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Abstract

Multisensor fusion‐based localization technology has achieved high accuracy in

autonomous systems. How to improve the robustness is the main challenge at

present. The most commonly used LiDAR and camera are weather‐sensitive, while

the frequency‐modulated continuous wave Radar has strong adaptability but suffers

from noise and ghost effects. In this paper, we propose a heterogeneous localization

method called Radar on LiDAR Map, which aims to enhance localization accuracy

without relying on loop closures by mitigating the accumulated error in Radar

odometry in real time. To accomplish this, we utilize LiDAR scans and ground truth

paths as Teach paths and Radar scans as the trajectories to be estimated, referred to

as Repeat paths. By establishing a correlation between the Radar and LiDAR scan

data, we can enhance the accuracy of Radar odometry estimation. Our approach

involves embedding the data from both Radar and LiDAR sensors into a density

map. We calculate the spatial vector similarity with an offset to determine the

corresponding place index within the candidate map and estimate the rotation and

translation. To refine the alignment, we utilize the Iterative Closest Point algorithm

to achieve optimal matching on the LiDAR submap. The estimated bias is

subsequently incorporated into the Radar SLAM for optimizing the position map.

We conducted extensive experiments on the Mulran Radar Data set, Oxford Radar

RobotCar Dataset, and our data set to demonstrate the feasibility and effectiveness

of our proposed approach. Our proposed scan projection descriptors achieves

homogeneous and heterogeneous place recognition and works much better than

existing methods. Its application to the Radar SLAM system also substantially

improves the positioning accuracy. All sequences' root mean square error is 2.53m

for positioning and 1.83° for angle.
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1 | INTRODUCTION

Localization is a critical aspect of autonomous driving, and it relies on

various sensors, including global positioning system (GPS), cameras,

Radar, and LiDAR. However, there are limitations to the direct

application of some sensors in specific environments. For example,

changes in illumination may compromise visual localization accuracy,

and GPS can become unreliable in urban canyons.

Out of these sensors, LiDAR shines for its high precision and

widespread usage in robotics and autonomous driving, specifically for

localization and mapping tasks. LiDAR achieves accurate mapping by

employing point cloud registration, which allows it to function

effectively even in changing lighting conditions.

Aside from real‐time simultaneous localization and mapping

(SLAM), LiDAR measurements taken in favorable weather conditions

can be utilized to construct offline prebuilt maps. These maps can be

augmented with data from sensors such as inertial measurement

units (IMUs) and GPS to enhance both local and global information.

Nevertheless, LiDAR still faces accuracy challenges in extreme

weather conditions such as rain, snow, and fog, which results in

reduced performance. To counter this issue, millimeter‐wave Radar,

utilizing longer‐wavelength microwaves, has been integrated into

SLAM applications. Although Radar has its drawbacks, including

multipath phenomena, ghost reflections, higher noise levels, and

lower accuracy compared to LiDAR, it demonstrates exceptional

robustness and is capable of long‐range detection and map

construction during severe weather conditions. Research in this

area has gained significant attention in recent years (Hong

et al., 2020, 2021).

Therefore, Radar localization on prebuilt LiDAR maps will

complement each other (Yin, Chen, et al., 2022; Yin, Xu, et al., 2021;

Yin et al., 2020). LiDAR maps can compensate for the noise and

sparsity of Radar data. Moreover, since most existing maps are

constructed using LiDAR, the proposed method in this paper avoids

redundant mapping or calibration efforts, significantly improving

efficiency. Furthermore, integrating Radar data for positioning

enhances localization robustness in all weather conditions. However,

there are two challenges in matching and aligning the Radar data and

the LiDAR map: (1) The Navtech frequency‐modulated continuous

wave (FMCW) Radar can only obtain 2D information of the sweep

line plane, which is one dimension less than the LiDAR. (2) LiDAR

point clouds can provide detailed outlines of even small objects,

whereas Radar polar data can only approximate changes in

reflectivity in a scene. This disparity results in a lack of direct

correspondence between LiDAR and Radar points in space.

To establish a standard for measuring the similarity between 2D

and 3D data, we consider the concept of projection‐based

dimensionality reduction. We employ vectors with offsets to map

the heterogeneous data to a unified vector space. To address the

occlusions and ghost reflections in Radar images, we extract

keypoints (Burnett et al., 2021) from each frame and stack the

features of consecutive frames. The pose estimation process of the

system can be divided into four steps. First, the initial pose estimation

is obtained from Radar odometry. Second, a LiDAR frame similar to

the Radar keyframe is identified, and its extrinsic parameters are

calculated. Next, the deviation between the current position and the

map pose is determined. Finally, an optimization method using a

heterogeneous pose graph is introduced to refine the pose

estimation. To verify the feasibility and effectiveness, we validate

our algorithm on the Mulran Data set (Kim et al., 2020), Oxford Radar

RobotCar Data set (Maddern et al., 2017), and our ZJU Radar Data

sets (Figure 7). Figure 1 shows the effect of our method on the

Oxford data set.

In general, the contribution of this paper can be summarized as

follows:

• Radar‐to‐LiDAR localization: We utilize Radar‐to‐LiDAR localiza-

tion to eliminate odometry drift. By leveraging the complementary

strengths of Radar and LiDAR sensors, we can improve the

accuracy and robustness of the SLAM system.

• RoLM: We introduce a new feature description and matching

method called Radar on LiDAR Map (RoLM). This method allows us

to retrieve the corresponding position index from historical LiDAR

observations and estimate the coarse transformation. By incorpo-

rating RoLM, we enhance the accuracy of the SLAM system.

• Sensor association in pose graph optimization: Heterogeneous

sensor association is added to the sliding window pose graph

optimization. By considering the measurements from multiple

sensors, we effectively improve the localization accuracy of the

SLAM system.

• Availability of new data sets: We have created a new mobile cart

Radar data set (Figure 7), which is publicly available.1 This data set,

along with extensive experiments conducted on the Mulran Radar

Data set (Kim et al., 2020) and the Oxford Radar RobotCar Data

set (Barnes et al., 2020; Maddern et al., 2017), validate the

effectiveness and feasibility of the proposed system.

2 | RELATED WORK

2.1 | Radar SLAM

Radar SLAM has been a hotspot in recent years. Radar sensors can

provide multiple levels of data, including signals, images, or point

clouds. Many algorithms have been adapted from vision or LiDAR

platforms (Marck et al., 2013; Săftescu et al., 2020) to process

millimeter wave data as images or point clouds for the front‐end

processing of Radar data. There are two general Radar feature

extraction approaches: traditional (Cen & Newman, 2018, 2019) and

neural network (Aldera et al., 2019; Barnes & Posner, 2020) methods.

Traditional methods typically involve hand‐crafted feature extraction

techniques, such as edge detection, corner detection, or other image

processing techniques, applied to Radar images or point clouds.

1https://github.com/HR-zju/ZJU-Radar-Dataset.git
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These methods rely on explicit rules or mathematical algorithms to

extract meaningful features from Radar data. On the other hand,

neural network methods utilize deep learning techniques to

automatically learn features from Radar data. Deep neural networks

can be trained to extract features directly from Radar images or point

clouds without relying on explicit rules. These methods have shown

promising results in Radar SLAM, as they can capture complex

patterns and representations in Radar data, leading to improved

accuracy and robustness in feature extraction tasks. Traditional and

neural network methods have advantages and limitations in Radar

feature extraction for SLAM. Traditional methods may be computa-

tionally efficient and interpretable but need help to capture complex

and abstract features in Radar data. On the other hand, neural

network methods may offer higher accuracy and flexibility in feature

extraction, but they may require more extensive training data and

computational resources. The approach choice depends on the Radar

SLAM system's specific requirements and constraints and the

available data and resources.

In this paper, we have focused on traditional methods for Radar

feature extraction in the context of Radar SLAM. Cen et al. proposed

a feature detection method in 2018 that scales the Radar power

spectrum according to its truth probability to address the issue of

redundant keypoints and false positives generated by the constant

false alarm rate (CFAR) (Cen & Newman, 2018). They later proposed

an updated detector in 2019 that identifies regions with high

intensity and low gradient in the continuously scanned region (Cen &

Newman, 2019). Based on Cen's work, Burnett et al. introduced the

Yeti Radar Odometry algorithm to eliminate motion distortion and

the Doppler effect in Radar data using a Gaussian filter instead of a

binomial filter. This method also mitigated the impact of multipath

reflections. The researchers found that Cen (2018), combined with

their RANSAC‐based matching method, performs well. After feature

extraction, the original Radar data in polar coordinates are converted

into Cartesian form. The ORB descriptor is then computed for each

keypoint using the ORB descriptor method for violent matching, and

mismatches are removed using a distinctive feature‐based method

(Lowe, 2004; Rublee et al., 2011). The remaining matches are sent to

an MC‐RANSAC‐based estimator to exclude outliers while correcting

motion distortion (Anderson & Barfoot, 2013).

There being few pieces of research on unstructured, disordered,

and sparse point clouds currently, Kim from KAIST University

proposed the Scan Context method for 3D point cloud relocation

and scene recognition (Kim & Kim, 2018). The main idea of Scan

Context is to compress the 3D information of the scene and convert

it from Cartesian coordinates to polar coordinates for calculation.

However, the original Scan Context method has limitations in

F IGURE 1 Radar odometry generated using RoLM in which the colorful box shows some details. The left side of the figure provides the
difference between LiDAR data and Radar data in the same scene.
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handling lateral motion and efficiency. Therefore, the authors

proposed Scan Context++, which uses two descriptor representa-

tions of polar and Cartesian contexts to handle rotation and

translation robustly, and sub‐descriptors for efficient information

compression (Kim et al., 2022).

2.2 | Localization on prebuilt maps

The concept of localization on prebuilt maps is closely related to SLAM,

with high real‐time requirements. A prebuilt map can eliminate the

need for repeated online mapping in long‐term fixed systems, thereby

improving efficiency. Existing localization algorithms on prebuilt maps

include visual localization on visual and LiDAR maps (Ding et al., 2019;

Huang et al., 2020), and LiDAR localization on LiDAR maps (Yin

et al., 2019). However, these methods still need to be revised in terms

of robustness. Compared to LiDAR, Radar has the advantage of being

able to penetrate smoke and dust, making it suitable for all‐weather and

anti‐interference localization research in both indoor and outdoor

scenes (Clark & Dissanayake, 1999; Jose & Adams, 2005). In recent

years, Navtech has provided Radar sensors with higher accuracy, less

motion distortion, and a 360° range for research, resulting in rich data

sets (Barnes et al., 2020; Kim et al., 2020; Maddern et al., 2017; Sheeny

et al., 2021) and various algorithms (Burnett et al., 2021; Hong

et al., 2020). Nevertheless, Radar also has limitations, such as being

susceptible to the Doppler effect and noise, and its accuracy may be

lower than LiDAR. As a result, Radar‐based localization algorithms

often require graph optimization (Holder et al., 2019; Schuster

et al., 2016) or sensor fusion with information from other sensors to

improve accuracy and robustness.

Yin proposed a Radar‐on‐LiDAR localization algorithm in their

work (Yin et al., 2020), which utilized a conditional generative

adversarial network (GAN) called pix2pix (Isola et al., 2017). The GAN

was trained to transfer Radar data to fake LiDAR points. Subse-

quently, a Monte Carlo localization (MCL) system is built to achieve

accurate localization on prebuilt LiDAR maps. Later, Yin also

proposed an end‐to‐end learning system for localization in their

work (Yin, Chen, et al., 2022). This system used back‐propagation of

gradients from pose supervision to achieve localization and also

incorporated a Kalman Filter to improve accuracy. A recent study by

Yin, Xu, et al. (2021) introduced a heterogeneous place recognition

method via joint learning (JL). This method involved joint training to

extract shared embeddings from Radar and LiDAR data for place

recognition. Furthermore, heterogeneous prior constraints are added

to the factor graph for global optimization, enhancing the accuracy of

the localization. A recent study by Yin, Xu, et al. (2021) introduced a

heterogeneous place recognition method via JL. This approach

utilizes satellite maps as an input for the localization algorithm,

providing additional information for accurate localization.

Overall, there are several algorithms proposed in the literature

that utilize Radar, LiDAR, or satellite maps for prebuilt map

localization, employing techniques such as GANs, Monte Carlo

localization, end‐to‐end learning, Kalman Filter, and joint training to

improve accuracy and robustness in various ways.

3 | SYSTEM DESIGN

3.1 | Overview and motivation

This section introduces the proposed system. Figure 2 illustrates the

proposed RoLM framework of the system. Unlike existing methods

for matching heterogeneous sensor information, we use scan

projection descriptors (SPD) to describe their similarity without using

GPU for acceleration. For a set of LiDAR scans and Radar polar data,

we preprocess them separately. The LiDAR data is processed into a

F IGURE 2 The overall framework. Given the raw range measurements, RoLM can find the corresponding location index from a set of
locations in the map and compute the pose bias to add to pose graph optimization.
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Teach sequence, while the Radar data is processed into a Repeat

sequence, as explained in Section 3.2. To perform Radar odometry

(Burnett et al., 2021), we employ our proposed RoLM to extract

scene descriptions from both Radar and LiDAR data (Section 3.4).

Subsequently, we align these descriptions using a coarse‐to‐fine

method (Section 3.5). This alignment produces a heterogeneous

constrained edge incorporated into the pose graph optimization

(Section 3.6). The algorithm's main steps are presented in

Algorithm 1.

In our algorithm, we utilize the following variables: Fk
w repre-

sents the Radar submap centered on the middle frame in the kth

sliding window.Ok represents the middle position of the scans within

the window. Lk represents the set of LiDAR candidate frames for the

kth Radar keymap within a given radius Rresearch. SR and are

descriptors of the local Radar submap and its corresponding set of

candidate LiDAR point clouds, respectively. Tr l
SP

→ and Tr l
ICP

→ are the

SE3 transforms of the Radar point clouds computed using SPD and

ICP methods, respectively, concerning the LiDAR point clouds. Fk
w ′

represents the transformed Fk
w in the LiDAR coordinate system,

using the rough transform Tr l
SP

→ . gk
w denotes the pose of the most

similar LiDAR scan Lk s, .

The Scan Context descriptor, proposed by Kim and Kim (2018), is

designed explicitly for closed‐loop detection in LiDAR odometry and

has shown good performance in urban environments. The descriptor

uses the highest point within each point cloud block as a bin and

measures the similarity between scenes based on the distances

between columns of ray vectors. In a related work by Kim et al.

(2022), intensity information is encoded on the Cartesian Radar

image instead of using height information. However, there is no

direct connection between the power of Radar points and the height

of LiDAR points.

When considering a nontransparent object in 3D space, it

appears with a clear outline and geometric structure in the LiDAR

point cloud. On the other hand, its edge seems to be blurred in the

Radar point cloud. Although the correspondence between LiDAR and

Radar points may be vague, it tends to be explicit between clusters of

their point clouds. The density of a point cloud can indicate various

properties of an object, such as its size, thickness, and hollowness.

MA ET AL. | 703
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For example, a tree's point cloud density will be sparser than a wall's,

making it more easily distinguishable when viewed from a top‐down

perspective.

3.2 | Teach and repeat

In Figure 3, denotes the set of Radar keymaps. Subscript k

indicates the keyframes during Radar odometry. denotes the

LiDAR fixation frames on the Teach sequence, which consist of m

vertices connected by edges representing relative positional trans-

formations. Once all the Radar scan frame Rk i k, ∈ are collected, we

estimate the transformation from k to the map frame . This

estimation combines the odometry‐estimated transformation T* r l→

from k−1 to k with the edge Tk k−1→ , and optimally adjusts the entire

pose graph. In publicly available datasets that provide ground truth,

we can directly select keyframes as vertices in based on changes

in distance and angle. In our collection of sequences, our primary

framework of choice was LIO‐SAM (Shan et al., 2020). However, we

incorporated specific components from Fast‐LOAM (Wang

et al., 2020) for point cloud alignment. By fusing GPS and IMU

information, we constructed highly accurate instructional maps.

3.2.1 | Teaching and map‐building on LiDAR

The prebuilt map is generated using LiDAR scans. The map is

constructed using a series of LiDAR keyframes with ground truth

information. During the mapping process, if there are sufficient

translations or rotations between two scans, a new vertex m is

added, connected by a new edge T m m, −1→ . To calculate the true

transformation relationship between these two keyframes T m m, −1→ ,

we utilize the ground truth provided by the data set. We employ

localization and mapping techniques in our collected data sequence

using LiDAR, IMU, and GNSS data. These methods allow us to

accurately determine the ground truth, which serves as a reference

for subsequent Radar‐based localization.

3.2.2 | Repeating and localization on radar

In the repeating and localization on Radar step, the sequential Radar

keymaps k( = 1, 2, 3, …)k are processed. First, an initial transforma-

tion Tk k−1→ is estimated based on Radar odometry between

consecutive scans k−1 and k . Subsequently, the most similar

LiDAR frame m−1 that corresponds to the current Radar keymap k

is identified using the proposed method. The prior relationship T* r l→

between the two frames is computed by employing the SPD and

iterative closest point (ICP) algorithm. Finally, the transform estima-

tion is refined by adding the a priori transform Tk to the pose graph

optimization, using the preconstructed LiDAR map as a reference.

3.3 | Radar keyframe generation

The Radar image is affected by noise and ghost reflections caused by

multipath return. Extracting an accurate environment description

from the Radar is crucial for aligning the Radar point cloud with the

LiDAR point cloud. Typically, noise is filtered out in a single frame.

However, this single‐frame approach does not eliminate ghost

reflections, and it also mistakenly classifies the peak parts of white

noise as tiny objects, which impacts the final result. We extract

keypoints from each Radar image frame to avoid occlusion and ghost

reflections and fuse the feature points obtained from multiple frames.

3.3.1 | Keypoint extraction

Using a more appropriate feature extractor is advantageous in

extracting Radar feature points to represent the structural features of

F IGURE 3 The structure of T&R. Orange triangles depicts Radar odometry, with each triangle representing a radar frame pose. The opaque
triangles represent the selected middle frame within the sliding windows, with the point clouds of the surrounding transparent triangles aligned
to them. Notably, each Radar submap frame is annotated with a subscript k to signify its corresponding pose. In contrast, the blue triangles
represent LiDAR keyframe poses, which incorporate additional GPS and IMU constraints. Furthermore, the alignment between Radar and LiDAR
is denoted by T* r l→ , highlighted with a green check mark, signifying the accurate identification of a corresponding similar frame.
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a scene. According to Cen's concept (Cen & Newman, 2018), CFAR

(Rohling, 2011) is not the most optimal detector for Radar due to its

generation of numerous redundant points. The raw polar images of

Navtech FMCW Radar are acquired through rotational scanning of the

millimeter wave transceiver. Based on this property, Cen and Newman

(2019) introduced an efficient feature detector that eliminates

redundancy. Cen requires the maximum number of key points lmax to

be specified for each angle, eliminating the need for complex input

parameters. We show the whole process of Radar keypoint extraction

in Figure 4a. Initially, the Prewitt operator calculates the gradient G in

the range direction, and G′ is obtained by normalizing G using the

formula
 

 G′ =
G

G max
. Simultaneously, the original image Sraw undergoes

mean subtraction to yield S S S′ = − mean( )raw raw . Ultimately,

H G S= (1 − ′) × ′ is calculated to identify the high‐intensity and low‐

gradient regions. The pixels exceeding the average value in H are

retained and sorted in descending order to label the continuous regions

along each ray. Subsequently, starting from these pixel positions, an

extension is made on S′ towards both ends of the ray, with all positions

greater than 0 being considered as connected regions Mr . Each ray can

produce a maximum of lmax continuous marked segments. For every

serial region m Ma
r r∈ , the range bin r with the highest value is

designated as the keypoint k Ka
r r∈ .

3.3.2 | Motion and Doppler correction

To improve odometry positioning accuracy and Radar LiDAR

matching performance, we eliminate Radar scanning distortion

caused by sensor motion and the Doppler effect. We implement

the improved Motion‐Compensated RANSAC (MC‐RANSAC) pro-

posed in Cen and Newman (2019). MC‐RANSAC (as described in

Figure 4b) directly estimates the sensor's velocity ϖ ν ω= [ ]⊤.

Instead of transforming, we employ ϖ to eliminate the motion

distortion in Radar measurements, following the method described in

Cen and Newman (2019). During the RANSAC iteration process, we

estimate and update the displacement caused by the Doppler effect

in the current subset of points and eliminate it using the latest ν and

Equation (1):

   r β ν ϕ ν ϕΔ = ( cos( ) + sin( )),x ycorr (1)

where velocity vector ν ν ν= ( + )x y is obtained from the optimal MC‐

RANSAC estimate, while ϕ represents the angle between the ray

direction and the x‐axis. Let β f df dt= ∕ ( ∕ )t , with ft representing the

transmission frequency (f ≈ 76.5t GHz) and df dt∕ representing the

rate of change of frequency (df dt∕ ≈ 1.6 × 1012). The Radar key-

points in a single frame suffering ghost reflections are sparse. To

construct a keymap as the environmental representation of the

keyframe, we consider converting the multiframe features to the

sensor coordinates of the intermediate position. A sliding window

consists of n Radar frames. Each frame contains a feature point cloud

Fi
r obtained by converting polar coordinates ( Kr ) to Cartesian

coordinates and scaling by a factor. The middle position serves as

the reference coordinate for the submap. We register the crucial

point clouds of all frames within the window to this coordinate

system, forming the Radar local feature point cloud map under the

sliding window, represented as Fk
w :

F IGURE 4 Illustration of Radar keypoint extraction and MC‐RANSAC. In (a), we depict identifying the brightest points within connected
regions at each azimuth by utilizing a mask that exhibits high brightness and low gradient, which are regarded as feature points. During iterations
in (b), we randomly choose a subset of the key point cloud to calculate the sensor velocities directly. If the new velocity estimate results in a
more minor alignment error, we update the velocity estimate accordingly. We correct the motion and Doppler aberrations of the subset of point
clouds using the latest ϖ value at each iteration.
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F F F F FF = … … ,k
w

k
kr

k N
kr

k N
r

k N
kr

k N
kr

,0 , −1 , , +1 ,2A A A A
∪ ∪ (2)

where N2 + 1A is equal to Radar frame numbers in the window, and

F j
kr means the register of F j

r at Ok
w .

3.4 | Scan projection descriptor for RoLM

Building upon (Kim et al., 2022), we replace the value of each bin with

the normalized point density of each patch. Initially, we rasterize the

XY plane of a single point cloud frame. Next, we calculate the point

count in all grids. Finally, we normalize the point count across all grids

to obtain the point cloud descriptor for this frame:









R
D

D
i j n

R
D

D
i m j n

=
max

( , = 1, 2, …, ),

=
max

( = 1, 2, …, , = 1, 2, …, ).

i j
recd i j

rec

rec

i j
arcd i j

arc

arc

,

,

,

,

(3)

The variables Drec and Darc represent the density of point cloud

blocks defined by rectangles and arcs, respectively. The variables i

and j represent the indices of the grid. For example, in Section 4, we

use grids of either 60 × 20 sectors with dimensions of 6 × 2m∘ or

200 × 200 sectors with dimensions of 200m × 200m. The point

cloud descriptor obtained through projection is denoted as S.

The resolution of the descriptor is influenced by the size and

number of rasters that have 1 DOF in the row vector direction

separating them. Descriptors can be divided into two categories

according to the DOF (as shown in Figure 5):

• Polar projection (PP): The PP utilizes polar coordinates, with the

angle θ serving as the horizontal axis and the radius r as the

vertical axis. The descriptor is filled by counting the number of

points falling into each arc. It contains 1 DOF ( θΔ ) in the heading

direction.

• Cartesian projection (CP): In this method, the vertical axis is

represented by the x‐axis of the sensor coordinates, and the y‐axis

represents the horizontal axis. The descriptor is filled by counting

the number of points falling into the rectangular box. It contains 1

DOF yΔ in the y‐direction, typically to the left of the car when its

front is facing forward.

The two descriptors mentioned above do not include the x‐axis for

Radar odometry. However, in a large‐scale urban road scene, the

translation at the lane level has minimal impact on the calculation

results of PP. By evaluating the score of PP, we can align the two

frames of point clouds on the x‐axis.

3.5 | Scan projection estimate

Despite clarifying in Section 3.1 that there is a visible correlation

between the dense region of the point cloud and the bright spot of

the Radar point cloud, an accurate numerical relationship still needs

to be improved. The similarity between the descriptor column vectors

is first compared. The distances of each column vector are summed

to provide an equitable representation of the two complete

descriptors. By utilizing Equation 3, one can obtain the Radar

F IGURE 5 Summary of the transformation of Radar/LiDAR scans to SPD. The Radar/LiDAR point cloud is partitioned based on the raster
regions illustrated in the figure. The green edges represent cartesian projection, while the yellow edges represent polar projection. Equation (3)
determines the number of points within each raster, and the counts are then normalized to generate the SPD representation on the right side.
When comparing the similarity of SPDs of the same type, the SPD description can be shifted along the red axis. SPD, symmetric positive definite.

706 | MA ET AL.

 15564967, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22291 by Z

hejiang U
niversity, W

iley O
nline L

ibrary on [11/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



descriptor SR and the LiDAR descriptor SL, and subsequently,

calculate their distance using the following expression:










∑d S S
N N

s s

s s
( , ) =

1
=

1
1 − .i R i L

j

R i
j

L
j

R i
j

L
j,

,

,

⋅

⋅
(4)

According to Section 3.4, d S S( , )R L also has 1 DOF along the

horizontal axis ( y θΔ , Δ ). SR i, is an SPD with shifted columns, where

each column is shifted by an amount i compared to the original.

The LiDAR keyframes used for comparison in Section 4 are

obtained by taking one frame every 0.5 m in all scans. All these

keyframes are used to construct the complete LiDAR map. The

alignment result is represented by nalign:

D S S d S S

n d S S

( , ) = min ( , ),

= arg min ( , ).

R L
i N

i R i L

i N
i R i L

[ ]
,

align
[ ]

,

∈

∈

(5)

The functionD ( , )⋅ ⋅ computes the minimum distance between two

descriptors for all offsets. The set L is defined as the collection of

descriptions SL for all candidate LiDAR scans located within a radius

of Rresearch from the location of the Radar scan described by SR. By

iteratively examining each candidate LiDAR scan L j, within L, we

determine the LiDAR scan that exhibits the closest proximity to the

current Radar scan, referred to as SL s, . The Radar and LiDAR scans'

alignment result is nalign s, :

S D S S

n d S S

= arg min ( , ),

= arg min ( , ).

L s
S

R L j

i N
i R i L s

, ,

align,s
[ ]

, ,

L j L, ∈

∈

(6)

Thus, based on their PP and CP scores, we can calculate the

rotation and translation of any key measurement Fk
w relative to

similar LiDAR frames. Furthermore, the process of selecting similar

LiDAR frames enables us to make a rough estimation of the

translation along the x‐axis. The rotation θnalign can be obtained using

the formula n ×align s N,
360∘

. Similarly, the translation ynalign can be

calculated as n N( − ) ×align s
R

N,
2 × y

, where R = 100my represents the

farthest distance of the point used to calculate SR in Section 4. To

express this estimation, we use the transformation matrix Tr l
SP

→ :












T

θ θ

θ θ y
=

cos −sin 0 0

sin cos 0

0 0 1 0
0 0 0 1

.r l
SP

n n

n n n
→

align align

align align align (7)

3.5.1 | Precise alignment using ICP

The accuracy of the initial rotation matrix depends on the choice

of parameters n m, in Equation (3), which may bring a significant

mistake to the final estimate. Based on the alignment results

presented in Equation (6), it is highly probable to achieve a coarse

registration with a rotation error of less than 7° and a lateral

translation error of less than 1 m, as demonstrated in Figure 8. So,

we can employ ICP with RANSAC to further improve the

registration within a limited range. This iterative refinement

process allows us to fine‐tune the alignment and enhance the

accuracy of the registration:

T T T* = ,r l r l
SP

r l
icp

→ → →⋅ (8)

where T* r l→ indicates the corresponding between Radar and LiDAR

poses. The entire initial alignment process can be referred to the

Figure 6. Using the SPD algorithm for coarse point cloud alignment

yields satisfactory outcomes, necessitating the subsequent employ-

ment of ICP for fine‐tuning. For our experimental setup in Section 4,

we configured the ICP parameters: the maximum alignment distance

F IGURE 6 Scan projection based rough estimate. Given the initial measurement set R, the feature points Fk i, in the sliding window SK are
spliced into a keyframe self‐map Fk

w . The most similar LiDAR frame is selected from the candidate list using polar and Cartesian projection
descriptors, respectively, and the rotation θn and translation yn are calculated. On this basis, ICP is used to complete the alignment to obtain the
primary edge constrain edges T* r l→ .
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was set to 5m, and the maximum number of iterations and RANSAC

iterations were set to 100. Moreover, the ICP algorithm terminated

iterations when the root mean square error between consecutive

iterations fell below 10−4.

3.6 | Heterogeneous pose graph optimization

The system's optimized estimation (Figure 3) can be divided into two

parts. (1) Radar odometry: Provide initial pose estimation and the

Radar point cloud keyframe. (2) Radar on LiDAR localization: Find a

LiDAR frame similar to the Radar keyframe and calculate the extrinsic

parameters of the two to get the deviation between the current

position and ground truth.

3.6.1 | Radar odometry edge

The keypoints are extracted from the new Radar scan using the

feature extraction method described in Section 3.3.1. These key-

points are then converted from polar coordinates to the Cartesian

coordinate system. All Radar frames Fk i
r

, in the sliding window are

registered at keyframe coordinates according to the estimated pose

Ok i, , forming a local keymap Fk
w . Using each frame as a keyframe will

be computationally expensive, affecting the algorithm's real‐time

performance. The interval between keyframes and the size of the

sliding window is adjustable. We define the residual edge between

Radar odometry frame i and j minimally as:













( )

( )

r o o

R o o o

ϕ ϕ

ϕ

ϕ ϕ ϕ

, , ,

=
(0, 0, ) − − ˆ

− − ˆ
,

i j i
w

i
y

j
w

j
y

i
y

j
w

i
w

ij
i

j
y

i
y

ij

y

,

−1 (9)

where ôij
i is the relative position, and ϕ̂i

y
is the fixed estimate of the

yaw angle value of rotation we estimated.

3.6.2 | Radar‐LiDAR edge

The most similar LiDAR scan of the Teach path can provide a prior

factor for the Radar keymap in the current sliding window. Prior

Factor acts like a high‐frequency loop closure factor. It differs from

the odometry factor as it provides prior constraints on the SE3 6

DOF:

( )e o g T T, = * ,k k k
w

k
w

r l k r l k, → , → ,
⊤ (10)

where T* r l k→ ,
⊤ is the relative estimate of transformation, which is

obtained from Equation (8), and Tr l k→ , is the actual transformation

between the current Radar and LiDAR frame.

The whole graph is optimized by minimizing sequential edges and

Radar‐LiDAR edges:









∑ ∑r eρ bmin = + .
o Φ i j S

i j
k H

k k k k
, ( , )

,
2

,
2

∈ ∈

(11)

4 | EXPERIMENTAL VALIDATION

4.1 | Implementation strategy

We evaluated the performance of our RoLM system on the Mulran

(Kim et al., 2020) and Oxford (Barnes et al., 2020; Maddern

et al., 2017) Data sets. Additionally, we present our data set,

obtained from the Zijingang campus of ZJU, which involved the

deployment of the Navtech Radar CIR sensor and a 32‐ring LiDAR

(see Figure 7). We also conducted experiments on the identical route

sequences collected at different times in the Oxford Radar Data set.

It is distinct from the multiple sequential Mulran data sets that

collected different routes within the same area. Besides, Sejong‐02

tests the performance of our RoLM over 23 km.

To validate the algorithm's efficacy across different sensor types

and onboard platforms, a test vehicle was constructed (Figure 7a).

The platform is equipped with various sensors, including the Navtech

CTS350‐X millimeter wave Radar, RoboSense RS‐LiDAR‐32 LIDAR,

CHCNAV X6 RTK, Xsens MTi‐680G IMU, and FLIR Blackfly BFS‐U3‐

16S2C‐CS Camera. The sensor's initial extrinsic parameters were set

based on the design specifications of the sensor module. During the

LiDAR and IMU‐based map construction, online optimization of their

inter‐parameter relationships was performed. However, no refine-

ment was conducted for the extrinsic parameters of the remaining

sensors. The sensors employed a software‐triggered approach and

utilized the ROS interface provided by the manufacturers for data

recording. Additionally, the system clock served as a uniform source

of synchronization.

Our LiDAR sensor has a vertical field of view of 40°, with a

vertical angle resolution of less than 0.33° and a horizontal resolution

ranging from 0.1° to 0.4°. It can detect 600,000 points per second

within a measurement range of 0.2 to 200m. On the other hand, the

Navtech Radar operates based on an FMCW principle, providing a

horizontal angle resolution of 0.9° and a distance resolution of

5.96 cm. It can accurately measure distances of up to 200m at a rate

of 4 Hz.

The datasets utilized in our experiments were gathered at two

distinct locations: the Zhejiang University campus and Huanglong

Sports Center. These sequences encompass various environments,

including urban buildings, flat grasslands, and dense forests. We

employed postprocessing techniques to obtain ground truth poses

that involved integrating data from GNSS, RTK, IMU, and LiDAR. RTK

subscription was utilized to achieve centimeter‐level accuracy in

positioning without the need for satellite base stations. The collection

route can refer to Figure 7a–k. Table 1 shows some details about the

data series. It is worth mentioning that the sensor types and locations

on vehicles are different in each data set, and all experiments are

conducted on the same system with an Intel® CoreTM i7‐9700 CPU

@3.00 GHz × 8.
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4.2 | SPD performances

Before officially starting the experiment, we conducted some simple

experiments to demonstrate the effectiveness of SPD. First, we use the

Radar local point cloud image with different frame numbers to match

the LiDAR to determine the frame numbers N2 + 1A in the window.

We employ a technique that involves stitching together multiple

frames of Radar feature point clouds to address the issue of sparse

and obscured single‐frame point clouds. However, incorporating too

many frames can introduce high system latency, so selecting

appropriate frames for stitching is crucial. In this experiment, we

select every five frames Radar Fk
r as the central point and stitch

F IGURE 7 (a) Our test vehicle with Radar, LiDAR, IMU, and RTK sensors. (b)–(k) The paths contained in our data set, collected in Zhejiang
University and Huanglong Sports Center.
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together N = 1, 3, 5, 10, 15, 20A into a point cloud denoted as Fk
w ,

using Equation (2). We randomly apply uniform lateral translations

y UΔ (0, 8)∈ ranging from 0 to 8m to simulate lane changes. Next,

we search for the LiDAR scan that is closest in time and calculate the

transformations θnalign and yalign using Equations (3) and (4) (theoretical

values being θ θ= ˆ = 0nalign
∘ and y y y− ˆ = Δalign ). Since the calculation

of the fraction of alignment results for all angles has already been

performed by SPD, random rotation points are not necessary for this

experiment. To account for the maximum range of lane changes, we

disregard results beyond 15m when calculating the CP error y y− ˆalign .

The experimental results are presented in Figure 8.

Our findings indicate that our proposed SPD system is highly

effective in most ideal urban autonomous driving scenarios.

Additionally, incorporating a limited number of stitched Radar point

clouds significantly enhances the accuracy of coarse alignment.

Among the different stitching options, N = 5A and N = 10A demon-

strate the best results, with N = 5A being the optimal choice.

However, beyond this point, the gains achieved are marginal and

not proportional to the cost involved. Therefore, for the experiments

conducted in Section 4.4, we opted to use N = 5A .

We employed different search ranges to validate SPD's

effectiveness on multiple sequence data. The search localization

strategy of RolM involves traversing all LiDAR scans in the teaching

sequence  RT R t t t{ ( , ) − < }teach i teach i teach i teach i repeat k search, , , , ,∥ ∥ within a

radius Rsearch, based on the currently estimated position

T R t( , )repeat k repeat k repeat k, , , to locate similar frames T R t( , )teach s teach s teach s, , , .

During the experiment, a pair of matches with a distance of less than

10m, that is, t t{ − < 10mrepeat k teach s, ,∥ ∥ , were considered as true

positives. Specifically, we evaluated the performance using recall@1,

which is calculated as follows:

recall@1=
True positive samples

Number of query scans
. (12)

Figure 9 demonstrates the strong performance of SPD on

multiple sequence data, yielding high recall@1 values. Additionally,

our observation reveals a decreasing recall@1 as the Rsearch value

increases. However, SPD exhibits limited effectiveness in degraded

scenes with numerous bridges, resulting in sparse Radar feature

points and challenging scene recognition. We ensure localization

accuracy in Radar SLAM by adjusting the threshold and discarding

sparse point cloud keyframes.

We employ Yin's experimental framework (Yin, Xu, et al., 2021)

to examine the match scores between candidate LiDAR and Radar

frames. Following a coarse‐to‐fine strategy, we select a subset of

LiDAR frames that accounted for 1% of the total frames. We consider

the top‐1 positive match as true positive when the inter‐frame

distance is less than 3m. We generate precision‐recall curves by

adjusting the score thresholds, as depicted in Figure 10. Furthermore,

we report the maximum F1 scores, as summarized in Table 2. Our

experiments involve comparing the performance of our proposed

methods against established techniques such as Scan Context (Kim

et al., 2022; Kim & Kim, 2018), DiSCO (Xu et al., 2021), and JL (Yin,

Xu, et al., 2021). The evaluation is conducted on three benchmark

sequences: Oxford, Riverside, and KAIST.

Notably, the original Scan Context and DiSCO methods

exclusively apply to isomorphic sensors. Consequently, attempting

to directly apply these methods to LiDAR and Radar data

independently resulted in unsatisfactory outcomes. So, we test

R2L using the signatures from L2L and R2R models we train

separately. While designed for Radar on LiDAR localization, the JL

method still exhibited suboptimal performance on the test

sequences.

To compare the approach proposed in this paper, we conducted

a series of place recognition tests using Yin's JL (Yin, Xu, et al., 2021).

These tests included both the single‐session loop detection test and

the multisession localization validation mentioned in Yin's paper.

These tests utilize pretrained models that have been made available

as open source. Figure 11a illustrates the results of Radar‐to‐Radar

loop detection on a single session, specifically KAIST01 on KAIST01,

with the exclusion of the adjacent 100 frames. Subsequently, the

TABLE 1 Information on the ZJU data set.

Sequence Time Scene Weather Dynamic objects Direction Length (m)

ZJG‐01 2022‐01‐15‐14‐11 Zijingang Sunny Many Both 1784.620

ZJG‐02 2022‐01‐15‐15‐40 Zijingang Sunny Many Anticlockwise 462.844

ZJG‐03 2022‐01‐15‐16‐06 Zijingang Sunny Many Both 1515.229

ZJG‐04 2022‐05‐19‐14‐42 Zijingang Cloudy Many Both 1328.263

ZJG‐05 2022‐05‐19‐16‐58 Zijingang Cloudy Many Anticlockwise 901.609

ZJG‐06 2022‐05‐19‐14‐42 Zijingang Cloudy Few Anticlockwise 457.800

HL‐01 2022‐05‐24‐17‐00 Huanglong Sunny Many Anticlockwise 2312.648

YQ‐01 2022‐05‐21‐14‐55 Yuquan Cloudy Few Both 450.571

YQ‐02 2022‐05‐21‐15‐55 Yuquan Cloudy Few Both 819.383

YQ‐03 2022‐05‐23‐14‐31 Yuquan Cloudy Few Clockwise 1035.923
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evaluation is expanded to encompass multisession scenarios,

specifically KAIST03 on KAIST01. We conduct Radar‐to‐Radar tests

(Figure 11b) and Radar‐to‐LiDAR tests (Figure 11c). The figures

clearly show that their method produces favorable outcomes in loop

detection for single‐session scenarios. However, it exhibits significant

degradation when confronted with changes in the scene and sensors.

Retrieving accurate map poses becomes challenging when employing

heterogeneous sensor data. Similarly, Radar‐to‐LiDAR localization

(a) (b)

F IGURE 9 The performance (recall@1) of SPD on multiple sequence data. The Teach sequence of DCC02 and DCC03 is DCC01, the Teach
sequence of KAIST02 and KAIST03 is KAIST01, and the Teach sequence of Oxford02‐06 is Oxford01.

(a) (b) (c)

(d) (e) (f)

F IGURE 8 Illustration of frame‐error. The figure demonstrates the impact of multiframe splicing on PP (a)–(c) and CP (d)–(f). Our findings
reveal that the optimal splicing is achieved at approximately N = 5A under the specific experimental conditions outlined in this paper.
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tests were performed on various sequences using our RoLM methods

detailed in this paper. The results demonstrate good qualitative

accuracy in the tests of KAIST03 on KAIST01 (Figure 11d). We

conducted experiments to assess the impact of Radar noise on SPD

by introducing random Gaussian white noise, following

N t σ( ) ~ (0, )2 , at each pixel of the polar images derived from Radar

scans. We introduced noise levels of σ = 0.1, 0.2, 0.32 , as depicted in

Figure 12a. Beyond σ = 0.42 , Radar odometry ceased to function

effectively. Experiments were carried out on the oxford01 sequence

to identify similar LiDAR data using SPD through Radar scanning with

added noise levels of σ = 0.1, 0.2, 0.32 . A search radius of Rresearch was

set at 20m, pairs with distances D exceeding 0.8 were excluded, and

the success rate of pairs within 5m was calculated. The results are

shown in Figure 12b, demonstrating that PP is very insensitive to

noise and CP is relatively more sensitive.

To explore the impact of displacement on SPD, we manually

translated the Radar scans within a range of 0–8 meters before

performing LiDAR‐based positioning. The average of the entire

sequence was then calculated every 10 frames. To more accurately

assess the magnitude of the increase in descriptor distance

D S S( , )R L , we normalize the value of D S S1 − ( , )R L to a percentage

to represent the similarity of SR and SL. Figure 12c depicts the

decreasing trend in similarity for PP and CP within the Oxford01

sequence. The findings suggest that CP descriptors have low

sensitivity to lateral translations, while PP descriptors are sensitive

to displacement. In our approach to determining a successful

match, we establish that the distances of both frames must be

below a predefined threshold. We then select the frame with the

highest score from the pool of available candidates. Finally, we

empirically assess the appropriateness of the a priori edge, as

outlined in Section 4.3.

4.3 | Experiment setup and hypotheses

We set the sliding window size to 11 for all experiments and acquired

a new window every 10 Radar frames. The heterogeneous prior

constraint weight ρ = 1. In general, we consider each heterogeneous

constraint to be credible unless any of the following situations

occurs:

• If the SPD similarity D ( , )⋅ ⋅ is below the threshold τ , the obtained

result is considered a false match.

• U‐turns rarely occur during daily driving. To eliminate the

mismatch, we stipulate that if the difference between the current

constraint gk
w and the current body position ok

w heading angle is

more significant than 120∘, then ignore it.

• As a rule of thumb, when the car drives normally on the road, it will

not swerve suddenly at high speeds. Therefore, when the PP

alignment result is n (5, 25) (35, 55)align ∈ ∪ , we set b = 0k .

The current strategy needs an initial positioning for the first frame.

Thus, it is necessary to ensure that the starting point of the Radar

odometry is just a short distance from the map origin. Otherwise, the

initial offset must be manually provided. We leveraged the KD tree to

propose all the map poses and c candidates were selected for

retrieval. The selection of candidate LiDAR maps will be adjusted

according to the vehicle's speed and pavement information. For

example, in Riverside and Sejong, we take c = 100 for bridges and

mountain roads where road information is not abundant and c = 50

for structured urban scenarios.

F IGURE 10 Precision‐recall curve. We compare the SPD with the three methods (Kim et al., 2022; Xu et al., 2021; Yin, Xu, et al., 2021). We
consider the top‐1 positive match from 1% coarse candidates of the database as true positive when the inter‐frame distance is less than 3
meters. The closer the curve is to the upper right, the better method.

TABLE 2 Maximum F1 score of precision‐recall curves.

Sequence

Scan context DiSCO JL
(Kim et al.,
2022)

(Xu et al.,
2021)

(Yin, Xu, et al.,
2021)

RoLM
(Ours)

Oxford 0.04 0.02 0.18 0.84

Riverside 0.02 0.00 0.14 0.69

KAIST 0.02 0.01 0.61 0.96
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As for the LiDAR ground truth of the public data set referenced

in the experiment, we transform the ground truth and LiDAR point

cloud provided by the data set into the Radar coordinate system with

the provided extrinsic. Moreover, we used a loosely coupled scheme

based on LIO‐SAM (Shan et al., 2020) and GPS for the self‐built data

set to obtain the LiDAR ground truth.

We construct the pose graph using the GTSAM (Dellaert &

Contributors, 2022) and optimize it with the default Levenberg‐

Marquardt optimizer. We introduce the LiDAR map frames as fixed

priority factors. Conversely, the odometry keyframes are incorpo-

rated as odometry factors, constrained by their self‐motion estima-

tions and the prior map information.

(a) (b) (c)

F IGURE 12 Ablation experiments on the expressivity of SPD. (a) Radar scan polar images at various noise levels. (b) The relationship
between noise level and the accuracy of SPD relocation. (c) The relationship between the similarity of Radar and LiDAR scans at various
additional offsets.

F IGURE 11 Visualization of localization results of different methods on multisequence data. A search radius of R = 50research m was used,
with positive pairs connected by green lines and negative pairs connected by red lines using a threshold of thr = 10pos m. Tests (a), (b), and (c)
were conducted using Joint Learning (Yin, Xu, et al., 2021), a method proposed by Yin. The result of our RoLM method is shown in (d).
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4.4 | Experiments results evaluation

We compared the proposed system with the three methods on two

public data sets (Barnes et al., 2020; Kim et al., 2020) and data from

ZJU data set. These competitive methods include RO (Burnett

et al., 2021), RO with loop detection (Kim & Kim, 2018), and RaLL

(Yin, Chen, et al., 2022). We added the data from ZJG01‐03 to fine‐

tune the weight of RaLL's pretrained model. We also verified the

effectiveness of the proposed descriptor through ablation

experiments. The results are presented in Table 3. We use the

open‐source tool (Grupp, 2017) for error calculation. An overview of

the trajectory estimation results on some sequences is shown in

Figure 13. The Scan Context method is significantly better than Yeti

Odom in repeated road sections because it includes closed‐loop

detection. RoLM exhibits the most minor trajectory error compared

to all other methods. In addition, the second and third rows of

Figure 13 show our trajectory's translational and rotational relative

errors. Specifically, the relative errors equal the mean translation and

TABLE 3 RMSE of global trajectories.

Sequence

Yeti Odom Scan Context RaLL RoLM(SPD) RoLM(SPD+ICP)
(Burnett et al., 2021) (Kim et al., 2022) (Yin, Chen, et al., 2022) (Ours) (Ours)
Trans.(m) Rot.(°) Trans.(m) Rot.(°) Trans.(m) Rot.(°) Trans.(m) Rot.(°) Trans.(m) Rot.(°)

Oxford‐01 95.45 13.13 28.29 5.74 train train 1.07 1.19 1.11 1.17

Oxford‐02 34.25 5.46 14.14 3.66 0.98 1.45 0.84 0.93 0.92 1.01

Oxford‐03 118.38 16.06 99.39 14.68 1.14 1.62 1.12 1.08 1.07 1.04

Oxford‐04 201.01 26.30 185.53 23.95 1.71 1.93 1.22 1.29 1.41 1.33

Oxford‐05 95.92 8.55 53.73 5.33 1.11 1.48 1.22 1.30 1.06 1.15

Oxford‐06 148.29 22.37 120.02 19.45 1.14 1.52 1.24 1.14 1.29 1.23

RobotCar‐all 126.38 16.95 102.09 14.38 1.23 1.60 1.13 1.16 1.15 1.16

DCC‐01 30.60 2.61 17.76 2.79 2.11 1.97 2.93 1.09 0.97 1.17

DCC‐02 26.72 4.49 20.15 4.16 4.71 2.01 1.17 1.06 1.02 0.95

DCC‐03 19.94 4.02 12.63 2.53 5.14 2.55 1.36 1.44 0.78 1.24

KAIST‐01 34.78 5.86 19.86 4.86 1.30 1.71 0.75 1.61 0.81 1.60

KAIST‐02 31.99 6.61 5.55 2.5 1.30 1.71 0.66 1.06 0.66 1.05

KAIST‐03 30.55 3.50 4.94 2.41 1.27 1.50 0.72 1.05 0.70 1.00

Riverside‐01 40.40 5.97 8.10 3.00 4.12 2.84 2.55 2.01 2.50 1.99

Riverside‐02 37.56 3.40 11.47 3.29 2.52 1.93 5.54 3.44 3.67 1.78

MulRan‐part 32.78 4.83 13.27 3.27 3.12 2.02 2.60 1.84 1.83 1.44

Sejong‐02 2893.17 38.14 2847.81 37.40 ‐ ‐ 8.90 3.02 5.20 1.43

ZJG‐01 51.26 48.02 50.32 47.59 train train 8.87 6.98 1.10 6.94

ZJG‐02 171.60 157.14 ‐ ‐ train train 1.17 9.11 2.38 8.50

ZJG‐03 137.25 178.48 ‐ ‐ train train 2.46 6.55 2.36 6.53

ZJG‐04 40.19 23.98 22.07 12.25 1.35 2.63 0.67 2.96 0.41 2.78

ZJG‐05 30.04 25.49 8.20 5.53 1.46 3.69 0.68 3.05 0.46 3.11

ZJG‐06 137.25 178.48 ‐ ‐ 1.46 2.85 0.58 3.20 0.38 2.95

YQ‐01 14.96 12.86 14.74 13.93 1.34 3.4 0.68 2.30 0.45 2.72

YQ‐02 11.73 16.25 8.37 10.95 0.79 3.03 0.54 2.56 0.40 3.25

YQ‐03 137.25 178.48 ‐ ‐ 1.21 3.47 1.17 3.14 1.13 2.79

Huanglong 105.48 33.75 72.10 20.41 2.50 3.62 1.09 3.71 0.97 1.98

ZJU‐all 96.89 102.23 47.86 26.70 5.40 3.32 3.75 4.89 1.25 4.62

All‐sequence 1197.16 86.70 1177.17 19.58 2.77 2.01 4.18 2.29 2.53 1.83

Note: Meanings in bold are the best metrics among the different methods in the current experimental setup.
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rotation errors from 500 to 2500m with the incremental distance

traveled.

Our method stands out in evaluating the absolute error of

trajectories in all sequences, which has the minor RMSE of

experimental results in most of the sequences (Table 3).

Our system performs better in structured urban scenes (i.e.,

Oxford, DDC, KAIST) while it has a more significant error in degraded

scenes (i.e., Riverside, Sejong). Among them are many bridge scenes

in the Riverside sequence, which is an excellent challenge for

relocation. Therefore, when the number of point clouds in Fk
w is tiny,

(a) (b) (c)

(d) (e) (f)

F IGURE 13 Evaluation of four different methods on the MulRan (a)–(c), Oxford (d), and ZJU (e, f) Data set. Each subplot has three rows of
images. The first row presents a comparison between the estimated trajectories of the four methods and the ground truth, while the second and
third rows display the percentages of relative translation errors and relative heading errors, respectively. Details of the trajectory for the marked
part of the pentagram are shown.
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set b = 0k . Additionally, each Radar ray in ZJU data set has no exact

timestamp, which results in the Doppler effect and motion distortion

elimination challenges—the uncertain ray timestamp results in a

significant error in the heading angle estimate. The Yeti odometry

even provides a nonsmooth trajectory, which also causes the Scan

Context algorithm to crash.

Finally, we also designed a set of ablation experiments. We

tested RoLM (SPD) and RoLM (SPD+ICP), respectively, showing

that SPD significantly improves the system, and ICP can make it

more stable. Our RoLM has succeeded on a wide range of Radar

and LiDAR models and is highly inclusive of vehicle speeds and lane

changes.

5 | CONCLUSIONS AND FUTURE WORK

We first construct the Teach path using the well‐established LIDAR‐

based multisensor fusion SLAM, which contains keyframe scans and a

position reference. The Repeat path is constructed using the Radar

sequence, which first maintains a Radar odometry that provides the

raw position estimation result, accumulating a drift error over time.

The most similar LiDAR references are found using our proposed SPD

description, and their previous transformation relationships are

computed from coarse to fine and added as a priori constraints to

the pose graph optimization. We design a series of experiments to

confirm the excellent performance of the SPD on both single

sequences and multiple sequences and incorporate it into a Radar

SLAM system to verify its enhancement of localization accuracy.

The RMSE of localization across all our sequences is 2.53m for

positioning and 1.83° for angular measurement. Compared to Rall on

the Oxford Radar RobotCar Data set (Barnes et al., 2020; Maddern

et al., 2017), the positioning error demonstrates an 8.1% reduction,

while the angular error experiences a substantial 27.5% decrease.

Excluding the Sejong sequences, the Mulran Radar Data set (Kim

et al., 2020) reveals a remarkable 41.3% reduction in translational

error and a notable 28.7% reduction in angular error. Notably, the

translational error in the ZJU data set shows a remarkable reduction

of 76.9%. We demonstrate the reliability of the proposed localization

system and its advantages over other methods in multisession

multiscenario and our collected data sets. On the other hand, there

are promising breakthroughs in the system to improve the

practicability of Radar. First, only prior constraints are added to the

middle frame of the sliding window during the system's operation. In

contrast, the latest frame in the sliding window cannot be verified,

and the algorithm has a certain lag. Second, we intend to implement

Radar scene recognition on LiDAR based on the existing Radar (Kim

et al., 2022) and cross‐sensor (Yin, Xu, et al., 2021) global

relocalization method in the future.
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