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In this article, we present a fast real-time tangled memory network that segments the objects effectively and
efficiently for semi-supervised video object segmentation (VOS). We propose a tangled reference encoder and
a memory bank organization mechanism based on a state estimator to fully utilize the mask features and al-
leviate memory overhead and computational burden brought by the unlimited memory bank used in many
memory-based methods. First, the tangled memory network exploits the mask features that uncover abun-
dant object information like edges and contours but are not fully explored in existing methods. Specifically, a
tangled two-stream reference encoder is designed to extract and fuse the features from both RGB frames and
the predicted masks. Second, to indicate the quality of the predicted mask and feedback the online prediction
state for organizing the memory bank, we devise a target state estimator to learn the IoU score between the
predicted mask and ground truth. Moreover, to accelerate the forward process and avoid memory overflow,
we use a memory bank of fixed size to store historical features by designing a new efficient memory bank
organization mechanism based on the mask state score provided by the state estimator. We conduct compre-
hensive experiments on the public benchmarks DAVIS and YouTube-VOS, demonstrating that our method
obtains competitive results while running at high speed (66 FPS on the DAVIS16-val set).
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1 INTRODUCTION

Video Object Segmentation (VOS) is one of the most basic tasks in the computer vision
community. There are many potential applications, such as video editing and autonomous driving.
Generally, VOS contains unsupervised [16, 37, 45, 71], weakly supervised [14, 59, 66], semi-
supervised [9, 13, 31], and interactive [4, 11] tasks. The unsupervised task, also named zero-shot
VOS [30, 35, 72], predicts the object masks for a video without any prior knowledge. The weakly
supervised task only uses weakly supervised labels such as points and scratches, whereas the
interactive task involves human interactions. Recently, referring VOS [20, 60, 61], which segments
the target object referred by a language expression, has also attracted the attention of many
researchers. We focus on the semi-supervised task, which predicts target objects’ segmentation
masks over video sequences with only an initial mask. One of the most challenging problems in
this task is how to learn a robust appearance representation of the target, as it may undergo all
kinds of variations in videos like deformations, occlusions, motion blur, and so on, meanwhile
running in real time.

Existing methods [5, 9, 18, 26, 28, 40-42, 51, 57, 58, 62, 67, 68] model the appearance repre-
sentations mainly from the input RGB frames and regard masks as simple auxiliary. They pay less
attention to further mining the edge features and object characteristics in the object’s masks. Thus,
their usages of masks are still not sufficient. For example, MaskTrack [42], RGMP [40], and many
STM-based methods [26, 33, 41, 62] simply concatenate the frame and target mask as the input of
the network. AGAME [18], FEELVOS [51], and CFBI [67] take target mask prediction as another
channel of features or mainly treat the target mask as guidance for separating foreground and
background pixels. Some methods, such as GIEL [9] and SITVOS [23] use another label encoder
to extract high-level mask features and enhance the target appearance, but they neglect the low-
level mask features, and the interactions between frame features and mask features are simple.
We believe they do not dig deep into the mask features and miss many edge cues, which could
benefit the segmentation quality. Different from these approaches, we aim to enable sufficient
interactions between frame features and mask features and exploit the mask reconstruction to fa-
cilitate the learning of the mask stream for better utilization of object characteristics, including
contours/edges features.

Our insight is that the mask features have ideal properties to aid efficient VOS: the mask sepa-
rates the foreground and background much more clearly than RGB frames and, most importantly,
contains rich contour/edge information. We designed a Tangled Memory Network (TMN) to
delve into the mask features effectively and efficiently. Instead of using only one reference encoder
to treat the RGB frame and mask equally, our TMN leverages a two-stream reference encoder to
embed better and fuse two sources of information: RGB frame features and mask features. To
enhance the interactions between the RGB and mask features, we inject features from the mask
stream into the frame stream and reconstruct the input mask to learn informative cues in the mask
features. With bi-modal interaction, TMN can select judicious cues for mask prediction. Addition-
ally, as shown in Figure 1, our speed is much faster than these methods, which often are several
orders of magnitude slower.

As well, due to the limited memory and inference speed requirements in practical applications,
it is impossible to store features of all the past frames and masks in the memory, especially when
processing long video sequences. Therefore, an efficient memory bank organization mechanism
is imperative. Several methods are aware of this problem, but their solutions are always compli-
cated or inefficient. For instance, EGMN [33] models the memory as a fully connected graph with
a slow speed of 5 FPS on the DAVIS17-val set. AFB-URR [27] introduces a large adaptive feature
bank to dynamically absorb new features and discard obsolete features, which is similar to our
strategy. However, it runs only at a speed of 4 FPS on the DAVIS17-val set, since their memory
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Fig. 1. The speed comparison on the DAVIS16-val set. J &F mean vs speed (480p resolution). Note that
TMN is tested with half resolution (240p).

size is still large and their absorbing and removing strategy is complex. In this article, we devise a
simple but effective memory bank organization mechanism to fix the memory size and avoid issues
like memory overflow and limited speed. Generally, high-quality segmentation results of historical
frames always contain more accurate target information and are conducive to subsequent frames’
segmentation. In contrast, low-quality segmentation results will mislead subsequent mask predic-
tion. Nevertheless, online VOS always lacks feedback about the output quality. Therefore, we first
design a Target State Estimator (TSE) to acquire an indicator about the segmentation results
by predicting the IoU between the mask prediction and its corresponding ground truth. Unlike
the quality assessment module in the work of Liu et al. [32], which uses another encoder to take
both the current frame and segmentation mask as input for acquiring more information, our TSE
is more compact and reuses the features of past frames. Moreover, our TSE can serve as a state
indicator to facilitate the learning of the reference encoder. Then, based on the predicted IoU score,
we devise a simple but effective memory maintaining strategy to adaptively determine whether to
put the features into the memory, keeping a fixed and dynamically updated memory bank.

We implement several variants of our method. They are different in the input resolution and
backbone. As demonstrated in Figure 1, TMN achieves competitive accuracy and runs faster than
all other approaches. Additionally, TMN-S achieves the balance between accuracy and speed. The
main contributions of this article are summarized as follows:

e We propose a fast real-time TMN to excavate the rich target information like contour and
edge features contained in the mask, which is not fully exploited by existing methods. Sev-
eral variants with different model sizes are implemented to adapt to different application
platforms easily.

o We design a TSE to predict an IoU score, providing reliable mask prediction feedback dur-
ing online inference. Moreover, based on this score, a simple memory bank organization
mechanism is devised to maintain the memory bank efficiently.
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e The effectiveness of our method is verified on three VOS benchmarks, including
DAVIS2016/2017 [43, 44] and YouTube-VOS [63]. Our method achieves competitive results
while running in highly real time.

2 RELATED WORK

Our work focuses on mask feature utilization and memory bank organization strategy in real-time
semi-supervised VOS. Therefore, we mainly review and discuss recent semi-supervised VOS from
the following three perspectives: memory-augmented VOS, mask utilization in VOS, and real-time
VOS.

Memory-Augmented VOS. Recently, STM-based methods [5, 9, 22, 23, 26, 33, 39, 41, 46, 54, 70]
have achieved state-of-the-art performance. Different from LSTM-based methods [50, 56, 63], they
exploit the memory bank to store the past frames’ information for robust target appearance.
STM [41] first proposes a space-time memory structure for VOS, which puts features from histori-
cal frames into memory. After that, many memory-based methods [9, 22, 22, 25, 33, 39, 54, 62] were
built on STM. For example, GC [25] develops a global context module representing a fixed-size fea-
ture to encode all past frames and use constant memory regardless of the video length. EGMN [33]
proposes an episodic graph memory network and takes the memory as a fully connected graph
to model visual relationships from correlated video frames [36]. MAST [22] combines the space-
time memory network with self-supervised learning, which randomly discards and reconstructs
a channel of Lab color space during training. AFB-URR [27] proposes an adaptive feature bank to
absorb new features and discard obsolete features dynamically. FRTM [46] designs a memory bank
to store previous RGB frame features and masks for fine-tuning target model parameters online.
SwiftNet [54] elaborately compresses spatiotemporal redundancy in matching-based VOS via Pixel-
Adaptive Memory. RMNet [62] proposes to replace STM’s global-to-global matching with local-to-
local matching. We also regard STM as the baseline, but our efficient memory maintaining is differ-
ent from these methods in two folds: (1) our memory bank is dynamically updated while the size
is small (3 in TMN) and fixed, and (2) the strategy of updating it is based on a predicted IoU score.

Mask Utilization in VOS. As the initial mask is provided in semi-supervised VOS, many meth-
ods [12, 27, 28, 33, 40-42, 47, 62] concatenated the raw mask with the RGB frame as the input
of the feature extractor to encode target information. For instance, RGMP [40] and AGSS [28]
used a four-channel Siamese feature extractor to encode the previous/current frame and the pre-
dicted/previous segmentation masks. STM-based methods [12, 37, 41, 47, 62] exploited a separate
four-channel memory encoder for the reference frames with the predicted masks. Some other
methods [8, 18, 51, 58, 62, 67] aggregated the raw mask or mask features with frame features for
foreground discovery or target appearance enhancement. AGAME [18] concatenated the masks
with the frame features to enhance the target appearances. The masks were furthermore used to
initialize the appearance model. FEELVOS [51] and CFBI [67] mainly adopted the mask to separate
the foreground and background and perform the nearest neighbor matching between the current
frame and the first and previous frames in the feature space. RMNet [62] exploited the mask to
provide the foreground region for regional memory reading. GIEL [9] and SITVOS [23] used an-
other label encoder to extract high-level mask features and fused the high-level mask features and
frame features to enhance the target appearance. SSTVOS [8] used the mask to get object affinity
value from the transformer for predicting object masks. Unlike these approaches, we aim to enable
sufficient interactions between frame features and mask features and exploit the mask reconstruc-
tion to facilitate the learning of the mask stream for better utilization of object characteristics,
including contours/edges features.

Real-Time VOS. For efficiency, many real-time methods [3, 15, 49, 53, 55] integrate object
tracking techniques to indicate target location and spatial area to avoid full-frame segmentation,
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Fig. 2. Overview of our proposed TMN. The query encoder takes the query frame as input. The reference
encoder consists of the mask stream and frame stream. The mask stream takes the object mask prediction
(softmax output) as input and reconstructs the predicted mask. The frame stream takes an RGB frame as
input and fuses features from the mask stream. The TSE predicts the IoU between the predicted mask and
ground truth to estimate the mask state. The memory organization mechanism stores or updates features
from the previous frame in the memory based on the IoU to fix the memory bank size. The matcher retrieves
information from the memory bank. The decoder takes matched features and features from the query en-
coder as the input and outputs the current frame’s segmentation result.

combining the two problems of Video Object Segmentation and Tracking (VOST) [69]. SiamMask
[55] and SAT [3] respectively combine SiamRPN [24] branch and SiamFC++ [65] to exploit
the relationship between frame pairs [34] and estimate the current object bounding box as the
reference of the search area in the next frame. FTAN-DTM [15] takes object segmentation as a
sub-task of tracking, introducing the “tracking-by-detection” model into VOS. The integration of a
tracker helps improve the inference speed, whereas tracking accuracy often limits these methods’
performance. Some approaches adopt the single-frame reference strategy [18, 40, 58] or adaptive
memory bank [27, 54] to reduce the memory size and improve the inference efficiency. However,
their efficiency improvement is always limited. STM-cycle [26] and BMVOS [6] respectively use
a small input resolution and light backbone to improve running speed, but their performance
drops a lot. Our TMN also uses a small resolution and light backbone to improve efficiency, but
our proposed tangled reference encoder effectively excavates the rich target information like
contour and edge features contained in the reference masks, boosting performance significantly.
Moreover, our dynamic memory bank with a fixed size reduces the memory size and can further
improve efficiency. TMN achieves not only high-quality segmentation but also has fast inference
speed (66 FPS). We also implement several variants with different model sizes to adapt to different
application platforms easily.

3 APPROACH

The semi-supervised VOS problem can be simply defined as follows: given a video sequence of
length T and a target mask in the first frame, the task is to segment sequential frames at every
timestamp t according to a reference sets {(I;,M;)|i € S,S C [1,t —1],2 < t < T}, where I;
denotes the i-th frame and M; denotes the corresponding object mask (ground truth when i = 1).

In this work, we design a novel TMN to efficiently predict accurate segmentation masks of a
target object in videos. The overview of our framework is illustrated in Figure 2. It mainly consists
of a query encoder, a reference encoder, a TSE, a matcher, a memory bank, and a decoder. When

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 3, Article 51. Publication date: April 2023.



51:6 J. Mei et al.

segmenting a specific frame I;, the query encoder extracts the features of I, and the reference
encoder embeds I;_; and M;_;. Based on the features of I,, the matcher retrieves information
from the memory bank, which stores features of past frames and masks. Then, the decoder takes
matched features and low-level features from the query encoder as the input and outputs the
segmentation result M;. Our method is built upon a common baseline STM [41]. Since our core
contributions lie on the mask utilization (Section 3.1), the TSE (Section 3.2), and the memory bank
organization mechanism (Section 3.3), we mainly discuss them in the following. We also present
the training and inference procedure of the proposed TMN (Section 3.4). The query encoder,
matcher, and decoder are kept consistent with STM. We explain them in Section 3.4 briefly; please
find more details in the work of Oh et al. [41].

3.1 Mask Utilization

The ways of using the mask in existing methods [18, 28, 28, 40-42, 51, 58, 67] are not sufficient. They
all do not fully exploit the edge features and object characteristics inside the object masks, which
can help address the distraction problems and obtain sharper segmentation results. We design a
two-stream reference encoder, including a classical frame stream and a mask stream, to excavate
the edge and object information in the object mask. As shown in Figure 2, the frame stream em-
ploys the four stages of ResNet [10], whereas the mask stream only uses the first two stages of
ResNet to encode the input object mask. The reasons are in two aspects: (1) the low-level mask
features from the shallow layers contain fine-grained features such as edges and contours, which
are just what we need, and (2) the target area information in the low-level mask features can make
the foreground and background of RGB frames more contrastive. Moreover, inspired by CFBI [67],
we believe the background of the predicted masks (after the softmax operation) contains spatial
information about similar targets in the environment, which can help handle distraction problems.
Therefore, both the foreground and background of the object mask are concatenated and fed into
the mask stream. Features of the mask stream after every used stage are injected into the frame
stream through an AFC module [48]. We visualize several mask feature maps from stage 1 in
Figure 3 (line 2), illustrating that the low-level features indeed learn the edge information and tar-
get area information. However, some details shown in red rectangles may remain coarse and need
to be refined.

We believe that if a mask can be recovered well, its encoder should keep all the informative
features. Thus, to make the mask stream learn the target information more accurately, we further
design a Segmentation Head (SH) to reconstruct the input object mask. Inspired by DeepLab
v2 [2], our SH consists of the atrous spatial pyramid pooling module and a convolution layer. Note
that the SH only exists during training and brings no extra computational burdens for inference.
We combine a cross-entropy loss Lcg and a mask IoU loss L,y as the reconstruction loss £,.
The losses can be formulated as follows:

1 u u
Lep(¥Ve M) = o ZQ [Y¥ log(M¥,) | "
+(1-Y") log(1 - MY )]

Zu €Q min(Y?’ M?, t)

Liou(Ye,My ) =1- ,
omATe Y ueq max(Y4, M%)

)

L(Y:,My ) = Lep(Ye, My ) + - Liou (Y, My 1), (3)

where Q denotes the set of all pixels in the object mask, and Y;, M, ; denote ground truth and the
reconstructed mask of the ¢-th frame, respectively. We showcase the feature maps from the mask
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Fig. 3. Visualization and comparison of feature maps from stage 1 of the mask stream without/with an SH
on the video (dogs-jump) in the DAVIS17-val set. The SH helps improve the accuracy of the boundary area,
especially when the target object is occluded.

stream with an SH in line 3 of Figure 3. Compared to line 2 (without an SH), it shows sharper and
more accurate edges of the target object.

3.2 Target State Estimator

Generally, there is no feedback or indicator to present the quality of the predicted mask during
the online inference phase. However, low-quality object masks always mislead the reference en-
coder to focus on the wrong regions and contours. Then, the extracted features may pollute the
memory bank, resulting in poor segmentation results. Additionally, we do not want to use the
time-consuming online learning technique to refine the predicted mask-like method [26], which
dramatically slows down the running speed. Thus, we need a state score to indicate the predicted
mask quality. Based on the state score, the features from previous frames and masks can be dy-
namically merged into the memory bank.

To address the preceding problems, inspired by the work of Jiang et al. [17], we design a TSE to
predict the IoU between the predicted mask and its corresponding ground truth as the mask state
score §, when memorizing target appearances from the previous frame and its predicted mask in
the reference encoder. As shown in Figure 2, the TSE is behind the reference encoder, consisting
of two 3 X 3 convolutions, a global average pooling layer, a 1 X 1 convolution, and a sigmoid
operation. We take the output features of stage 4 from the frame stream as the input to the TSE.
These features combine the semantic information from the frame stream and the edge information
from the mask stream, which is useful for estimating the mask state. We take MSE loss as the IoU
prediction loss L,:

1
-[.:E(Yt’Ml”gt) = 5 : (§t _SIDU(Y[th))Z’ (4)

_ ZueQ mln(Ytu’Mltl)
ZuEQ maX(Y?’Mtu) ’

Siou(Y:, My)) (5)

where Sj,p is a function to calculate the IoU between the predicted mask M, and ground truth

Y, of the t-th frame. §; is the state score of the predicted mask M;. Q denotes the set of all pixels
in the object mask.
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Fig. 4. Mask state score predicted by the TSE on videos (dogs-jump, India, pigs) in the DAVIS17-val set and
(golf, carousel, people-sunset) in DAVIS17 test-dev. The state score reflects the quality of the segmentation
result.

In Figure 4, we show the predicted mask and give the corresponding state score predicted by
the TSE, demonstrating that our target estimator could indicate the confidence of the prediction.

3.3 Memory Bank Maintainment

As the video clip’s length grows, the reference set will become larger and larger, making it hard
to store features from all the past frames and masks in the memory in long sequences. Since the
device storage is limited, the matching process will be slow. Moreover, not all memory frames are
necessary for segmenting the current frame since the features of consecutive frames are similar
and historical frames with the poor prediction may pollute the memory bank. In this article, we
propose to fix the memory bank size and filter the unnecessary memory features with the mask
state score predicted by the proposed state estimator.

We fix the memory bank size to M, which means that only M pairs of key and value maps
are saved in the memory. The first frame with the ground truth mask provides the most reliable
information, thus we save features of the initial frame and mask by default. As Figure 5 shows,
our memory bank organization mechanism can be expressed as follows: given the memory bank
initialized by the features of the first frame MB = {(ky, vy, s1)}, we first temporally enqueue the
features of the previous frame (k;_y, v;_1, s;—1) for current segmentation, where k., v., s, denote the
key maps, value maps, and mask state score, and the subscript denotes the timestamp. If [MB| < M,
the new features will be stored in the memory every K frame directly, since the state score is always
large in the beginning. Otherwise, the features (k,, U, S) With the minimum mask state score
in the memory are replaced with the new features (k,, v, s,) (if s, > s;1), where s;j, is a threshold
for determining whether to drop the new features.

3.4 Training and Inference

Training. We use DAVIS2017 [44], YouTube-VOS [63], and COCO [29] to train our models end to
end. The backbone is pretrained on ImageNet. During training, we sample clips from training video
datasets or randomly sample images from COCO and perform affine transformations to form the
video clips. When sampling clips from video datasets, we randomly skip frames, and the maximum
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skip is gradually increased during training to simulate the target appearance change over a long
time. We recurrently train our network: at the beginning of training, the first frame and its ground
truth are embedded into the key and value feature maps by the reference encoder and put into the
memory bank to segment the second frame, then the second frame and its predicted mask are
encoded and put into the memory bank to segment the third frame, and the remaining frames go
on as in the preceding. The segmentation loss L has the same form as the reconstruct loss £,
which can be formulated as follows:

Li(Y:,My) = Lop(Ye, M) +a - Liou (Y, My), (6)

where Y;, M; denote ground truth and the predicted mask of the ¢-th frame, respectively.

We train our TMN by combining the losses (Equations (3), (4), and (6)) together. In particular,
we use the uncertainty loss proposed by Kendall et al. [19] to automatically balance losses. The
total training loss can be formulated as follows:

1 1
N —{e™ - Lo(Y, My)
(T-1) 2<t<T 2

+e ™ [Lr(Yi-1, My 1)
+ Le(Yio1,My_1,8:21)] + wi + wa},

Ltatal =
(7)

where Y;,M; denote ground truth and the predicted mask of the t-th frame, respectively.
Y;_1,M;_1,M, ;_; denote ground truth, the predicted mask, and the reconstructed mask of the
previous frame, respectively. $;_; denotes the state score of M;_;. w; and w; are learnable param-
eters, and T is the length of a training video clip.

For multi-object segmentation, we run our model for each object independently. Then, the pre-
dicted masks for each object are merged by a soft aggregation operation used in the work of Oh
et al. [40, 41].

Inference. In the online testing phase, our network uses past frames and predictions to segment
the current frame. When segmenting the ¢-th frame, the query encoder, which uses the same back-
bone as the frame stream, takes the current frame as input, then outputs the key and value feature
maps (th , v?); the reference encoder takes the previous frame and corresponding predicted mask
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as input and outputs the key and value feature maps (kf_l, vf_l); and the TSE outputs the mask
state score §;_;. We use the memory bank organization mechanism proposed in Section 3.3 to store
and update features (kffl, Uﬁv $;—1). After an attention-based matching operation as in the work
of Oh et al. [41], the decoder takes the matched features and features from the query encoder as
the input and outputs the current frame’s mask M;. Similar to the training procedure, we run our
model for each object independently for multi-object segmentation, then a soft aggregation oper-
ation is used to merge all predicted masks. Moreover, we choose the object with the maximum

probability as the predicted object for every pixel in the merged predicted mask.

4 EXPERIMENTS
4.1 Implementation Details

We use DAVIS2017 [44], YouTube-VOS [63], and COCO [29] to train our model. We take
ResNet34 [10] pretrained on ImageNet [7] as the backbone of our TMN. The input frames are
resized into 240 X 427 for training. Additionally, the length T of the training video clip is set to 3.
We follow Li et al. [26] to set « to 1. During training, the maximum frame skip increases by 5 every
20 training epochs, and we freeze all batch normalization layers and use the Adam [21] optimizer
with a fixed learning rate of 1e-5 and = (0.9, 0.999) to minimize the total loss. For all experiments,
the network is trained with batch size of 8 for 130 epochs, and it takes about 2 days to train our
network with four NVIDIA TITAN RTX GPUs. In inference, we set K = 5, M = 3,s;; = 0.85 in
all experiments unless specified. As well, we test our TMN on a single NVIDIA TITAN RTX GPU
in all experiments. We implement several versions, namely TMN, TMN-S (small version), TMN-M
(median version), and TMN-L (large version). Note that we do not pretrain TMN on COCO. Addi-
tionally, the difference between TMN and other versions is that the latter use different backbones,
are pretrained on COCO, and take larger resolution (400 X 400) as the input during the main train-
ing. As well, at the inference stage, TMN takes half resolution (240 X 427) while other versions use
full resolution (480 X 854).

4.2 Comparison with the State of the Art

We compare our approach with state-of-the-art methods on DAVIS [43, 44] and YouTube-VOS [63]
benchmarks. The quantitative results demonstrate that our method obtains competitive results
while running in real time. The evaluation metrics are provided by the DAVIS benchmark. J &F
evaluates the general quality of the segmentation results, J evaluates the mask IoU, and F estimates
the quality of contours.

Qualitative Results. The visualization results on DAVIS17-val are shown in Figure 6. SAT [3] and
SiamMask [55] have real-time inference speed as shown in Table 1, and they are easy to collapse
when the targets are occluded as shown in Figure 6. TMN not only has a high inference speed
(66 FPS) but also is robust to object appearance changing and object occlusion. We also show
visualizations on DAVIS17 and YouTube-VOS18 validation in Figure 7 and Figure 8, from which
we can see that TMN performs well when segmenting fast-moving, highly similar, and occluded
objects. However, TMN fails to segment some rare tiny objects (stick and golf), especially when
they are severely occluded. Tiny object segmenting is also hard for most methods, and we do not
make special designs for that.

DAVIS. Both DAVIS2016 and DAVIS2017 are evaluated. DAVIS2016 is a single-object annotated
dataset containing 30 training video sequences and 20 validation video sequences. DAVIS2017 is a
multi-objects expanded from DAVIS2016, containing 60 training video sequences and 30 validation
video sequences. We report the results on the DAVIS16-val set in Table 1 and on the DAVIS17-val
set in Table 2. Most methods employ ResNet50 or deeper backbones for higher performance, thus
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Fig. 6. Qualitative comparisons on DAVIS2017. Compared to SAT [3] and SiamMask [55], TMN is more robust
to the target appearance changing and handles object occlusion better.

Table 1. Comparison with the State of the Art on the DAVIS16 Validation Set

DAVIS16-val

Method Backbone PT OL S J&F (%) @) T
SAT(+YT) [3] ResNet50 39 83.1 82.6  83.6
FEELVOS(+YT) [51]  DeepLabv3+ 2.2 81.7 81.1  82.2
SiamMask(+YT) [55] ResNet50 55 69.8 71.7  67.8
BMVOS (+YT) [6] DenseNet-121 45.9 82.2 829 814
TMN(+YT) ResNet34 66.0 84.4 84.0 84.9
FRTM(+YT) [46] ResNet101 v 219 835 - -

PReMVOS [38] ResNet101 V' 0.03 86.8 84.9 88.6
OnAVOS [52] ResNet v 0.08 85.5 86.1 84.9
OSVOS [1] VGG v 022 80.2 79.8 80.6
KMN(+YT) [47] ResNet50 v 83 90.5 895 9150
GC [25] ResNet50 v 25 86.6 87.6 85.7
RaNet [58] ResNet101 v 30 85.5 85.5 85.4
AGAME(+YT) [18] ResNet101 v 14.3 82.1 82.0 82.2
RGMP [40] ResNet50 v 7.7 81.8 81.5 82.0
AOT-B(+YT) [68] ResNet50 v 22.7 89.9 88.8  90.9
RMNet(+YT) [62] ResNet50 v 12 88.8 889  88.7
RPCM(+YT) [64] ResNet50 v/ - 90.6 87.1  94.0
SITVOS(+YT) [23] ResNet50 v 11.8 90.5 89.5 914
STM(+YT) [41] ResNet50 v 6.3 89.3 887  89.9
TMN-S(+YT) ResNet18 v 26.3 89.2 88.3 90.0
TMN-M(+YT) ResNet34 v 22.8 88.5 87.5 89.5
TMN-L(+YT) ResNet50 v 17.3 90.3 89.7 90.9

“OL” indicates the use of an online learning strategy. “PT” denotes pretraining on synthetic videos from
static image datasets. “+YT” indicates the use of YouTube-VOS for training. Note that TMN-L, TMN-S, and
TMN-M are trained with larger input resolution compared to TMN. Additionally, the runtimes of other
methods are copied from corresponding papers.
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Failure Cases

Fig. 7. Qualitative results on DAVIS2017. Visualizations of the first column are the ground truth of the first
frame. TMN performs well when segmenting occluded objects and fast-moving objects, but TMN fails to
segment some rare tiny objects (stick and golf), especially when they are severely occluded. Tiny object
segmenting is also hard for most methods, and we do not make special designs for that.

Fig. 8. Qualitative results on YouTube-VOS 2018 validation. Visualizations of the first column are the ground
truth of the first frame. TMN performs well when segmenting highly similar objects, occluded objects, and
fast-moving objects.
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Table 2. Comparison with the State of the Art on the DAVIS17 Validation Set

DAVIS17-val

Method Backbone PT OL T&F @) T@) T
TVOS [70] ResNet50 72.3 69.7 74.7
SAT(+YT) [3] ResNet50 72.3 68.6  76.0
FEELVOS(+YT) [51] DeepLabv3+ 71.5 69.1 74.0
SiamMask(+YT) [55] ResNet50 56.4 54.3 58.5
AGSS [28] ResNet50 66.6 634  69.8
BMVOS [6] DenseNet-121 72.7 70.7 74.7
TMN(+YT) ResNet34 74.3 71.5 77.0
STM-cycle(+YT) [26] ResNet50 v 72.3 693 753
FRTM(+YT) [46] ResNet101 v 76.7 - -

PReMVOS [38] ResNet101 v 77.8 73.9 81.7
OnAVOS [52] ResNet v 67.9 64.5 71.2
OSVOS [1] VGG v 60.3 567 63.9
AFB-URR [27] ResNet50 v 74.6 73.0 76.1
EGMN(+YT) [33] ResNet50 v/ 82.8 80.2  85.2
GC [25] ResNet50 v/ 71.4 693 735
RaNet [58] ResNet101 v 65.7 63.2  68.2
AGAME(+YT) [18] ResNet101 v 70.0 67.2 727
RGMP [40] ResNet50 v 66.7 64.8 68.6
SST(+YT) [8] ResNet50 v/ 82.5 79.9  85.1
GIEL(+YT) [9] ResNet50 v/ 82.7 80.2 85.3
SwiftNet(+YT) [54] ResNet50 v 81.1 783 839
AOT-B(+YT) [68] ResNet50 v/ 82.1 794 848
STM(+YT) [41] ResNet50 v/ 81.8 792 843
TMN-S(+YT) ResNet18 v 79.6 77.1 82.1
TMN-M(+YT) ResNet3d v 80.7 775 840
TMN-L(+YT) ResNet50 v/ 82.2 792 853

“OL” indicates the use of an online learning strategy. “PT” denotes pretraining on synthetic videos
from static image datasets. “+YT” indicates the use of YouTube-VOS for training. Note that TMN-L,
TMN-S, and TMN-M are trained with larger input resolution compared to TMN.

their speed is limited. TMN is our fast version, which uses a small input resolution, lightweight
backbone, and a fixed memory bank to accelerate the inference speed for real-time application
scenarios such as edge devices. Thanks to our proposed tangled reference encoder, the TSE, and
the quality-aware memory organization strategy, TMN’s accuracy did not drop a lot. Under the
same training strategy (without pretraining on the static image datasets) and inference strategy
(without using the online learning strategy), TMN outperforms other methods in both J score
and F score and runs the fastest, as shown in the first part of Table 1 and Table 2. This demon-
strates that our TMN can fully exploit edge/contours and target area information in the mask
features to boost performance. Additionally, even with a small backbone and input resolution, our
TMN outperforms many methods like pretraining-based AGAME [18], RGMP [40], online learning
based FRTM [46], and OSVOS [1] in Table 1 on the DAVIS16-val set. For instance, although On-
AVOS [52] is superior to our TMN with a slight margin of 1.1% in the J&F score on the DAVIS16-val
set, the speed of TMN is more than 811 times than it. Without bells and whistles, TMN also ob-
tains promising performance and outperforms online learning based methods with large margins,
such as 2% improvement against STM-cycle [26] (using cyclic training strategy on the baseline
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Table 3. Comparison with the State of the Art on the YouTube-VOS 2018 Validation Set

YouTube-VOS 2018 val

Method Backbone PT OL Overall 7% Ju(®%) T %) T @)
TVOS [70] ResNet50 67.8 67.1 63.0 69.4 71.6
SAT [3] ResNet50 63.6 67.1 55.3 70.2 61.7
SiamMask [55] ResNet50 52.8 60.2 45.1 58.2 47.7
RVOS [50] ResNet101 56.8 63.6 45.5 67.2 51.0
AGSS [28] ResNet50 71.3 71.3 65.5 75.2 73.1
S2S [63] VGG16 64.4 71.0 55.5 70.0 61.2
STM* [41] ResNet50 68.2 - - - -
TMN ResNet34 71.0 74.1 61.7 78.2 69.8
STM-cycle [26] ResNet50 v 70.8 72.2 62.8 76.3 71.9
FRTM [46] ResNet101 v 72.1 72.3 65.9 76.2 74.1
OnAVOS [52] ResNet v 55.2 60.1 46.6 62.7 51.4
OSVOS [1] VGG v 58.8 59.8 54.2 60.5 60.7
AFB-URR [27] ResNet50 Vv 79.6 78.8 74.1 83.1 82.6
EGMN [33] ResNet50 v/ 80.2 80.7 74.0 85.1 80.9
GC [25] ResNet50 Vv 73.2 72.6 68.9 75.6 75.7
STM [41] ResNet50 Vv 79.4 79.7 72.8 84.2 80.9
AGAME [18] ResNet101 v/ 66.1 67.8 60.8 - -
RGMP [40] ResNet50 Vv 53.8 59.5 45.2 - -
SITVOS [23] ResNet50 v/ 81.3 79.9 76.4 84.3 84.4
GIEL [9] ResNet50 Vv 80.6 80.7 75.0 85.0 81.9
SwiftNet [54] ResNet50 Vv 77.8 77.8 72.3 81.8 79.5
STM [41] ResNet50 v 79.4 79.7 72.8 84.2 80.9
TMN-S ResNet18 Vv 78.1 79.0 71.3 83.1 79.2
TMN-M ResNet34 77.4 77.8 71.0 82.2 78.8
TMN-L ResNet50 Vv 80.6 80.2 74.9 84.5 82.8

“OL” indicates the use of an online learning strategy. “PT” denotes pretraining on synthetic videos from
static image datasets. STM* denotes STM with main training only. The subscripts of J and ¥ on
YouTube-VOS denote seen objects (s) and unseen objects (u). The metric overall means the average of
Jss Ju> Fs» Fu- Note that TMN-L, TMN-S, and TMN-M are trained with larger input resolution
compared to TMN.

model) on the DAVIS17-val set. Our other versions also achieve comparable performance to
state-of-the-art methods on the DAVIS16-val and DAVIS17-val sets. As Table 1 shows, TMN-L
has competitive performance (J&F 90.3%) and fast inference speed (17.3 FPS). We noticed that
TMN-L achieves the best results on the J score but not the best on the F score. We explain that
some methods use specific techniques to improve their performance, such as KMN using the hide-
and-seek training strategy, which helps improve the contour accuracy (F score) of segmentation
results. Moreover, compared to the baseline STM, our TMN-L can achieve 1% gains in the F score.
In Table 2, our TMN-L performs best on the F score and still surpasses the baseline STM by 1% on
the F score, which further demonstrates the effectiveness of the utilization of mask features.
YouTube-VOS. The YouTube-VOS dataset is a large-scale dataset in VOS, containing 3,471 train-
ing videos and 474 validation videos. Additionally, each video contains a maximum of 12 objects.
The validation set includes seen objects from 65 training categories and unseen objects from 26
categories, which is good for evaluating algorithms’ generalization performance. We compare our
method with other state-of-the-art methods in Table 3. Our fast version TMN outperforms most
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Table 4. Speed Comparison Between Our Proposed TMN
with Previous Real-Time VOS Methods on the DAVIS2016
Validation Set

Method JE&F (%) J(%) F(%) FPS
SAT [3] 83.1 82.6  83.6 43.1
FRTM [46] 83.5 - - 11.6
SiamMask [55] 69.8 717  67.8 56.2
STM-cycle [26] 83.8 84.1 835 481
BMVOS [6] 82.2 829 814 283
TMN 84.4 840 849 62.2

For a fair comparison, all methods are tested five times on the
same platform (NVIDIA 1080 Ti), and the results are averaged.

methods in the first part, which are trained without pretraining on static images but slightly lower
than AGSS on the overall score (0.3%). We explain that AGSS initialized their IAM module with
pretrained weights of pretraining-based RGMP to accelerate convergence, which helps improve
the performance on YouTube-VOS. TMN also performs better than most online learning methods
except FRTM. Especially TMN surpasses the baseline method STM* by 2.8% in the overall score.
Note that TMN uses a smaller backbone. This indicates that our tangled reference encoder and
TSE can greatly boost the memory network’s generalization performance while accelerating the
inference process. Additionally, our TMN-L achieves comparable performance to the state-of-the-
art methods, which are pretrained on static images. SITVOS slightly surpasses our TMN-L by 0.7%
on the overall score due to the well-designed interactive transformer for feature matching with
the larger memory bank. Such a structure helps exploit the robust spatiotemporal context of target
objects while slowing down the inference speed. It is worth noting that TMN-L outperforms the
baseline STM by 1.2% on the overall score, especially 1.9% on the F, score, demonstrating that
the effective use of edge/contours and target area information in mask features can improve the
model’s generalization ability and boost the performance.

Running Speed. We compare the inference speed of our proposed TMN with the previous real-
time VOS methods. The running environment and hardware condition have an impact on the
inference speed of the model. Additionally, since the running speeds of existing methods reported
in those works are tested on different platforms, direct comparison is not fair. Therefore, we test
the FPS of those real-time VOS methods (SAT [3], FRTM [46], SiamMask [55], STM-cycle [26], and
BMVOS [6]) with official codes on the same platform (NVIDIA 1080 Ti). The running speed of all
methods was tested five times on the DAVIS16-val set, and the results were averaged. As Table 4
shows, our TMN performs better and runs faster than these real-time VOS methods. Although
SiamMask is comparable to TMN in terms of running speed, its performance is much worse, with
14.6% in the J&F score lower than TMN.

4.3 Ablation Study

We do all the ablation experiments on the DAVIS17-val set with our TMN, which takes
ResNet34 [10] as the backbone and uses the input resolution 240 X 427. Here, we list the ablation
studies of SH and fusing stages, foreground/background utilization, TSE, memory size and organi-
zation strategies, the backbone, input resolutions, and the fusion module. Note that the memory
organization strategy in Tables 5, 6, and 7 is consistent with the baseline STM for fair comparison.

SH and Fusing Stages. In the mask stream, an SH attached to a certain backbone stage is used to
reconstruct the predicted mask. We demonstrate the effectiveness of the SH, and then we change
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Table 5. Ablation Study of the SH, Fusion Stage, and Fusion Types of the Foreground/Background
of the Object Mask to TMN

Stage Background

rl r2 r3 r4 convl concat branch TSE J&F (%) J (%) T (%)
1 70.1 67.7 72.4
2 Vv v 70.7 68.2 73.3
3 vV Vv v 71.5 69.2 73.9
4 v v v 69.4 67.1 71.7
5 Vv Vv Vv vV 71.0 68.5 73.5
6 v Vv 70.7 68.2 73.2
7 vV Y v v 71.9 69.7 74.0
8 v v v v 72.9 70.2 75.6
9 Vv Vv v v 70.8 68.4 73.3
10 v V v v v 73.8 71.1 76.4

Table 6. Effectiveness of Different Fusion Modules
of Our TMN on the DAVIS17 Validation Set [44]

Fusion Module J&F (%) J(%) F (%)

“add” 73.0 70.3 75.7
“concat” 70.5 67.9 73.2
“AFC” 73.8 71.1 76.4

Table 7. Accuracy and Speed of Different Input Resolutions
and Different Backbones of Our TMN on the DAVIS17
Validation Set [44]

) Backbone
Resolution ResNet34 ResNet50 J&F (%) FPS
v 73.8 46.6
(240, 427) v 74.5 38.3
v 77.1 34.7
(320, 570) v 777 275

the number of the stages used in the mask stream to explore the fusion effect from different stages.
The results are reported in Table 5. The numbers in the first column are the experiment order used
in the following. Experiment 1 shows the quantitative results of our baseline without the mask
stream (the RGB frame and corresponding mask are concatenated as the input of the frame stream)
and the TSE. The baseline’s architecture is consistent with STM, designed with normal concatena-
tion operation in most memory-based methods. Experiments 2 through 5 show the quantitative
results of adding our mask stream, which extracts mask features from different stages (r1, r2, r3,
r4) of ResNet. Experiment 6 shows the necessity of our SH to reconstruct the predicted mask (com-
pared with Experiment 3). In summary, fusing features from r1 and r2 obtains the best results, and
adding the proposed SH further improves. We also find that the mask stream contributes slightly
(0.6%, Experiment 6 vs Experiment 1) without SH. Thus, SH is vital for effective mask utilization.

Foreground/Background Utilization. The background of mask prediction contains spatial infor-
mation about similar targets in the environment, which can help handle distraction problems. To
make the foreground and background more contrastive, we test three ways to fuse the foreground
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Table 8. Effectiveness of Our Memory Bank
Organization Mechanism with Different Memory Sizes

Memory Size J&F (%) J (%) F (%) FPS

3 74.3 71.5 77.0 514
5 734 70.6 76.2  50.5
7 74.0 71.3 76.6  50.4
9 73.6 70.9 76.3  50.0
11 73.8 71.1 76.5 49.2
13 73.8 71.1 76.5  48.7
15 73.7 71.1 76.4  47.7
Unlimited 73.8 71.1 76.4  46.6

and background of mask prediction: (1) the foreground and background are added after passing
through a convolution layer, respectively, and then fed into the mask stream, denoted as “conv1”;
(2) the foreground and background are concatenated first and then fed into the mask stream, de-
noted as “concat”; and (3) two branches are used to encode the foreground and background, de-
noted as “branch” Table 5 (Experiments 7-9) show the quantitative results of different ways of
foreground/background utilization. The second way obtains the best results, 1.4% gains against
Experiment 3.

Target State Estimator. We do other experiments to analyze the effectiveness of our TSE. Table 5
(Experiment 10) shows the quantitative results of our network by adding the TSE. The results show
that the TSE can boost the segmentation quality by 0.9% (Experiment 10 vs Experiment 8).

Fusion Module. We design different fusion modules to inject edge information from the mask
stream into the frame stream effectively. We test three fusing ways: (1) features from two streams
(i-e., mask stream and frame stream) are added directly, denoted as “add”; (2) features from two
streams are concatenated first and then passed through a 1 X 1 convolution, denoted as “concat”;
and (3) features from two streams are fused by an AFC module [48], denoted as “AFC.” Table 6
shows the quantitative results of different fusion modules. Our TMN with the AFC module obtains
the best results, 1.3% gain against “add” and 3.2% gain against “concat.”

Input Resolution and Backbone. We adjust the input resolution and experiment with different
backbones, ResNet34 and ResNet50 [10], as shown in Table 7. We can see that our model can
achieve higher FPS with 240 X 427 resolution but better performance with 320 X 530 resolution.
Additionally, we find that the input resolution has a greater impact on our model’s performance
than the backbone.

Impact of Different Memory Size and Memory Strategies. We tested how the memory size M im-
pacts the performance in Table 8. When M is large enough (unlimited), our memory maintenance
is the same with STM [41]. When M = 3, our TMN obtains the best results, demonstrating that our
dynamic memory bank mechanism can effectively exclude noisy features and benefit segmentation
quality, even though only three historical features are stored. Moreover, the memory overhead can
be decreased by using three frames as the reference sets, consequently improving our model’s ef-
ficiency. Additionally, we experiment with four types of memory organization strategies: (1) drop
the old features and append the new features, denoted as “drop”; (2) replace the features with the
minimum state score, denoted as “replace”; (3) inject the features with the minimum state score to
the new features, denoted as “inject to new”; and (4) inject the new features to the features with the
minimum state score, denoted as “inject to old” The procedure of injecting (ky, v1, $1) to (kz, va, $2)
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Table 9. Effectiveness of Different Memory Bank
Organization Mechanisms

Strategy JE&F (%) J(%) F (%) FPS
“drop” 73.9 71.2 76.6  52.2
“replace” 74.3 71.5 77.0 514
“inject to new” 73.8 711 764 494
“inject to old” 73.5 70.8 76.2 494
can be formulated as follows:
ko - kq )
corr = softmax | ——|, (8)
( Ve
kAl = corr X ky
R ; )
U1 = corr X v;
](?2 = (Zkz + (1 - 0()](?1
Uy = auy + (1 — 0()151, (10)

SA2=2'51'(X

where (k}, Uy, $2) represent the fusing features and a = s,/(s; + s2). As Table 9 shows, it achieves
the best performance by replacing the features with the minimum state score. Additionally, we
noticed that fusing historical features does not bring performance improvement. We explained
that the historical features with poor state scores might “pollute” the memory bank. We observed
that the key frames are very important for VOS. Therefore, we use the state estimator to choose
key frames with high state scores.

5 CONCLUSION

We proposed a TMN for real-time VOS. Specifically, we design a tangled reference encoder to
exploit the mask’s edge features and object characteristics, which benefit segmentation quality.
Additionally, we developed a TSE to provide the mask state feedback. Based on the state score,
we proposed a simple yet effective memory bank organization mechanism to alleviate the mem-
ory overhead and computational burden brought by the unlimited memory bank used in many
memory-based methods. Our TMN is trained end-to-end without bells and whistles. It achieves
competitive performance with a high speed (66 FPS on the DAVIS16-val set).
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