
SSC-RS: Elevate LiDAR Semantic Scene Completion with
Representation Separation and BEV Fusion

Jianbiao Mei1, Yu Yang1, Mengmeng Wang1, Tianxin Huang1, Xuemeng Yang2 and Yong Liu1,†

Abstract— Semantic scene completion (SSC) jointly predicts
the semantics and geometry of the entire 3D scene, which
plays an essential role in 3D scene understanding for au-
tonomous driving systems. SSC has achieved rapid progress
with the help of semantic context in segmentation. However,
how to effectively exploit the relationships between the semantic
context in semantic segmentation and geometric structure in
scene completion remains under exploration. In this paper, we
propose to solve outdoor SSC from the perspective of repre-
sentation separation and BEV fusion. Specifically, we present
the network, named SSC-RS, which uses separate branches
with deep supervision to explicitly disentangle the learning
procedure of the semantic and geometric representations. And
a BEV fusion network equipped with the proposed Adaptive
Representation Fusion (ARF) module is presented to aggregate
the multi-scale features effectively and efficiently. Due to the
low computational burden and powerful representation ability,
our model has good generality while running in real-time.
Extensive experiments on SemanticKITTI demonstrate our
SSC-RS achieves state-of-the-art performance. Code is available
at https://github.com/Jieqianyu/SSC-RS.git.

I. INTRODUCTION

In recent years, 3D scene understanding, one of the most
important functions of perception systems in autonomous
driving, has attracted extensive studies and achieved rapid
progress. When working with large-scale outdoor scene
understanding, Semantic Scene Completion (SSC) aims to
predict the semantic occupancy of each voxel of the entire 3D
scene from the sparse LiDAR scans, including the comple-
tion of certain regions. Due to the ability to recover geometric
structure, SSC can facilitate further applications like 3D
object detection, which usually suffer from the sparsity and
incompleteness (caused by occlusions or far distance from
sensors) of the LiDAR point cloud. However, it’s challenging
to precisely estimate the semantics and geometry of the
whole 3D real-world scene from partial observations due to
the complex outdoor scenarios such as various shapes/sizes
and occlusions.

Following the pioneering work SSCNet [1], some existing
outdoor SSC methods [2], [3] exploit a single U-Net network,
e.g., a heavy dense 3D convolution network to predict se-
mantics and geometry jointly. However, they usually involve
unnecessary calculations and extra memory and computation
overhead, especially when the input voxel resolution is large
since there are lots of empty voxels in the 3D scene.

1The authors are with the Institute of Cyber-Systems and Control, Zhe-
jiang University, Hangzhou, 310027, China. (Yong Liu† is the corresponding
author, email: yongliu@iipc.zju.edu.cn)

2The authors are with the Shanghai Artificial Intelligence Laboratory,
Shanghai, China.

SSC Network
point cloud semantics

geometry

(a)

SSC Network
point cloud semantics

geometry

Semantic 

segmentation

semantic context

(b)

Semantic 

segmentation

Scene 

completion

semantic context

geometric structure

point cloud
SSC Network

semantics

geometry

(c)

Fig. 1. (a) Consider the semantic context and geometric structure in a
hybrid manner. (b) Consider the semantic context and geometric structure in
a semi-hybrid manner. (c) Disentangling the learning procedure of semantic
context and geometric structure explicitly.

On the other way, some methods [4]–[7] utilize the se-
mantic information in the segmentation to assist outdoor
SSC by combining the semantic completion network with
the segmentation network. We found that most outdoor SSC
methods consider the semantic context (semantic representa-
tion) and geometry structure (geometric representation) in a
hybrid (Fig. 1 (a)) or semi-hybrid manner (Fig. 1 (b)). And
how to effectively learn semantic/geometric representations
and exploit their relationship remains unexplored.

In this paper, we explore the solutions to the outdoor
SSC from the perspective of representation separation and
BEV (Bird’s-Eye View) fusion (Fig. 1 (c)). We propose
to explicitly disentangle the learning procedure of semantic
context and geometric structure and fuse them in the BEV,
which is demonstrated to be a kind of success in 3D object
detection and segmentation [8]–[13]. Our main insights are:
(1) Semantic context and geometric structure complement
each other and are vital for SSC tasks. Recovering the
geometry details according to the semantics is easy, and
the completed shapes help identify semantic categories. (2)
Explicitly disentangling the representations can facilitate and
accelerate the learning procedure of semantic context and
geometric structure. (3) Compared to dense feature fusion in
3D space, BEV fusion is more convenient and efficient.

Specifically, we design separate branches, i.e., semantic
and completion branches, for semantic/geometric represen-
tations according to their intrinsic properties. We also de-
velop a BEV fusion network to aggregate the two types of
representations from the two branches. We use a sparse 3D
CNN [14] to encode the multi-level semantic context and
a tiny dense 3D CNN to obtain the multi-scale geometric
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structures. In addition, we apply deep supervision on both
branches to facilitate representation learning. Furthermore,
to obtain selective cues from semantic/geometric represen-
tations and fuse the semantic context and geometric details
sufficiently, we propose an Adaptive Representation Fusion
(ARF) module in the BEV fusion network. Due to the lower
computational burden and more powerful representation abil-
ity, our model runs in real-time and has good generality.
Experiments on SemanticKITTI dataset (hidden test) show
that our approach achieves state-of-the-art performance (rank
the 2rd by mIoU and 1rd in terms of completion metric
(IoU) on the public SSC benchmark1). Our contributions are
summarized as follows:

• We develop the SSC-RS network to solve the outdoor
SSC problem from the perspective of representation (seman-
tic/geometric) separation and BEV fusion.

• We design two separate branches for multi-level seman-
tic context and multi-scale geometric structures according to
their properties. And deep supervision is applied to facilitate
the learning procedure.

• We use 2D CNN as the BEV fusion network to aggregate
semantic/geometric representations. And an Adaptive Repre-
sentation Fusion (ARF) module in the BEV fusion network is
proposed to fuse the semantic context and geometric details
sufficiently.

• Due to the lower computational burden and more
powerful representation ability, SSC-RS has low decay and
achieves state-of-the-art performance on the SemanticKITTI
benchmark.

II. RELATED WORK

A. Semantic scene completion

The indoor SSC method has developed rapidly with
the emergence of indoor benchmarks such as SUNCG [1]
and NYU [15]. Existing methods use different types of
geometrical inputs cooperated with corresponding network
architectures to complete indoor SSC. For example, [1], [16],
[17] process the depth maps with 3D CNNs end-to-end. [18]–
[22] take the RGB-D images with 2D-3D CNNs to explore
the modality complementarity. [6], [23]–[25] encode the
truncated signed distance function (TSDF) representations
with the volume network architectures. [26]–[30] process
the point clouds with the point-based network to achieve
semantic scene completion continuously.

Since SemanticKITTI [31] introduces a large-scale out-
door benchmark for SSC tasks, several outdoor SSC methods
have emerged. Following the pioneering work SSCNet [1],
[2] exploits a single U-Net framework to process segmen-
tation and completion simultaneously, resulting in extra
computation overhead of empty voxels. Some methods [3],
[32] use sparse convolutions or introduce 2D CNN to solve
the above problem. For example, LMSCNet [3] appends a
3D decoder after the lightweight 2D backbone, and Zhang
et al. [32] designs a sparse CNN with dense deconvolution

1https://codalab.lisn.upsaclay.fr/competitions/
7170#results

layers. Some solutions focusing on multi-view fusion [6],
and local implicit functions [30] are also explored.

Besides, some methods [4], [5] exploit semantic segmenta-
tion to assist SSC. JS3C-Net [4] inserts a semantic segmenta-
tion network before SSC, and SSA-SC [5] injects the features
from the segmentation branch into the completion branch
hierarchically. In this work, we propose SSC-RS for large-
scale outdoor SSC from the perspective of representation
separation and BEV fusion. And different from [33], which
designs a cascaded network to implement the complementary
between scene completion and semantic segmentation for
indoor SSC, our SSC-RS exploits the multi-scale context.
And our parallel feature fusion in BEV is more convenient
and efficient.

B. BEV perception in segmentation

BEV perception indicates vision algorithms in the sense
of the BEV view representation for autonomous driving [34],
which has been explored for a variety of tasks such as LiDAR
detection [11], [35], LiDAR segmentation [9], [10], [13], and
sensor fusion [12], [36]. SalsaNet [8] projects point clouds
into BEV feature maps, and PolarNet [9] proposes a polar
BEV representation for semantic segmentation. Panoptic-
PHNet [10] exploits BEV features to enhance the segmen-
tation and perform instance grouping in BEV. Panoptic-
Polarnet [13] uses a polar BEV representation to implement
semantic segmentation and class-agnostic instance cluster-
ing. In SSC tasks, S3CNet [6] designs a 2D S3CNet to
predict the 2D SSC Image in the BEV of the input point
cloud. And SSA-SC [5] take the 2D CNN as the semantic
completion network to simultaneously predict the semantics
and geometry. Similar to SSA-SC, we also use the 2D
CNN as the BEV fusion network to efficiently provide the
semantic occupancy of the entire 3D scene. And different
from SSA-SC, we explicitly disentangle the learning process
of semantic context and geometric structure and take the
BEV network as a fusion network. Also, we design an
adaptive representation module for aggregating the judicious
cues in BEV sufficiently.

III. METHOD

A. Overview

In this paper, we explore the solutions to LiDAR semantic
scene completion from the perspective of representation sep-
aration and BEV fusion. Specifically, we design two separate
branches to encode semantic and geometric representations,
respectively (Sec. III-B). Both branches are compact and
lightweight. The semantic branch is a stack of 3D sparse
convolutions for learning multi-scale semantic context. The
completion branch uses several dense 3D convolutions to
acquire multi-scale geometry structures from different stages.
Based on the representation separation, the BEV fusion net-
work equipped with the proposed ARF module is presented
to aggregate informative multi-level features from seman-
tic/completion branches for final semantic scene completion
results (Sec. III-C). Fig. 2 illustrates the overall architecture
of the proposed SSC-RS.
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Fig. 2. The overview of the proposed SSC-RS. Two branches (semantic/completion branches) are used to learn semantic and geometric representations
separately. Both branches are supervised by multi-level auxiliary losses, which will be removed during inference. The multi-scale semantic representations
from the semantic branch (blue, sparse 3D CNN) and geometric representations from the completion branch (red, dense 3D CNN) will be fused by the
adaptive representation (ARF) module in the BEV fusion network (purple). ’F’ denotes the ARF module, and ’C’ indicates concatenation along the channel
dimension. V2B represents the projection from voxel to BEV.

B. Semantic-completion Representation Separation

As discussed above, semantic context and geometry struc-
tures are vital cues for semantic scene completion tasks.
Thus, according to the inherent properties of these two
types of clues, we design separate architectures for learning
semantic and geometric representation, respectively.

Semantic Representation: To encode multi-scale seman-
tic context and improve semantic accuracy, we introduce a
compact semantic branch consisting of a voxelization layer
and three sparse encoder blocks sharing a similar architecture
as shown in Fig. 3 (a). The voxelization layer takes the point
cloud P ∈ RN×3 in the range of [Rx,Ry,Rz] as input and
outputs sparse voxel features FV ∈RM×C with a dense spatial
resolution of L×W ×H. It discretizes a point pi = (xi,yi,zi)
to its voxel index Vi through:

Vi = (⌊xi/s⌋,⌊yi/s⌋,⌊zi/s⌋) (1)

where s is the voxelization resolution and ⌊·⌋ is a floor
function. Since a occupied voxel could contain multiple
points, the voxel features fVm indexed by Vm ∈ ZL×W×H are
aggregated by:

fVm = R f

{
A f

Vp=Vm

(MLP( fp))

}
(2)

where A f is aggregation function (e.g. max function) and
R f denotes MLPs for dimension reduction. We concatenate
the point coordinates, distance offset from the center of the
voxel where the point locates, and reflection intensity as the
point features fp.

After the voxelization layer, the voxel features are fed into
three cascade sparse encoder blocks to obtain sparse semantic
features (Fs,1,Fs,2,Fs,3). Each sparse encoder block consists
of a residual block [37] with sparse convolutions and an

SGFE module developed in [38]. The SGFE module exploits
multi-scale sparse projections and attentive scale selection
to enhance the voxel-wise features with more geometric
guidance and downscales the features’ dense resolution by
factor 2.

Also, similar to [38], we adopt multi-scale sparse supervi-
sion to facilitate the learning of semantic context, as shown
in Fig. 2. Specifically, during the training stage, we attach
lightweight MLPs as the auxiliary heads after each encoder
block to get the semantic predictions of valid voxels. The
voxelized semantic labels at different scales are generated by
SSC labels according to occupancy grids. Note that point-
wise semantic labels are unnecessary since we only apply
voxel-wise supervision and compute loss on the valid voxels
to avoid unnecessary computation and memory usage. We
use lovasz loss [39] and cross-entropy loss to optimize the
semantic branch. The semantic loss Ls is the summation of
the loss of each stage, which can be expressed as:

Ls =
3

∑
i=1

(Llovasz,i +Lce,i) (3)

Note that the auxiliary heads are removed on the inference
stage for efficiency, and our semantic branch only contains
1.45 M parameters.

Geometric Representation: The completion branch takes
the occupancy voxels OV ∈ R1×L×W×H generated by the
LiDAR point cloud, indicating if voxels are occupied by
laser measurements. It outputs multi-scale dense completion
features (Fc,1,Fc,2,Fc,3) for more geometry details. Since
the completion branch aims only to complete the semantic-
agnostic scene, i.e., binary completion, we design a shallow
architecture with dense 3D convolutions to obtain the geom-
etry details of the scene. As shown in Fig. 3 (b), the com-
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Fig. 3. (a) The architecture of the semantic branch. ’SE’ denotes the sparse
encoder block. (b) The overview of the completion branch. The max-pooling
layers are inserted before each residual block.

pletion branch consists of an input layer and three residual
blocks. The input layer is a dense 3D convolution with kernel
size 7×7×7 for a large receptive field, and the residual block
is a stack of dense 3D convolutions with kernel size 3×3×3.
Also, the max-pooling layers are applied before each residual
block to downscale the size of the feature map by factor
2. Similar to the semantic branch, deep supervision is used
to enhance the multi-scale geometric representation. To this
end, we attach MLPs as auxiliary heads after each block to
obtain the binary prediction indicating the occupancy of the
completed scene. And the training loss Lc for this branch is
computed by:

Lc =
3

∑
i=1

(Llovasz,i +Lbce,i) (4)

where i denotes the i-th stage of the completion branch
and Lbce indicates the binary cross-entropy loss. During the
inference, the auxiliary heads are removed. And due to the
lightweight design (0.31 M parameters), the computational
overhead of the completion branch is small (7.93G MACs
with input shape 256×256×32).

C. BEV Fusion Network

Since using dense 3D convolutions to fuse dense 3D
feature maps brings a significant overhead on memory usage
and slows down the running speed greatly, inspired by
the success of BEV perception in 3D object detection and
semantic segmentation, we develop a BEV fusion network
to aggregate the multi-scale sparse semantic representa-
tions (FV ,Fs,1,Fs,2,Fs,3) and dense geometric representations
(OV ,Fc,1,Fc,2,Fc,3) from the BEV.

We first elaborate on the BEV projection of features from
semantic/completion branches. For sparse semantic features
Fs,∗, we first generate the BEV indices from the voxel
indices. Then similar to the voxelization layer in the semantic
branch, we use the aggregation function (max function) to
aggregate the features with the same BEV index to get
the sparse BEV features. Finally, according to the BEV
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Fig. 4. Our designed adaptive representation fusion module. GAP denotes
global average pooling.

indices and sparse BEV features, we generate the dense BEV
features (Fb

s,0 ∈ RC0×H×W ,Fb
s,1 ∈ RC1×(H//2)×(W//2),Fb

s,2 ∈
RC2×(H//4)×(W//4),Fb

s,3 ∈ RC3×(H//8)×(W//8)). Compared to
[5], which stacks the dense 3D semantic features along
the z-axis for BEV features, our used projection method is
more efficient and requires less memory overhead. For dense
features Fc,∗ from the completion branch, we simply stack
the dense 3D features along the z-axis and reduce the feature
dimensions with 2D convolutions for dense BEV features
(Fb

c,0,F
b
c,1, Fb

c,2, Fb
c,3), which keep the same dimensions as

(Fb
s,0,F

b
s,1, Fb

s,2, Fb
s,3).

Similar to [5], our BEV fusion network is U-Net archi-
tecture with 2D convolutions. The encoder consists of an
input layer and four residual blocks. Each residual block
reduces the resolution size of input features by 2 to keep
the same resolution as the semantic/completion features. The
concatenation of features Fb

s,0 and Fb
c,0 is first fed into the

input layer and then into the first residual block. Before
the next residual block, an Adaptive Representation Fusion
(ARF, detailed below) module takes the previous stage’s
output and semantic/geometric representations at the same
scale as inputs and outputs the fused features containing
informative semantic context and geometric structure. The
decoder upscales the compressed features from the encoder
three times by a factor of two at a time through skip
connections. And the last convolution of the decoder outputs
the SSC prediction Y ∈ R((Cn+1)·L)×H×W , where Cn is the
number of semantic classes. The prediction Y is further
reshaped as the size of ((Cn +1)×L×H ×W ), representing
the semantic occupancy prediction of each voxel of the
completed scene. Unlike the semantic/completion branches,
we only apply supervision to the final prediction. Both lovasz
loss and cross-entropy loss are used to compute the BEV loss
Lbev:

Lbev = (Llovasz +Lce) (5)

Adaptive Representation Fusion Module: Directly con-
catenating representations from different sources (seman-
tic/completion/BEV branches) similar to SSA-SC implies
an equal preference for these representations. However, we
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usually need selective cues from different sources. To better
fuse the semantic and geometric representations, we design
an adaptive representation fusion module for the BEV fusion
network. Fig. 4 illustrates the detailed procedure of our
ARF module. Let Fprev,Fsem,Fcom represent features from
the previous stage, features from the semantic branch, and
features from the completion branch, respectively. We first
compute channel attention for features Fprev/Fsem/Fcom to
weight the feature channels adaptively. Then the weighted
features are summed and passed into a 1×1 convolution to
obtain the fused features Ff . The procedure is formulated as:

Ff = φ{σ [MLP(AvgPool(Fprev))]∗Fprev

+σ [MLP(AvgPool(Fsem))]∗Fsem

+σ [MLP(AvgPool(Fcom))]∗Fcom}
(6)

where σ denotes the sigmoid function. φ is the 1 × 1
convolution.

D. Multi-task learning
We train the whole network end-to-end. The multi-task

loss Ltotal is expressed as:

Ltotal = 3 ·Lbev +Ls +Lc (7)

where Lbev is the BEV loss defined in Sec. III-C. Ls, Lc are
the semantic loss and completion loss defined in Sec. III-B.

IV. EXPERIMENTS

In this section, we introduce the implementation details of
the proposed SSC-RS and conduct extensive experiments on
the large-scale outdoor scenarios dataset SemanticKITTI [31]
to show that SSC-RS achieves state-of-the-art performance.
Also, we provide visualizations and qualitative analysis
to demonstrate the effectiveness of our model. Moreover,
ablation studies on semantic/geometric representation, ARF
module, and multi-scale supervision are given to validate
proposed components.

A. Datasets and Metrics
Datasets SemanticKITTI [31] is based on the KITTI

odometry dataset [40], which collects 22 LiDAR sequences
with 20 classes in the scenes of autonomous driving using
a Velodyne HDL-64 laser scanner. According to the official
setting for semantic scene completion, sequences from 00
to 10, except 08 (3834 scans), are for training, sequence 08
(815 scans) is for validation, and the rest (3901 scans) is
for testing. The voxelized groud-truth labels with resolution
256× 256× 32 of train and validation set are provided for
the users.

Metrics Following [1], we compute the Intersection-over-
Union (IoU) for scene completion (ignoring semantics) and
mIoU of Cn = 19 classes (no “unlabeled” class) for semantic
scene completion as the evaluation protocol. The mIoU is
calculated by:

mIoU =
1

Cn

Cn

∑
c=1

T Pc

T Nc +FPc +FNc
(8)

where T Pc, T Nc, FPc, and FNc denote true positive, true
negative, false positive, and false negative for class c.

B. Implementation Details

According to the official protocols, the range [Rx,Ry,Rz]
of input point cloud is set [0 ∼ 51.2m,−25.6 ∼ 25.6m,−2 ∼
4.4m], the voxelization resolution s is 0.2m, and the spatial
resolution is (L = 256,W = 256,H = 32). The input point
cloud is augmented by randomly x-y flipping during the
training procedure. And we use Adam optimizer [41] with an
initial learning rate of 0.001 (β1 = 0.9,β2 = 0.999) to train
SSC-RS end-to-end. The model is trained for 40 epochs on
a single NVIDIA 3090 with batch size 2.

C. Comparison with the state-of-the-art.

Quantitative Results. We compare with the state-of-the-
art on SemanticKITTI test set. We submit the results to
the official test server to evaluate the performance of our
proposed SSC-RS. Table I shows that our SSC-RS achieves
the best performance on the completion metric IoU (59.7%)
and ranks 2rd in terms of the scene completion metric mIoU
(24.2%). Our SSC-RS also has low latency and runs in real-
time (16.7 fps). UDNet [2], which adopts dense 3D CNN,
has comparable performance on IoU to SSC-RS, while SSC-
RS surpasses UDNet by 4.7% on mIoU and has lower la-
tency. And compared to the semantic segmentation-assistant
method SSA-SC [5], SSC-RS obtains 0.9% improvement
on IoU and 0.7% on mIoU, which demonstrates the effec-
tiveness of our proposed semantic/geometric representation
separation. J3SC-Net [4] attaches semantic scene completion
after segmentation. And our SSC-RS also outperforms J3SC-
Net by 0.4% on mIoU, especially 3.1% on IoU. We notice
that our SSC-RS has lower performance on mIoU than
S3CNet [6]. We explain that the local geometric loss in
S3CNet helps a lot, especially on small objects such as
persons, bicycles, and motorcycles, while we don’t make a
special design on that. Notably, SSC-RS performs better on
IoU (14.1%) and runs ∼ 14× faster than S3CNet.

Qualitative Results. We provide the visualizations on
SemanticKITTI validation as illustrated in Fig. 5. We also
visualize the results of SSA-SC [5] and JS3C-Net [4] for
comparison. From Fig 5, we can see that our SSC-RS
predicts more accurate SSC results, especially on “plane”
classes and large objects such as cars, consistent with the
results in Table. I. While we also notice our SSA-SC fails to
complete some hard samples, such as small objects, which is
also difficult for most methods. We believe that some special
designs for local geometry, such as geometry loss in S3CNet
[6], help solve the problem, which also will be our future
work.

D. Ablation Study

We conduct detailed ablation studies to validate the effec-
tiveness of our proposed components. All experiments are
trained with the same training configurations and tested on
the SemanticKITTI validation set with a single GPU.

Impact of the semantic representation. We remove the
semantic branch to explore the effectiveness of semantic rep-
resentation. As Table II shows, without the semantic branch,
the performance drops from 24.8% to 21.9% on mIoU (line
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TABLE I
COMPARISON OF PUBLISHED METHODS ON THE OFFICIAL SEMANTICKITTI [31] BENCHMARK (HIDDEN TEST). OUR NETWORK SURPASSES ALL THE

PUBLISHED METHODS ON COMPLETION METRICS (IOU) AND RANKS 2rd IN TERMS OF THE SEMANTIC SEGMENTATION METRICS (MIOU). THE SPEED

OF LMSCNET, JS3CNET, SSA-SC, AND OUR SSC-RS IS TESTED ON THE SAME DEVICE(NVIDIA 1080 TI).
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LMSCNet [3] 55.3 64.0 33.1 24.9 3.2 38.7 29.5 2.5 0.0 0.0 0.1 40.5 19.0 30.8 0.0 0.0 0.0 20.5 15.7 0.5 17.0 8.5
LMSCNet-singlescale [3] 56.7 64.8 34.7 29.0 4.6 38.1 30.9 1.5 0.0 0.0 0.8 41.3 19.9 32.1 0.0 0.0 0.0 21.3 15.0 0.8 17.6 -
Local-DIFs [30] 57.7 67.9 42.9 40.1 11.4 40.4 34.8 4.4 3.6 2.4 4.8 42.2 26.5 39.1 2.5 1.1 0.0 29.0 21.3 17.5 22.7 -
JS3C-Net [4] 56.6 64.7 39.9 34.9 14.1 39.4 33.3 7.2 14.4 8.8 12.7 43.1 19.6 40.5 8.0 5.1 0.4 30.4 18.9 15.9 23.8 1.7
S3CNet [6] 45.6 42.0 22.5 17.0 7.9 52.2 31.2 6.7 41.5 45.0 16.1 39.5 34.0 21.2 45.9 35.8 16.0 31.3 31.0 24.3 29.5 1.2
UDNet [2] 59.4 62.0 35.1 28.2 9.1 39.5 33.9 3.8 0.8 0.4 4.4 40.9 23.2 32.3 0.5 0.3 0.3 24.4 18.8 13.1 19.5 13.7
SSA-SC [5] 58.8 72.2 43.7 37.4 10.9 43.6 36.5 5.7 13.9 4.6 7.4 43.5 25.6 41.8 4.4 2.6 0.7 30.7 14.5 6.9 23.5 20.0

SSC-RS(ours) 59.7 73.1 44.4 38.6 17.4 44.6 36.4 5.3 10.1 5.1 11.2 44.1 26.0 41.9 4.7 2.4 0.9 30.8 15.0 7.2 24.2 16.7

TABLE II
ABLATION STUDIES ON SEMANTICKITT VALIDATION. BEV, SEM, AND COM DENOTE THE BEV FUSION NETWORK, SEMANTIC BRANCH, AND

COMPLETION BRANCH. MSS INDICATES MULTI-SCALE SUPERVISION (DEEP SUPERVISION) ON THE SEMANTIC/COMPLETION BRANCH.
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full model ✓ ✓ ✓ ✓ ✓ 58.6 24.8 78.5 69.8 73.8 45.3 26.6 2.1 41.0 46.8 41.5 1.5 6.9 19.8 42.6 22.2 50.6 6.2 1.5 0.0 15.8 17.9 4.6
BEV only ✓ × × × × 57.1 22.0 80.6 66.3 73.5 43.5 26.1 3.2 39.7 44.6 20.5 2.4 5.3 12.6 40.5 17.9 49.6 4.7 1.0 0.0 12.8 16.4 4.5
w/o COM ✓ ✓ × ✓ ✓ 58.3 23.9 80.3 68.0 72.7 45.1 18.9 0.6 40.3 47.1 37.5 5.4 10.2 17.2 41.7 20.7 51.1 6.5 2.7 0.0 14.4 17.4 4.6
w/o SEM ✓ × ✓ ✓ ✓ 58.1 21.9 77.9 69.6 72.5 42.3 25.1 1.3 39.3 44.9 22.2 1.0 4.6 15.4 40.0 18.5 49.9 5.5 0.9 0.0 11.1 16.4 4.4
w/o ARF ✓ ✓ ✓ × ✓ 58.4 24.4 79.8 68.6 73.4 45.0 26.8 3.2 41.1 46.5 36.5 5.9 8.8 18.5 41.5 20.3 50.8 6.8 2.0 0.0 14.5 17.2 4.2
w/o MSS ✓ ✓ ✓ ✓ × 58.1 22.7 77.4 69.9 73.5 43.5 25.8 1.7 40.4 45.7 21.7 4.1 8.2 17.3 41.3 19.7 50.4 5.3 1.2 0.0 11.2 16.2 4.1

1 vs. line 4). Due to the sparse design, the inference speed is
still fast (16.7 fps as shown in Table I) when equipped with
the semantic branch. And compared with the baseline model
with the BEV network only, the semantic representation and
ARF module improve the performance by 1.9% on mIoU
and 1.2% on IoU (line 2 vs. line 3). It shows that semantic
representation plays a vital role in SSC tasks.

Effect of the geometric representation. We further show
the effect of the geometric representation. Line 3 of Table
II provides the results without the completion branch. The
completion branch brings 0.3% improvement on IoU and
0.9% gains on mIoU (line 1 vs. line 3) with 0.31 M
parameters only. And comparing line 4 with line 2, when
fusing with geometric representation using the ARF module,
the performance is boosted by 1% on IoU, demonstrating its
effectiveness in improving the accuracy of scene completion.

Ablation study on ARF module. We remove the ARF
module and directly concatenate the features from different
sources as the fused features to show the effectiveness of
our ARF module. As shown in Table. II, the ARF module
(line 1 vs. line 5) boosts the performance by 0.4% on mIou
and 0.2% on IoU, which demonstrates the ARF model can
select judicious cues from different sources and fuse the
representations effectively.

Multi-scale supervision (deep supervision). Finally, we
demonstrate the multi-scale supervision (MSS) on both

branches is vital to our SSC-RS. The last line of Table. II
shows the detailed results. Without multi-scale supervision,
the performance drops a lot (2.1% on mIou, 0.5% on IoU).
It shows that MSS can effectively facilitate the learning
procedure of representation separation, which is important
for SSC tasks.

V. CONCLUSION

In this paper, we develop SSC-RS to solve outdoor large-
scale semantic scene completion from the perspective of
representation separation and BEV fusion. Two separate
branches with deep supervision are devised to disentangle
the learning procedure of semantic/geometric representa-
tions explicitly, And the BEV fusion network is designed
to fuse the multi-level features effectively and efficiently.
Furthermore, an adaptive representation fusion module in
the BEV fusion network is proposed to facilitate the fusion
procedure. Extensive experiments demonstrate our SSC-RS
achieves state-of-the-art performance and runs in real time.
We hope our work can provide a new perspective for the
SSC community. And in the future, we will focus on local
geometry learning to improve the performance on small
objects and extend the work to more scenarios, such as
indoor and monocular scenes.
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Fig. 5. Qualitative results on SemanticKITTI validation set. The visualizations demonstrate that our SSC-RS predicts more accurate SSC results, especially
on “plane” classes and large objects such as cars. (labeled in red circles).
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