficulty into simple, moderate,
and difficult according to the difference in object size and
occlusion degree. We employ the commonly used 3D average
precision (AP3D) values as the evaluation metric for each
object category. Additionally, we calculate the mean 3D AP
(mAP-3D) and mean bird’s-eye view AP (mAP-BEV) values
to provide a comprehensive assessment of our algorithm’s
performance [13]. Following the official settings of the VoD
dataset, the IoU thresholds used for calculating the perfor-
mance metrics are set to 0.5 for cars, 0.25 for pedestrians and
cyclists [13].

B. Implementation details

We train on the official training set provided by the VoD
dataset and validate and test on its official validation set.
In the preprocessing stage of point clouds, both LiDAR and
Radar discard points outside the set detection range. In the
initialization stage of the model, the range of all point cloud
inputs is limited to (0, 57.6), (-28.8, 28.8), (-3, 2), and the size
of pixels is set to (0.16, 0.16, 5). Each sample can have the
max pixels of 40000 in train, 16000 in val and there can be
the max points of 10 within each pixel; The prior box sizes for
bicycles, cyclists, and pedestrians are set to (0.6 0.8 1.73), (0.6
1.76 1.73), (1.6 3.9 1.56). In the training phase of the model,
we adopt the AdamW optimizer and the OneCycleLR learning
rate schedule with an initial learning rate of 2.5 x 10~%, the
max learning rate of 2.5 x 1073 and the proportion of learning
rate increase cycle is 0.4. The batch size and the maximal
number of learning epochs are set to 8 and 100, respectively.
All the experiments are conducted on a GTX 4090 GPU.

C. Quantitative Results

a) 3D Object Detection on the VoD dataset: According
to the official settings of the VoD dataset, we also used Point-
Pillars as the baseline to evaluate the 3D detection performance
of LiDAR-only and Radar-only with the metrics in IV-A
and compared them with the LiDAR&Radar fusion model
presented in our study. As shown in Table I, our proposed
PAF module utilizes multi-modal LiDAR&Radar point clouds
for 3D object detection, achieving significantly better detection
levels than any single modality at the same baseline: on the
universal evaluation metric mAP-3D, our model is 6.83%
higher than LiDAR-only and 22.35% higher than Radar-only,
respectively.
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TABLE I
QUANTITATIVE RESULTS ON THE VOD VALIDATION SET

Method | Modality | Car \ Pedestrian \ Cyclist | mAP-3D | mAP-BEV
| LIDAR  Radar | Easy | Mod. | Hard | Easy | Mod. | Hard | Easy | Mod. | Hard | Mod. | Mod.
PointPillars | v/ | 69.23 | 68.83 | 6434 | 5825 | 5525 | 51.97 | 78.07 | 7343 | 68.04 | 6584 | 68.66
PointPillars | v | 3290 | 40.57 | 33.91 | 41.90 | 38.00 | 3459 | 77.68 | 72.40 | 6528 | 5032 | 57.07
ous | v v | 7190 | 69.22 | 64.59 | 66.57 | 65.02 | 60.25 | 87.90 | 83.77 | 80.10 | 7267 | 7578

b) Comparison with Other Methods on the VoD dataset:  visualization of LiDAR&Radar fused detection results is con-
In addition to comparing with single-modal input data, we ducted in the LiDAR space for a more intuitive emphasis
also compare our results with other algorithms [2, 19, 24, 25] on detection results. As shown in Fig. 4, large targets in
on the VoD dataset. Due to slight variations in experimental LiDAR, which contain more points, exhibit better detection
settings, we use the overall mAP across three classes of objects results. However, for small target classes with few points
at all difficulty levels for the comparison. From the results in or targets heavily occluded, the detection performance is
Table II, it is evident that our model significantly outperforms significantly compromised. In contrast, the number of Radar
existing algorithms on the VoD dataset. Of course, this out- points contained within a target is not strongly correlated with
come is largely attributed to the high detection capability of the target’s size and is more affected by the target’s motion

LiDAR in the fusion with Radar. state, resulting in more points for moving targets due to its
TABLE II sensor characteristics. Therefore, LiDAR-based 3D detection
COMPARISON RESULTS WITH OTHER METHODS may miss small targets, while Radar-based 3D detection may
| Modality | miss stationary objects. Our fused LiDAR and Radar 3D
Method : mAP-3D detection achieves good results for both of these targets.
| Radar LiDAR Image |
CenterPoint [24] | v/ | 4542
SMIFormer [19] | v/ | 4877
RCFusiont [25] | v/ v | 4965
IA-SSD [2] | v | 6282
Ours | v v | 7214

c) Ablation Studies with PAF module: Ablation studies
are conducted to validate the effectiveness of the proposed
PAF module in fusing LiDAR and Radar, and the results
are presented in Table III. Directly fusing LiDAR and Radar
feature maps without using the PAF module yields the lowest
detection accuracy. The introduction of channel attention alone
improves detection accuracy by 2.21%, while spatial attention
alone improves it by 7.48%. The use of the PAF module results
in a final detection accuracy improvement of 8.27%. The above
experimental results demonstrate that the PAF module we
adopted makes the fusion of LiDAR and Radar more effective.

TABLE III
ABLATION STUDIES RESULTS

PAF Modules | mAP-3D
Channel Attention  Spatial Attention ‘ Mod.

X X 64.40
v X 66.61
X v 71.88
v v 72.67 (b)

Fig. 4. Qualitative results on the VoD validation set. Two subfigures (a) and

D. Qualitative Results (b) are from different frames in the validation set of VoD. In each subfigure,
. L. . ' . . the top-left shows the original camera image, the top-right shows the detection

We provide qualitative results in Fig. 4. While our multi-  results from LiDAR-only, the bottom-left shows the results from Radar-only,
modal training is joint]y guided by LiDAR and Radar, the and the bottom-right shows the results from our model fusing LiDAR&Radar.
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V. CONCLUSION

This paper propose a novel fusion method combining Li-
DAR and 4D millimeter-wave Radar for 3D object detection
demonstrates superior performance in terms of accuracy and
robustness across different environmental conditions. The effi-
cient multi-modal feature extraction and attention-based fusion
enable seamless integration and comprehensive understanding
of the environment. This approach holds significant potential
for enhancing the capabilities of mobile robots in real-world
scenarios, providing a reliable and effective solution for 3D
object detection.
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