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Camera-Based 3D Semantic Scene Completion
With Sparse Guidance Network

Jianbiao Mei , Yu Yang , Mengmeng Wang , Junyu Zhu, Member, IEEE, Jongwon Ra,
Yukai Ma , Laijian Li , and Yong Liu

Abstract— Semantic scene completion (SSC) aims to predict
the semantic occupancy of each voxel in the entire 3D scene
from limited observations, which is an emerging and critical
task for autonomous driving. Recently, many studies have turned
to camera-based SSC solutions due to the richer visual cues
and cost-effectiveness of cameras. However, existing methods
usually rely on sophisticated and heavy 3D models to process the
lifted 3D features directly, which are not discriminative enough
for clear segmentation boundaries. In this paper, we adopt the
dense-sparse-dense design and propose a one-stage camera-based
SSC framework, termed SGN, to propagate semantics from
the semantic-aware seed voxels to the whole scene based on
spatial geometry cues. Firstly, to exploit depth-aware context
and dynamically select sparse seed voxels, we redesign the sparse
voxel proposal network to process points generated by depth pre-
diction directly with the coarse-to-fine paradigm. Furthermore,
by designing hybrid guidance (sparse semantic and geometry
guidance) and effective voxel aggregation for spatial geometry
cues, we enhance the feature separation between different cat-
egories and expedite the convergence of semantic propagation.
Finally, we devise the multi-scale semantic propagation module
for flexible receptive fields while reducing the computation
resources. Extensive experimental results on the SemanticKITTI
and SSCBench-KITTI-360 datasets demonstrate the superiority
of our SGN over existing state-of-the-art methods. And even our
lightweight version SGN-L achieves notable scores of 14.80%
mIoU and 45.45% IoU on SeamnticKITTI validation with only
12.5 M parameters and 7.16 G training memory. Code is available
at https://github.com/Jieqianyu/SGN.

Index Terms— Semantic scene completion, sparse guidance
network, hybrid guidance, voxel aggregation.

I. INTRODUCTION

IN RECENT years, there has been significant attention and
rapid progress in 3D scene understanding, which constitutes

the bedrock of autonomous driving systems and robotics.
By precisely perceiving the occupancy and semantics of their
surroundings, autonomous vehicles, and robotics can make
informed decisions and navigate safely. To this end, Semantic
Scene Completion (SSC) has been introduced to predict the
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semantic occupancy of each voxel of the entire 3D scene from
limited observation. SSC helps create a more comprehensive
representation of the environment, which includes filling in
the gaps or missing information in the sensor data. This can
be essential for agents to identify obstacles, understand the
road layout, and make safe decisions. However, accurately
estimating the semantics and geometry of the real world from
partial observations is challenging due to the complexities
presented by real-world scenarios.

SSC has attracted extensive studies due to its application
prospects for downstream tasks such as mapping and plan-
ning. When working with outdoor driving scenes, LiDAR
has emerged as a popular input modality for many existing
methods [1], [2], [3], [4], [5], [6] to capture 3D information of
surroundings, but it suffers from high-cost sensors. Recently,
there has been a shift towards camera-based SSC solutions.
As the pioneer, MonoScene [7] proposed the first framework
for monocular 3D SSC, utilizing mapping projection to lift
RGB images to 3D volumes processed with the 3D UNet.
Afterward, many camera-based methods such as OccDepth [8],
SurroundOcc [9], and OccFormer [10] are developed with
a similar pipeline consisting of the image backbone, view
transformer, and 3D model, as illustrated in Figure 1 (a).
However, they rely on sophisticated and heavy 3D models to
process the lifted 3D features directly, which are not discrim-
inative enough for clear segmentation boundaries. We explain
that the lifted 3D features by 3D-2D mapping projection [7]
contain many ambiguities due to the assumption of the uniform
depth distribution and 2D-3D methods such as LSS [11]
only utilize coarse surface information from depth distribution
estimation.

On the other hand, VoxFormer [12] proposed an MAE-
like architecture to complete non-visible structures using
constructed visible areas. It adopts the two-stage framework,
with the first stage for query proposal and the second stage for
densification and segmentation. By completing the 3D scene in
a sparse-to-dense manner shown in Figure 1 (b), VoxFormer
is more efficient and scalable than the dense processing with
complicated 3D models mentioned above. However, it still
suffers from several limitations. Firstly, the densification stage
is mainly considered from the perspective of scene completion
based on queries. The intra-category feature separation of
queries is neglected. Besides, the second stage only con-
siders the information from the queries that only include
partial observation and are not always accurate, increasing the
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Fig. 1. (a) Fully dense processing with heavy and complex 3D
model. (b) MAE-like architecture in a “sparse-to-dense” manner. (c) Our
“dense-sparse-dense” design with hybrid guidance and semantic propagation.
“A” denotes the voxel aggregation layer for geometry cues.

difficulty of subsequent completion and segmentation. Finally,
the two-stage training and inference cannot fully consider
global information due to the independent optimization of
different stages. The geometry information from the first stage
is also not fully utilized.

To address the above problems, we propose a novel
one-stage camera-based SSC framework, Sparse Guidance
Network (SGN), to propagate semantics from the semantic-
aware seed voxels to the whole scene based on spatial geome-
try cues, as illustrated in Figure 1 (c). Specifically, we employ
the dense-sparse-dense design to implement the semantic
propagation of semantic-aware seed features, avoiding relying
on heavy 3D models to process coarse scene representations
that are not discriminative enough. Firstly, to dynamically
select sparse seed voxels and encode depth-aware context,
we redesign the sparse voxel proposal network to directly
process points generated by depth prediction with the coarse-
to-fine paradigm. And by further designing hybrid guidance
(sparse semantic and geometry guidance) and effective voxel
aggregation for spatial geometry cues, we enhance the intra-
category feature separation and expedite the convergence of
the semantic propagation. We also devise the multi-scale
semantic propagation module using anisotropic convolu-
tions [13] for flexible receptive fields while reducing the
computation resources. By this means, our SGN is lightweight
while having a more powerful representation ability.

Extensive experiments on the challenging SemanticKITTI
[14] and SSCBench-KITTI-360 [15] datasets demonstrate the
superiority of our SGN over existing state-of-the-art methods.
For example, on the SemanticKITTI validation set, even our
lightweight version SGN-L achieves notable scores of 14.80%
mIoU and 45.45% IoU with only 12.5 M parameters and
7.16 G memory for training, exceeding VoxFormer-T by
1.45% points in mIoU and 1.30% points in IoU while being
more lightweight and less memory consumption.

Our main contributions can be summarized as follows:
• We propose a one-stage camera-based SSC framework

called SGN, propagating semantics from the semantic-
and occupancy-aware seed voxels to the whole scene
based on spatial geometry cues.

• We adopt the dense-sparse-dense design and propose
hybrid guidance and effective voxel aggregation to
enhance intra-categories feature separation and expedite
the convergence of the semantic propagation.

• Extensive experiments on the SemanticKITTI and
SSCBench-KITTI-360 benchmarks demonstrate the
effectiveness of our SGN, which is more lightweight and
achieves the new state-of-the-art.

II. RELATED WORKS

A. Semantic Scene Completion

Due to the vital application of semantic occupancy pre-
diction in autonomous driving, SSC has attracted extensive
attention. After the release of the large-scale outdoor bench-
mark SemanticKITTI [14], many outdoor SSC methods have
emerged. According to the input modality, existing outdoor
methods can be mainly classified into LiDAR-based and
camera-based methods.

1) LiDAR-Based Methods: consider LiDAR a primary
modality to enable accurate 3D semantic occupancy predic-
tion. Following the pioneering SSCNet [16], UDNet [17]
exploits a single 3D U-Net framework to obtain predictions
from the grids generated by the LiDAR points, resulting
in extra computation overhead of empty voxels. Afterward,
LMSCNet [1] introduces the 2D CNN for feature encoding,
and SGCNet [18] uses spatial group convolutions to improve
efficiency. Some solutions focus on multi-view fusion [2],
local implicit functions [3], and knowledge distillation [5]
for SSC. Besides, the relationships between semantic seg-
mentation and scene completion are explored. For example,
JS3C-Net [4] and SSA-SC [19] design a semantic seg-
mentation network to assist the semantic scene completion.
SSC-RS [20] design multi-branch network to fuse semantic
and geometry features hierarchically.

2) Camera-Based Methods: Recently, camera-based per-
ception such as detection [21], [22], [23], [24], [25], [26]
and segmentation [24], [27], [28] is currently more attractive
due to cameras’ richer visual cues and cost-effectiveness. And
there is also a shift towards camera-based solutions [7], [29]
to SSC. MonoScene [7] first proposed to infer 3D SSC from
a single monocular RGB image, which applied a classical 3D
UNet network to process the voxel features projected along
the line of sight. Afterward, TPVFormer [29] proposed a
tri-perspective view (TPV) representation to describe the fine-
grained 3D structure of a scene. VoxFormer [12] proposed an
MAE-like architecture to complete non-visible structures using
constructed visible areas. OccFormer [10] designed a dual-
path transformer network. And SurroundOcc [9] applied 3D
convolutions to upsample multi-scale voxel features progres-
sively and devised a pipeline to generate dense SSC ground
truth. Symphonize [30] modeled the scene volume with a
sparse set of instance queries with context awareness. Some
methods [8], [31] leveraged implicit stereo depth information
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Fig. 2. Overall framework of our SGN. The image encoder extracts 2D features, establishing the foundation for the 3D features generated through view
transformation. An auxiliary occupancy head is applied to provide geometry guidance. The sparse semantic guidance consists of two parts: sparse voxel
proposal and semantic guidance. The depth-based occupancy prediction is designed for the sparse voxel proposal. This proposal, along with the 3D features,
is fed into the subsequent semantic guidance (depicted in Figure 3) to index seed features and inject semantic context into these seed features. Afterward,
the voxel aggregation layer combines the semantic-aware seed features, geometry prior from the non-seed features, and occupancy-aware features from the
depth-based occupancy prediction. This forms the informative voxel features processed by the multi-scale semantic propagation for the final prediction.

and stereo matching to resolve geometry ambiguity. NDC-
scene [32] extends the 2D feature map to a Normalized Device
Coordinates (NDC) space to alleviate the feature ambiguity,
pose ambiguity and computation imbalance. Besides, there are
some SSC solutions [9], [29], [33], [34] for multi-view cam-
eras. And multiple benchmarks [15], [35], [36] are proposed
to facilitate the SSC’s development.

We focus on camera-based SSC in outdoor scenarios.
Compared with the existing works, our SGN proposes to
propagate semantics from the semantic-aware seed voxels to
the whole scene based on spatial geometry cues. SGN avoids
relying on heavy and sophisticated 3D models to handle lifted
voxel features with rough geometry context like many existing
SSC methods [7], [8], [9], [10], [30]. Our method is built
on the recent two-stage method VoxFormer [12]. However,
unlike VoxFormer, our SGN is one-stage, which adopts the
dense-sparse-dense design and proposes hybrid guidance and
effective voxel aggregation to enhance intra-categories feature
separation and expedite the convergence of the semantic
propagation. Compared with VoxFormer, our SGN achieved
better performance while being more lightweight and requiring
less memory consumption.

3) Camera-Based 3D Perception: Camera-based 3D per-
ception, encompassing domains such as 3D detection [21],
[22], [23], [24], [25], [26], [37], [38] and segmenta-
tion [24], [27], [28], [39], [40], has gained increasing traction
owing to the rich visual cues provided by cameras and
their cost-effectiveness. Various monocular-based approaches
have adapted 2D techniques to the 3D domain, such as
FCOS3D [25] and DETR3D [22]. In recent times, a sig-
nificant shift has been observed in camera-based research
toward Bird’s Eye View (BEV) representations [21], [24], [27],
[39], [41], [42], [43], [44], facilitated by view transformation
techniques such as LSS [11], OFT [45], and the cross-attention
module [24]. For example, BEVDet [21] and BEVDepth [41]
incorporate depth estimation to facilitate the transformation

from perspective view to BEV. Additionally, BEVFormer [24]
employs cross-attention to inject cues from image features to
BEV queries effectively. The efficacy of BEV-based percep-
tion [20], [24], [41], [43], [46], [47] has been validated by
these advancements. However, for Semantic Scene Completion
(SSC) tasks, the utilization of 3D voxel representations, which
encapsulate more volumetric information, becomes impera-
tive. As such, the quest to devise discriminative 3D scene
representations and to process voxel features both effectively
and efficiently remains a vibrant area of ongoing research and
exploration.

III. METHOD

A. Overview

We show the overall framework of our SGN in Figure 2.
SGN adopts the dense-sparse-dense design and propagates
semantics from the semantic-aware seed voxels to the whole
scene based on spatial geometry cues from the non-seed
features and features from the depth-based occupancy predic-
tion. SGN takes RGB images as the input and extracts 2D
features using the image encoder. Then the 3D features are
obtained through the view transformation. For dynamically
indexing seed voxels, we generate the sparse voxel proposal
based on depth prediction. Then according to the proposal
and 3D features, the hybrid guidance is designed to inject
semantic and geometry cues and facilitate feature learning.
Furthermore, we develop the voxel aggregation layer to form
the informative voxel features, which are processed by our
multi-scale semantic propagation module for the final semantic
occupancy prediction.

1) Image Encoder: We use ResNet-50 [48] with FPN [49]
to construct the image encoder for extracting 2D features from
RGB images. The extracted features F2D

∈ RNt ×C×H×W

provide a strong foundation for the subsequent voxel features,
where Nt is the image number of temporal inputs, C is the
feature channel and (H, W ) denotes the image resolution.
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2) View Transformation: Similar to MonoScene [7],
we construct 3D features by sampling 2D features via 3D-2D
projection mapping with camera parameters. The simple pro-
jection mapping operation provides coarse volumetric scene
representation for the latter contextual modeling. And it is
more convenient and concise than learnable LSS [11] and
cross-attention mechanism [24].

Let x ∈ RX×Y×Z×3 denote the centroid of X ×Y × Z voxels
in world coordinates. We establish the projection mapping
π(x) using the camera parameters (K, T), where K and
T = [R, t] are the cameras intrinsic and extrinsic matrices
directly provided in KITTI [50]. Let p denotes a point in x,
the mapping function establishes the relationship between the
point and the image pixel (u, v), which can be represented by:

[xc, yc, zc]
T

= R · p + t (1)

zc ◦ [u, v, 1]
T

= K · [xc, yc, zc]
T (2)

where ◦ denote element-wise product.
We take the average of sampled features from different

images for each voxel. And the features of voxels outside the
field of view (FOV) are set to zero. Mathematically, the 3D
features F3D

∈ RC×X×Y×Z are sampled from the 2D features
F2D as follows:

F3D
= W ·

Nt∑
t=1

[φπ(x)(F2D
t ) · MF OV

t ] (3)

Wp =

{
1/δp, δp > 0,

1, δp = 0.
(4)

where φa(b) is the sampling function that samples features b
at coordinates a, F2D

t is the 2D features of image It , MF OV
t ∈

R1×X×Y×Z is the binary mask indicating the field of view of
image It , δp is the number of hit images for point p in x, Wp
is the weight value for points p in W .

B. Feature Learning With Hybrid Guidance

As discussed above, most existing methods design heavy
and complicated models to directly process the 3D features
F3D produced by the view transformation module for the final
semantic scene prediction. We argue that the coarse scene
representation F3D is not discriminative enough to get clear
segmentation boundaries, which slows down the convergence
of the model. Therefore, we propose sparse semantic guidance
and geometry guidance to inject semantic and geometry cues
for informative voxel features.

1) Geometry Guidance: We first attach the auxiliary 3D
occupancy head as the geometry guidance after the 3D features
from the view transformation module to provide coarse geom-
etry awareness. Specifically, we construct the 3D occupancy
head with an anisotropic convolution layer [13] and a linear
layer. In the spirit of [51], the anisotropic convolution decom-
poses a 3D convolution operation into three consecutive 1D
convolutions in different directions. Additionally, each of these
1D convolutions is equipped with a mixer containing distinct
kernel sizes, enhancing the model’s ability to learn and extract
meaningful features from the input data. It can provide flex-
ible receptive fields while alleviating resource consumption.

By predicting the 3D occupancy Ŷo on the lifted 3D features
F3D using the auxiliary head, we apply the guidance on the
coarse scene representation and provide the geometry prior for
the latter seed features’ semantic prediction and propagation.
We optimize the occupancy probability with binary cross-
entropy loss:

Lgeo = −

∑
i

[(1 − Yo,i )log(1 − Ŷo,i ) + Yo,i log(Ŷo,i )] (5)

where i indexs the voxel of the 3D scene and Yo is the
occupancy ground truth. Note that the auxiliary 3D head is
abandoned during inference and using geometry guidance does
not introduce any extra computation.

2) Sparse Semantic Guidance: Since directly learning the
semantics of all the voxels from the 3D features with coarse
volumetric information is less effective and efficient, we pro-
pose propagating semantics from seed voxel to the whole
scene. Specifically, we generate the sparse voxel proposal to
choose seed voxels and encourage inter-category separability
of seed features with semantic guidance, expediting the latter
semantic propagation.

a) Sparse voxel proposal: We devise the sparse voxel
proposal network (SVPN) to generate the sparse proposal for
indexing seed voxels. Unlike Voxformer [12], which learns
class-agnostic proposal on temporal data offline for voxel
queries, our SVPN aims to dynamically select seed voxels
online by occupancy probability for subsequent semantic con-
text learning. Specifically, SVPN consists of depth estimation
and coarse-to-fine occupancy prediction. Following [12] and
[30], we utilize the pre-trained Mobilestereonet [53] to infer
the depth prediction and calculate the scene points P by back-
projecting the depth map into the 3D point cloud using the
camera parameters (K, T). The scene points P imply the
volumetric surface and are used for occupancy prediction.
Let (u, v) denote a pixel in the depth map and p is the
corresponding 3D point, the back-projecting procedure is
formulated as follows:

p = R−1
· [K−1

· (zc ◦ [u, v, 1]
T ) − t] (6)

where ◦ denote element-wise product, zc is the depth value
of the pixel. K and T = [R, t] are the intrinsic and extrinsic
parameters of the camera.

Next, we generate the occupancy prediction O ∈ RX×Y×Z

in a coarse-to-fine manner. Firstly, the points P are fed into
a voxelization layer adopted from DRNet [54] for voxel-wise
features. Then we apply the tiny sparse convolution network
consisting of a sparse feature encoder and a sparse geometry
feature encoder adopted from GASN [52] to predict the coarse
occupancy probability from the voxel-wise features. Finally,
the occupancy probability is further fed into a lightweight
Unet-like network [1] for the final occupancy prediction O,
which is used to select the sparse voxels as explained in
semantic guidance. Similar to the geometry guidance, we use
the binary cross entropy loss to calculate the loss Locc for
occupancy prediction.

To further utilize the geometry information from the depth-
based SVPN, we also take the occupancy-aware 3D features
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Fig. 3. Detailed architecture of the proposed semantic guidance module
(SGM). The sparse encoder block (SEB) consists of a sparse feature encoder
and a sparse geometry feature encoder adopted from [52].

F3D
o ∈ RCo×X×Y×Z from the last layer of the Unet-like

network for the latter voxel feature aggregation.
b) Semantic guidance: After obtaining the occupancy

prediction O and voxel coordinates V3D
∈ Z3×X×Y×Z of

the scene, we first choose the initial seed voxel features
F3D

s,0 ∈ RC×Ns and seed coordinates V3D
s ∈ Z3×Ns by:

V3D
s = V3D

[:, O > θ] (7)

F3D
s,0 = F3D

[:, O > θ] (8)

where θ is the threshold to determine if the voxel is occupied
and Ns is the number of non-empty voxel. Then these seed
voxel features F3D

s,0 and corresponding voxel indices V 3D
s

are fed into the semantic guidance module (SGM) illustrated
in Figure 3 for mutual interactions. The semantic guidance
module has two sparse encoder blocks (SEB), a fusion layer,
and an auxiliary semantic head. Each sparse encoder block
(SEB) consists of a sparse feature encoder and a sparse geom-
etry feature encoder adopted from [52] and outputs features
with multi-scale contextual information. Let F3D

s,1 , F3D
s,2 are the

outputs of the two sparse encoder blocks, the fusion feature
F3D

s ∈ RC×Ns are obtained by:

F3D
s = MLP([F3D

s,0 , F3D
s,1 , F3D

s,2 ]) (9)

where [.] denotes concatenate operation along feature dimen-
sion. After that, the fused features F3D

s are fed into the
auxiliary semantic head consisting of a two-layer MLP to
predict the corresponding semantics Ŷs ∈ RCclass×Ns , where
Cclass is the number of classes. We calculate the cross entropy
loss and lovasz loss [55] for the semantic guidance:

Lsem = Lce(Ŷs, Ys) + Llovasz(Ŷs, Ys) (10)

where Ys is the seed voxels’ semantic label indexed from the
semantic scene label Y.

By this means, we inject semantic cues into the fused
seed features F3D

s and enhance the feature separation between
categories, which is the key to semantic propagation.

C. Voxel Aggregation

As shown in Figure 2, to fully exploit the geometry infor-
mation in 3D features F3D and F3D

o , we further aggregate

them with the semantic-aware seed features F3D
s to construct

the final discriminative voxel features F3D
f ∈ R(C+Co)×X×Y×Z

for subsequent semantic propagation. Specifically, we leverage
the coordinates of non-seed voxels to index features F3D

n from
F3D . Then the non-seed voxel features F3D

n are fed into a
linear layer and combined with the semantic-aware features
F3D

s to form the new scene representation, which contains the
semantic context and geometry cues. We argue that non-seed
voxel features F3D

n are vital and can well complement the seed
features since the sparse voxel proposal is not always accurate.
To further utilize the geometry information from the SVPN,
we also concatenate the features F3D

o from SVPN with the
new scene representation to obtain the final voxel features.
The detailed procedure can be formulated as follows:

F3D
f = MLP([CN(F3D

s , Conv1d(F3D
n )), F3D

o ]) (11)

where CN is the feature combination of seed and non-seed
voxels.

D. Multi-Scale Semantic Propagation

By learning features with hybrid guidance and voxel aggre-
gation, we obtain discriminative voxel features F3D

f with the
rich semantic context in the seed features F3D

s and spatial
geometry cues from previous 3D features F3D

n , and occupancy-
aware features F3D

o . Then we design the multi-scale semantic
propagation (MSSP) module to propagate the semantic infor-
mation from seed features to the whole scene. The MSSP
module contains three anisotropic convolutional layers [13]
and the ASPP [57] module consisting of three 3D convolutions
with the kernel size of 3 × 3 × 3 and dilation of 1, 2, and 4.
This module is lightweight and can well capture multi-scale
features of instances of different sizes through convolutional
kernels with different receptive fields. Afterward, we use the
head consisting of a linear layer and softmax layer to predict
the final semantic scene prediction Ŷ ∈ RCclass×X×Y×Z from
the propagated voxel features.

Following MonoScene [7], we adopt the Scene-Class Affin-
ity Loss to force the network to account for voxels within the
same category as well as voxels across different categories.
The Affinity Loss optimizes the class-wise derivable precision,
recall, and specificity metrics simultaneously, where precision
and recall evaluate the performance of voxels within the same
class, while specificity assesses the performance of dissimilar
voxels. Specifically, similar to [7] and [32], we apply scene-
class affinity loss on both semantic and geometry results of
the prediction Ŷ. We integrate and optimize scene- and class-
wise semantics L sem

scal , geometry L
geo

scal , and cross-entropy loss
Lce. The overall loss function is formulated by:

Lssc = L sem
scal (Ŷ, Y) + L

geo
scal(Ŷ, Y) + Lce(Ŷ, Y) (12)

E. Training Loss

Unlike VoxFormer [12] with sophisticated two-stage train-
ing, we train our SGN end-to-end. The total training loss
L = Lgeo + Locc + Lsem + Lssc.
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TABLE I
SEMANTIC SCENE COMPLETION ON SEMANTICKITTI HIDDEN TEST SET. † DENOTES THE RESULTS PROVIDED BY MONOSCENE [7]. BOLD AND

UNDERLINE DENOTE THE BEST PERFORMANCE AND THE SECOND-BEST PERFORMANCE, RESPECTIVELY

IV. EXPERIMENTS

In this section, we present the datasets, evaluation metrics,
and detailed implementation aspects of our approach. Subse-
quently, we conduct extensive experiments to establish that
our proposed SGN consistently surpasses or achieves compa-
rable performance against the state-of-the-art methods on the
complex, large-scale outdoor dataset SemanticKITTI [14] as
well as SSCBench-KITTI-360 [15]. Following this, we provide
qualitative results to underscore the efficacy of our SGN.
Moreover, we conducted detailed ablation studies to dissect
the contribution of individual components of our method and
various configurations, thereby offering an in-depth analysis of
our approach. Additionally, we provide detailed experiments
on the NYUv2 dataset [58] to demonstrate the generalization
ability of our SGN on indoor scenes.

A. Dataset and Metrics

1) Dataset: For large-scale outdoor scene understanding,
the KITTI odometry dataset [50] collects 22 sequences with
20 classes with a Velodyne HDL-64 laser scanner in the
scenes of autonomous driving. SemanticKITTI [14] is based
on the KITTI dataset and provides semantic annotation of
all sequences. According to the official setting for semantic
scene completion (SSC), sequences 00-07 and 09-10 (a total
of 3834 scans) are for training, sequence 08 (815 scans)
is for validation, and the rest (3901 scans) is for testing.
SSCBench-KITTI-360 [15] offers a comprehensive bench-
mark for semantic scene completion, featuring nine densely
annotated sequences of urban driving scenes. The dataset is
meticulously partitioned, with the training set encompassing
8,487 frames across scenes 00, 02-05, 07, and 10. The vali-
dation set is carefully curated with 1,812 frames from scene
06, ensuring a robust evaluation framework. Furthermore, the
testing set includes 2,566 frames exclusively from scene 09,

providing a diverse and challenging environment for model
assessment. The volume of interest for both two SSC bench-
marks is [0 ∼ 51.2m, −25.6m ∼ 25.6m, −2 ∼ 4.4m], and
the voxelization resolution s is 0.2m. The SSC labels with
resolution 256 × 256 × 32 of train and validation set are
provided for the users. In this work, we focus on the camera-
based SSC, taking the RGB images as inputs similar to [7],
[12], and [30].

2) Metrics: Following [16], we mainly report the
Intersection-over-Union (IoU) for scene completion and mIoU
of Cn classes (no “unlabeled” class) for semantic scene
completion. The mIoU is calculated by:

m I oU =
1

Cn

Cn∑
c=1

T Pc

T Nc + F Pc + F Nc
(13)

where T Pc, T Nc, F Pc, and F Nc denote true positive, true
negative, false positive, and false negative for class c.

B. Implementation Details

We crop the input RGB images of cam2 to size 1220 ×

370 for SemanticKITTI and RGB images of cam1 of 1408 ×

376 for SSCBench-KITTI-360. The 2D feature maps with 1/16
of the input resolution are taken for the subsequent processing.
The feature dimension C and the channel number Co are set to
128 and 8, respectively. The size X ×Y × Z of the 3D feature
volume is 128 × 128 × 16. And the final predictions are up-
sampled to 256×256×32. The threshold θ for selecting seed
voxels is set to 0.5 by default. We train SGN for 40 epochs
on 4 V100 GPUs with a total batch size of 4. The AdamW [59]
optimizer is used with an initial learning rate of 2e-4 and a
weight decay of 1e-2. Following VoxFormer [12], we design
the single-image version SGN-S, taking only the current image
as input and the temporal version SGN-T with the current
and the previous 4 images as input. We also provide the
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TABLE II
SEMANTIC SCENE COMPLETION ON SEMANTICKITTI VAL SET. † DENOTES THE RESULTS PROVIDED BY MONOSCENE. BOLD AND UNDERLINE

DENOTE THE BEST PERFORMANCE AND THE SECOND-BEST PERFORMANCE, RESPECTIVELY

lightweight version SGN-L, which takes temporal inputs and
uses ResNet18 as the backbone with dimension C = 64 and
1 anisotropic convolution layer for MSSP.

C. Comparison With the State-of-the-Art

1) SemanticKITTI: Table I and Table II present the com-
parison results between our SGN and other state-of-the-art
camera-based SSC methods on the SemanticKITTI validation
and test sets, respectively. Our SGN-T achieves state-of-the-
art performance on both SemanticKITTI validation and test
sets. Specifically, SGN-T outperforms the second one by
1.86% points (OccFormer) and 2.19% points (VoxFormer)
regarding mIoU and IoU, as shown in Table II. And compared
with these fully dense processing methods with complex 3D
models, such as MonoScene and OccFormer, our SGN-S also
performs better in terms of mIoU and IoU. For example, SGN-
S greatly boosts the MonoScene by 3.05% points in mIoU
and 6.48% points in IoU, demonstrating the effectiveness of
our dense-sparse-dense design equipped with hybrid guidance.
Notably, SGN-S outperforms the recent VoxFormer by 2.2%
points in mIoU but has a slightly lower IoU (−0.42% points).
We explain that VoxFormer adopted a two-stage training
approach, and the first stage was trained offline with temporal
inputs, helping enhance occupancy precision. However, our
SGN-S is end-to-end trained with only a single frame as
input. Compared to the two-stage VoxFormer, the higher mIoU
score of our one-stage SGN-S for semantic scene completion
demonstrates the superiority of our framework of semantic
propagation based on spatial geometry cues.

Remarkably, our lightweight version SGN-L achieves
notable performance (45.45% IoU and 14.80% mIoU) on
SemanticKITTI validation with only 12.5M parameters. Com-
pared with MonoScene, OccFormer, and VoxFormer with
∼150M, ∼200M, and ∼60M parameters, our SGN-L performs
better while being more lightweight. It demonstrates that our

TABLE III
QUANTITATIVE COMPARISON IN DIFFERENT RANGES ON

SEMANTICKITTI VALIDATION. “*” DENOTES THE

RESULTS PROVIDED BY VOXFORMER

SGN requires no heavy 3D model and has a more powerful
representation ability.

Quantitative Comparison in Different Ranges: We also
provide the results of different ranges in Table III. The
results show that SGN-T achieves mIoU scores of 25.70%
and 22.02% within 12.8 meters and 25.6 meters and performs
better than VoxFormer-T by 4.15% and 3.60% points in mIoU,
respectively. Additionally, our SGN-S surpassed MonoScene
by 9.28% and 7.38% points in mIoU within 12.8 meters and
25.6 meters. Notably, SGN-T obtains competitive performance
with LiDAR-based methods in short-range (12.8 meters) areas.
For example, SGN-T outperforms SSCNet by 5.68% points in
mIoU and 6.24% points in IoU within 12.8 meters, demon-
strating the potential application of our camera-based method
for autonomous driving.

2) SSCBench-KITTI-360: Table IV presents the compari-
son results between our SGN and other state-of-the-art SSC
methods, including LiDAR-based methods (SSCNet, LMSC-
Net) and camera-based methods (MonoScene, TPVFormer,
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TABLE IV
QUANTITATIVE RESULTS ON SSCBENCH-KITTI360 TEST SET. THE RESULTS FOR COUNTERPARTS ARE PROVIDED IN [15]. BOLD AND UNDERLINE

DENOTE THE BEST PERFORMANCE AND THE SECOND-BEST PERFORMANCE, RESPECTIVELY

VoxFormer, OccFormer, DepthSSC, Symphonize) on the
SSCBench-KITTI-360 test sets. We can see that our SGN
outperforms most camera-based methods by a large margin
in terms of both mIou and IoU metrics. For example, SGN-
S, SGN-L, and SGN-T surpass OccFormer by 5.95%, 6.37%,
6.79% points in IoU and 3.9%, 3.14% 4.44% points in mIoU.
Compared to the LiDAR-based methods, our SGN-T also
archives comparable performance in IoU and performs better
in mIoU, demonstrating the superiority of our SGN. Interest-
ingly, we found that our SGN-T achieves better performance
on many thing classes such as traffic-sign, other-object, trucks,
bicycles, motorcycles, and other vehicles while performing
worse on plain stuff classes such as road, parking, sidewalk,
building, and vegetation than LiDAR-based method SSCNet.
We explain that the LiDAR point cloud contains more accurate
structure information, which may facilitate the occupancy
prediction of plain classes, while the vision feature includes
more semantic information that helps distinguish objects that
belong to different classes.

D. Qualitative Visualizations

We provide the visualization results of the proposed SGN-T
on SemanticKITTI validation in Figure 4. Compared to
VoxFormer-T and MonoScene, our SGN-T generates more
precise segmentation boundaries, especially on “plane” classes
and large objects such as cars. Besides, SGN-T predicts more
accurate SSC results and preserves more regional details in the
short-range areas than other methods. For example, there are
some wrong semantics and missing objects for VoxFormer-
T and MonoScene in the short-range areas, as shown in the
first and third rows in Figure 4. However, we noticed that our
SGN-T also missed some distant objects that are very small in
RGB images. We explain that our SGN uses image features of
the 1/16 scale, which may degrade the performance of objects
in distant areas. We also provide qualitative results of our

TABLE V
ABLATION ON NETWORK COMPONENTS, I.E., SEMANTIC GUIDANCE (SG),

GEOMETRY GUIDANCE (GG), MULTI-SCALE SEMANTIC PROPAGA-
TION (MSSP), AND VOXEL AGGREGATION LAYER (VA)

SGN-S, SGN-L, and SGN-T on SemanticKITTI hidden test
set in Figure 6. Our method can provide accurate semantic
occupancy prediction and road layout and handle typical
driving scenes such as crowded cars, shadows, tiny poles, and
crossroads.

E. Ablation Studies

We do ablation studies on network components, training
mode, depth estimator, image features, view transforma-
tion, seed voxels, model dimensions, and temporal input on
SemanticKITTI validation. All experiments are conducted with
our SGN-S by default.

1) Ablation on Network Components: We do ablation stud-
ies to analyze the effect of the proposed semantic guidance
(SG), geometry guidance (GG), multi-scale semantic propa-
gation (MSSP), and voxel aggregation layer (VA) in Table V.
GP and OA denote geometry information from 3D features
F3D and occupancy-aware features F3D

o , respectively. Firstly,
we construct a baseline that directly attaches a segmentation
head after the selected seed features. As shown in the first
line of Table V, the constructed baseline has already achieved
41.76% IoU and 10.62% mIoU scores, demonstrating our
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Fig. 4. Visual comparison of our SGN-T with state-of-the-art methods on SemanticKITTI validation. Compared to VoxFormer-T and MonoScene, our SGN-T
generates more precise segmentation boundaries (labeled in red circles).

depth-based sparse voxel proposal network can provide effec-
tive seed voxels. When equipped with our MSSP (Variant 1),
the IoU and mIoU scores are improved by 1.46% points and
2.38% points, respectively. It demonstrates the effectiveness
of multi-scale information propagation. And our semantic
guidance on the seed features further boosts the mIoU by
0.68% points (Variant 2 vs. Variant 1), showing the importance
of intra-category separation of seed features. On the other
hand, the geometry guidance brings slight improvement in
terms of IoU score, while the geometry prior further boosts the
mIoU score by 0.95% points (Variant 4 vs. Variant 3). Besides,
introducing geometry information in features F3D

o can help
improve performance (Variant 5 vs Variant 4). And comparing
Variant 5 with Variant 1, the mIoU score is significantly
boosted (+1.55% points), demonstrating the effectiveness of
our semantic propagation based on spatial geometry cues.

2) Impact of Different Training Modes: To explore the
effect of different training modes, i.e., two-stage and one-
stage training, we provide the detailed comparison results with
VoxFormer in Table VI. Line 3 of Table VI presents the results
of our SGN-S with the two-stage training strategy. Note that
when equipping SGN-S with a two-stage approach, the first
stage remains the same as VoxFormer, and the parameters
and training memory of the second stage are calculated for
a fair comparison. In the same training configuration, Our
SGN-S surpasses VoxFormer-S by a large margin regarding
mIoU scores (+2.58% points). Even our one-stage SGN-S
outperforms two-stage VoxFormer-S by 2.2% points in mIoU.
It is worth noting that the model parameters of our SGN-S are
only about half of those of VoxFormer-S. For the temporal

TABLE VI
IMPACT OF DIFFERENT TRAINING MODES. OUR ONE-STAGE SGN

SURPASSES THE TWO-STAGE VOXFORMER BY A LARGE MARGIN.
MEMORY DENOTES TRAINING MEMORY

version, our SGN-T achieves 46.21 IoU and 15.32 mIoU
scores, boosting VoxFormer-T by 2.06% points in IoU and
1.97% points in mIoU. Our lightweight version, SGN-L, with
only 12.5M parameters, also outperforms VoxFormer-T on
mIoU and IoU scores while requiring only about half the
training memory (7.16 G).

3) Ablation on Depth Estimator: Our sparse voxel proposal
network produces the seed voxels based on the depth map
predicted by the depth estimator. The generated depth map
contains 3D structure information, such as volume surfaces,
which has a direct impact on the seed voxel proposal.
To quantitatively analyze the impact of the depth estimator,
we compare our SGN equipped with the monocular-based
AdaBins [60] and stereo-based MobileStereoNet [53] with
VoxFormer [12]. The results are presented in Table VII and
show that using the stereo-based depth estimation brought
significant performance improvements for both VoxFormer
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TABLE VII
ABLATION STUDY FOR DEPTH ESTIMATOR. MONO AND STEREO DENOTE

USING MONOCULAR-BASED ADABINS [60] AND STEREO-BASED
MOBILESTEREONET [53] AS THE DEPTH ESTIMATOR

TABLE VIII
ABLATION ON VIEW TRANSFORMATION. USING FLOSP CONTAINS FEWER

PARAMETERS WHILE ACHIEVING COMPARABLE PERFORMANCE TO
OTHER VARIANTS. MEMORY DENOTES TRAINING MEMORY

TABLE IX
ABLATION ON IMAGE FEATURES, INCLUDING THE IMAGE BACKBONE AND

SCALES. USING SCALE 16 STRIKES A BALANCE BETWEEN
PERFORMANCE AND MODEL PARAMETERS

and our SGN, which means a stronger depth estimator
that produces more accurate depth maps can boost the
performance further. Notably, in the same configurations,
our SGN consistently surpasses VoxFormer in all different
ranges, demonstrating the effectiveness and superiority of our
approaches.

4) Impact of Image Features: The 2D features provide a
foundation for informative voxel features. We do detailed
experiments in Table IX to explore the impact of the feature
scale and image backbone. We see that using 2D features at
a scale of 1/16 in ResNet 50 achieves the best IoU score
and has comparable mIoU to other variants. And it strikes
a balance between performance and model size. The results
of using ResNet18 as the backbone are presented in the last
line of Table IX and show that a more lightweight image
backbone reduces the model parameters by 12.43M while the
performance of the mIoU score drops by 0.47% points.

5) Ablation on View Transformation: The view transfor-
mation generates the initial 3D features for the subsequent
hybrid guidance and informative voxel features. We further
investigate the effect of different view transformation modules.

TABLE X
NUMBER OF MODEL DIMENSIONS AND DEPTH OF MSSP. MEMORY

DENOTES TRAINING MEMORY

Fig. 5. Effect of temporal frames. The frames are sampled every three frames.
Memory denotes training memory.

We implement three commonly used modules, i.e., FLoSP in
Monoscene [7], LSS [11], and cross-attention adopted from
VoxFormer [12]. The results are presented in Table VIII,
showing that using FLoSP contains fewer parameters while
achieving comparable performance to other variants on both
mIoU and IoU scores. Therefore, our SGN lifts the 2D features
to 3D volume with the view transformation designed in the
spirit of FLoSP.

6) Exploration on the Threshold for Seed Voxels: We
change the value θ to investigate the impact of different
thresholds for selecting seed voxels. We calculate the average
occupancy rate of seed voxels, mIoU score, and IoU score
for variants with θ from 0.1 to 0.9. The results are shown
in Figure 7, showing that the performance of the model
first increases and then decreases as θ increases. And when
θ = 0.4, the model achieves the best performance on both
mIoU and IoU scores. Interestingly, we found our model still
achieves notable mIoU and IoU scores when the ratio of the
seed voxels is very low (< 5% points). It shows that seed
voxels with high confidence play an essential role in our
semantic propagation.

7) Number of Model Dimensions: The impact of the
number of model dimensions of our SGN-S is evaluated
and presented in Table X. The results reveal that using a
large number of feature channels for 3D features boosts the
models’ performance while increasing the model complexity.
For example, the model with 64 dimensions contains fewer
parameters and requires less training memory, although its
performance drops by 0.28% points in IoU and 0.35% points in
mIoU (Line3 vs Line4). We also provide the results of different
model depths for the multi-scale semantic propagation module.
We see that using different depths has comparable mIoU and
IoU, demonstrating that our model with hybrid guidance and
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Fig. 6. Qualitative results of our SGN-S, SGN-L, and SGN-T on SemanticKITTI hidden test set. Our method can provide accurate semantic occupancy
prediction and handle typical driving scenes such as crowded cars, shadows, tiny poles, and crossroads.

Fig. 7. Impact of threshold values for seed voxels. The performance of the
model first increases and then decreases as θ increases. And when θ = 0.4,
the model achieves the best performance on both mIoU and IoU scores.

semantic propagation avoids the dependency on the heavy 3D
model for processing 3D features.

8) Effect of Temporal Input: Finally, we explore the impact
of the number of temporal frames in Figure 5. We take
historical frames to form the temporal input. As Figure 5
shows, the model’s performance on IoU scores first increases
with the number of frames and then decreases. We explain
that the camera extrinsic matrix from the historical frame to
the current system is not always accurate, especially when the
temporal interval is long. Therefore, the 3D points may project
on the wrong image patches of the historical frames, which
disturbs the learning of voxel features. To better balance the
performance and memory consumption, our temporal version
takes five frames (four past frames and the current frame).

F. Efficiency Analysis

We perform runtime experiments on a single V100 GPU.
The mean value over the SemanticKITTI test set is reported.
Our SGN-S, SGN-L, and SGN-T run in 327.71 ms, 315.35 ms,
and 436.24 ms, respectively. We also tested the recent
VoxFormer-T (261.46 ms, ∼60M parameters) and OccFormer
(322.87 ms, ∼200M parameters) on the same platform with the
officially provided weights for a fair comparison. Compared
with these methods, our lightweight version SGN-L achieves
better mIoU and IoU scores and comparable latency, but with
better applicability due to its lightweight (12.5M parameters)
and less training memory consumption (7.16 G).

G. Generalization on Indoor Scenes

Although our proposed SGN mainly focuses on the outdoor
driving scene as mentioned in Section I, we further provide
detailed experiments on the NYUv2 [58] dataset to demon-
strate the generalization ability on indoor scenes. NYUv2
comprises 1449 indoor scenes, represented as 240 × 144 ×

240 voxel grids labeled with 13 classes (11 semantics, 1 free,
1 unknown). The input resolution is 640 × 480. Following [7]
and [32], we utilize a train/test splits of 795/654 scenes
to perform evaluations on the test set at the scale of 1:4.
Consistent with MonoScene [7], to verify the effectiveness on
the indoor scenes, we utilize our single-image version SGN-S
with the pre-trained EfficientNetB7 [62] as the image encoder
and change the size X × Y × Z to 60 × 36 × 60. The 2D
feature maps with 1/8 of the input resolution are taken for the
subsequent processing. We apply [63] to generate monocular

Authorized licensed use limited to: Zhejiang University. Downloaded on October 24,2024 at 09:00:42 UTC from IEEE Xplore.  Restrictions apply. 



MEI et al.: CAMERA-BASED 3D SEMANTIC SCENE COMPLETION WITH SPARSE GUIDANCE NETWORK 5479

Fig. 8. Qualitative results of our SGN-S on NYUv2 test set. Our method can provide accurate semantic occupancy prediction, demonstrating the generalization
ability on the indoor scenes.

TABLE XI
SEMANTIC SCENE COMPLETION ON NYUV2 TEST SET. THESE COMPARED METHODS ARE COPY FROM MONOSCENE [7] AND NDC-SCENE [32].

BOLD AND UNDERLINE DENOTE THE BEST PERFORMANCE AND THE SECOND-BEST PERFORMANCE, RESPECTIVELY

depth prediction and train SGN-S for 30 epochs using the
AdamW [59] optimizer with the initial learning rate of 2e-4
and a weight decay of 1e-3.

As shown in Table XI, without any bells and whistles,
our SGN-S achieves the best performance in terms of IoU
score and delivers comparable results in mIoU score, which
demonstrates the generalization ability of our proposed method
on indoor scenes. For instance, SGN-S surpasses MonoScene
by 0.77% and 2.34% points in mIoU and IoU scores, respec-
tively. However, we observe that NDC-Scene outperforms
SGN-S in mIoU score. We attribute this to the complexity
and sensitivity of indoor scenes to the accuracy of the depth
estimator. Additionally, SGN-S uses an image scale of only
1/8, which may impact the segmentation details, resulting in
worse performance on some categories such as “TVs” and
“objects,” as shown in Table XI. We believe that incorporating
a more accurate depth estimator, more effective multi-scale
feature fusion, and advanced loss designs, such as the frustum
proportion loss used in [7], could further enhance performance.
This will be a focus of our future work. We also present

the qualitative results of our method and recent methods on
the NYUv2 test set. As illustrated in Figure 8, even without
a special design for the indoor scenarios, our SGN-S still
generates precise semantic scene completion prediction, which
further demonstrates the generalization ability of our method.

V. CONCLUSION

This work focuses on camera-based semantic scene com-
pletion (SSC). Existing methods usually rely on sophisticated
3D models to directly process the coarse lifted 3D features
that are not discriminative enough for clear segmentation
boundaries. Therefore, we propose the one-stage SGN to
propagate semantics from the semantic-aware seed voxels
to the whole scene based on spatial geometry information.
We first redesign the sparse voxel proposal network with
the coarse-to-fine paradigm for dynamically and accurately
selecting seed voxels. Then, we design hybrid guidance and
effective voxel aggregation to enhance the intra-category fea-
ture separations and expedite the convergence of semantic
propagation. Finally, the multi-scale semantic propagation is
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proposed for the final semantic scene completion. Extensive
experiments on the SemanticKITTI and SSCBench-KITTI-
360 benchmarks demonstrate the effectiveness of Our SGN,
which achieves state-of-the-art performance while being more
lightweight.

We hope our work can promote the exploration of model
optimization and lightweighting in 3D scene understanding
and provide innovative solutions for applications in scenarios
with limited resources.
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