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Learning Multi-Agent Cooperation via Considering
Actions of Teammates
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Yao Tong, Junjie Cao™, and Yong Liu

Abstract— Recently value-based centralized training with
decentralized execution (CTDE) multi-agent reinforcement learn-
ing (MARL) methods have achieved excellent performance in
cooperative tasks. However, the most representative method
among these methods, Q-network MIXing (QMIX), restricts
the joint action Q values to be a monotonic mixing of each
agent’s utilities. Furthermore, current methods cannot generalize
to unseen environments or different agent configurations, which
is known as ad hoc team play situation. In this work, we propose
a novel Q values decomposition that considers both the return
of an agent acting on its own and cooperating with other
observable agents to address the nonmonotonic problem. Based
on the decomposition, we propose a greedy action searching
method that can improve exploration and is not affected by
changes in observable agents or changes in the order of agents’
actions. In this way, our method can adapt to ad hoc team play
situation. Furthermore, we utilize an auxiliary loss related to
environmental cognition consistency and a modified prioritized
experience replay (PER) buffer to assist training. Our extensive
experimental results show that our method achieves significant
performance improvements in both challenging monotonic and
nonmonotonic domains, and can handle the ad hoc team play
situation perfectly.

Index Terms— Ad hoc team play, cooperative game, multi-
agent reinforcement learning (MARL), nonmonotonic, value
decomposition.

NOMENCLATURE
(0i, a;) Observation and action of agent i.
(@™, u;)  Local joint observation and joint action of

all agents in team j.

N,M;,G Number of total agents, agents in team j,
and total teams.
Feot (S, u) Total reward from the environment under

state s and joint action u.
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rq.(o;, a;) Reward that is only related to each agent
itself.

rc(oj;)im, uj) Reward related to cooperative tasks of
each team.

Qiot(s, u) Agent i’s expected future return of

. Tot(s, ).

0,0, a;) Agent i’s expected future return of
rq(0i, a;).

Qi,,,,(oj;)im, u;j) Team j’s expected future return of

rc(o—_iiOimv Mj)~
Agent i’s (in team j) expected future

joint
return of rc(oj JUj).

Qi‘(o_.ijoint, uj)

*

a; Cooperative action that agent i believes
agent k in the team will do.
(af, a)) Optimal action and suboptimal action of

agent i.
QA{,((oi, a;),a;) Agenti’s decomposition of Qi(ojjmm, u’).
I. INTRODUCTION

ANY critical tasks like autonomous driving [1], multi-

agent cooperative tracking [2], manipulation con-

trol [3], and swarms [4] involve multiple agents acting in
the same environment. Recently, cooperative multi-agent rein-
forcement learning (MARL) has been primarily used to learn
good behaviors in such tasks from agents’ experiences. The
most popular methods in MARL are centralized training
with decentralized execution (CTDE) methods [5], [6], which
can deal with practical communication constraints and an
exponentially growing large joint action space. In CTDE
methods, the state-of-the-art methods are a class of methods
that learn factored value functions, including value decom-
position network (VDN) [7], QMIX [8], etc. One of the
most representative methods among these CTDE methods
is QMIX, which represents the optimal joint action value
function using a restricted monotonic mixing function of each
agent utilities. This restricted function allows for efficient
maximization during training and easy decentralization of the
learned policy [9]. However, two key challenges still stand
between CTDE methods and these real-world applications.
First, QMIX cannot always represent the true optimal value
function, as the monotonicity constraint restricts QMIX to
suboptimal value approximations in the nonmonotonic envi-
ronments. This means it cannot represent the value functions of
an agent’s optimal action depending on other agents’ actions.
Second, current methods usually fail when environments have
different team sizes and configurations at test time, which is
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known as ad hoc team play situation [10]. The reason is that
agents tend to learn a fixed policy in current methods. Instead,
in the ad hoc team play MARL setting, agents must assess and
adapt to others’ capabilities to behave optimally.

In this work, we address these two challenges by proposing
a novel MARL method to cooperative tasks. The insight
behind our method is that humans can interpret the actions
of others and act in a way that is informative when their
actions are being observed by others, which is referred to as
the theory of mind (ToM) [11]. In the setting of QMIX class
methods, the main reason for monotonicity constraint value
decomposition is that each agent acts independently instead
of cooperating with others at each time step. However, if all
agents can consider actions of other potentially cooperative
agents, then agents can interpret the actions and act more
cooperatively.

Based on these intuitions, we propose a novel Q values
decomposition that considers both the return of an agent
acting independently and cooperating with other observable
agents. In this decomposition, our method expands the original
observation of each agent. The expanded observation consists
of the local observation and observable agents’ actions. In this
decomposition, agents consider others’ actions and take the
optimal action for cooperation instead of always acting inde-
pendently. However, there are still two problems. First, if all
agents need others’ actions to act, the agent who takes action
first would not be able to access others’ actions. Additionally,
neural networks cannot handle the expanded observation as
they have the fixed input dimensions, and the number of
observable agents is dynamically changing. To address these
two problems, we propose a greedy action searching method
to search for all agents’ cooperative actions. In our method,
we first make each agent takes action based on the optimistic
belief that all observable agents will cooperate with him
to solve the first problem. Second, we further decompose
the Q values to obtain a network model that can flexibly
handle the varying dimension observation. We indicate that the
greedy action searching method can improve the exploration
of cooperative behaviors and has a better representation of the
optimal policy. Moreover, this structure can naturally adapt to
the changes in total agents’ numbers and learn a flexible policy
to ad hoc team play MARL situation. Besides, we utilize an
auxiliary loss related to environmental cognition consistency
to assist training. Finally, we use the prioritized experience
replay (PER) buffer to focus on samples that contribute more
to the tasks. In summary, our method has three contributions
as follows.

1) We propose a novel Q values decomposition con-
sidering others’ actions to address the nonmonotonic
problem.

2) We propose a greedy action searching method that can
handle the varying dimension observation and adapt our
method to the ad hoc scenarios.

3) We use an auxiliary loss and PER which are both
proposed based on the unique structure of our method
to assist training.

We conduct extensive experiments on both monotonic tasks’
environment StarCraft multi-agent challenge (SMAC) [12] and
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nonmonotonic tasks’ environment MAgent [13]. The results
demonstrate that our method can efficiently solve the non-
monotonic tasks that current methods struggle with and can
also perform well in monotonic tasks. Our additional analysis
experiments also demonstrate the ability of our method to
adapt to ad hoc team play situation.

II. RELATED WORK

The progresses of deep reinforcement learning give
rise to an increasing effort of designing general-purpose
deep MARL methods for complex multi-agent environ-
ments, including counterfactual multi-agent policy gradients
(COMA) [14], multi-agent deep deterministic policy gradient
(MADDPG) [15], population-based training (PBT) [16], multi-
actor-attention-critic (MAAC) [17], asynchronous experience
replay learning (AERL) [18], etc. In this article, we focus on
fully cooperative environments. The mainstream methods are
CTDE [19] methods. In CTDE [19], [20] extend independent
Q-Learning [21] to use deep Q-network (DQN) to learn Q
values for each agent independently. VDNSs [7], which learns
the joint-action Q values by factoring them as the sum of
each agent’s Q values. QMIX [8] extends VDN to allow
the joint action Q values to be a monotonic combination
of each agent’s Q values that can vary depending on the
state. However, the monotonic constraints on the joint action
values introduced by QMIX and similar QMIX-class methods
result in provably poor exploration and relative overgener-
alization [22]. To address this problem, duPLEX dueling
multi-agent Q-learning (QPLEX) [23] and Q-learning with
Transition-based Auxiliary Tasks for Multi-Agent Cooperation
(QTRAN) [24] aim to learn value functions with complete
expressiveness capacity. However, they are reported to perform
poorly when used in practice because learning the complete
expressiveness is impractical in complicated MARL tasks due
to the challenging exploration in large joint action space [25],
[26]. Other methods attempt to solve the problem in many
different ways, such as multi-agent variational exploration
(MAVEN) [27] hybridizes value and policy-based methods
by introducing a latent space for hierarchical control. This
allows MAVEN to achieve committed, temporally extended
exploration. Weighted QMIX [9] is based on QMIX and
rectifies the suboptimally by introducing a weighting into the
projection to place more importance on the better joint actions.
Furthermore, reinforcement learning with task decomposition
(RLTD) [28] learns to decompose the holistic reward signal
for each agent into multiple parts according to the subtasks.
Unshaped networks for multi-agent systems (UNMAS) [29]
adapt to the number and size changes in multi-agent cooper-
ative tasks.

However, all these methods cannot estimate the value of
actions considering the changes in other agents’ actions, which
is essential for cooperation in nonmonotonic environments.
Our method is different from these methods because our
method learns a policy which considers other agents’ actions
and can enable the policy to explore more about the optimal
joint actions to tackle the nonmonotonic problem. Further-
more, our method can adapt to different environment settings
that other methods cannot.
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TABLE I

PAYOFF MATRIX (LEFT) AND INCORRECT
PAYOFF LEARNED BY QMIX (RIGHT)

8 -12 | -12 -12 | -12 | -12
-12 0 0 -12 0 0
-12 0 0 -12 0 0

Our work is also related to PER [30] in this work, which is a
common method to promote sample efficiency in single-agent
environments. Lastly, our work is related to the problem of ad
hoc team play [10] in multi-agent cooperative environments.
Past works [31], [32], [33] usually require strong domain
knowledge or sophisticated online learning at test time. This is
infeasible in complex real-world situations [34]. In contrast,
we solve the problem in a more general way that does not
need any adjustments during test time.

III. ANALYSIS OF NONMONOTONICITY

In this section, we present the limitation of QMIX or
similar algorithms like VDN that they cannot represent the
true optimal action-value function in some cases. Based on the
analysis in [9] and [27], these methods would underestimate
the optimal joint action value in nonmonotonic environments.
Intuitively, monotonicity implies that the optimal action of
agent i does not depend on the other agents’ actions. However,
agents are usually obliged to cooperate with others’ actions to
solve the task in fully cooperative environments. For example,
the payoff matrix in Table I [24] produces a value function
for which QMIX’s approximation (right) does not result in
the correct argmax (left). In such a case, the policy of QMIX
will not be able to achieve cooperation.

IV. METHOD

In this section, we propose a novel Q values decomposition
and a greedy action searching method to make all agents
consider taking cooperative actions instead of focusing on
the optimal action of themselves and tackle the nonmonotonic
problem. Based on this, we propose an auxiliary loss and a
PER buffer to assist training.

A. Basic Setting

A fully cooperative multi-agent sequential decision-making
task can be described as a decentralized partially observable
Markov decision process (Dec-POMDP), which is defined by
a set of states S describing the possible configurations of all
N agents, a set of possible actions Ay, ..., Ay, and a set of
possible observations O, ..., Oy. At each time step, each
agent chooses an action a € A = 1, ..., k, forming a joint
action u € U = U,. The joint action u produces the next state
by a transition function P : S x U — §. The observation of
each agent is updated by an observation function O, : § — O.
All agents share the same reward r : S x U — R and with
a joint value function Q, = Ej, 0., :00[R:l|8:, u,] where
R = >72,y/ry; is the discounted return. Furthermore,
to clearly explain the notations used in the article, we list
all main function notations in Nomenclature.

B. Q Values Decomposition

In MARL setting, the main shortcoming of Q values decom-
position is that each agent acts independently, not cooperating
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with others at each time step. Therefore, if all agents can
consider others’ actions at all times, they will interpret the
actions and act more cooperatively.

To achieve this, we propose a novel Q values decomposition
that considers both the return of the agent acting indepen-
dently and the return of cooperating with others. Commonly,
in fully cooperative situations, an agent gets rewards from
two sides: the reward that the agent can gain by acting on
its own and the reward gained by the whole team when all
agents in the team are taking the optimal cooperative actions.
Here, we define the collection of agents who can potentially
cooperate with each other as a team. Specifically, following
the decentralized execution principle, each agent should only
be able to cooperate with the agents who can be observed
by themselves. The reason is that the decentralized policy
can only take an action according to information within the
local observation. If an agent needs to cooperate with other
agents who are not in its observation, we must introduce the
communication method to transfer the necessary messages.
Otherwise, the agents cannot even figure out which agents can
potentially achieve cooperation, which will make the example
of cooperation irregular from the view of local observation
and the cooperative policy become difficult to learn. Therefore,
the team can be viewed as the collections of agents who can
observe each other, as shown in Fig. 1. The detailed division
process of teams is included in Algorithm 1, where the set
T; represents each team and we finally have the set C as the
collection of all teams in the environment.

Algorithm 1 Division of Teams

1: Initialize all agents view range V according to environ-

ment settings

2: while not end of episode do

3 Initialize an empty set C
4: fori=1to N do
5
6
7

Initialize an empty set T;
forj=1toNandj!=ido
Calculate the distances between agent A; and
agent A; as Dj

8: if Dj < V; then
9: T; =Ti+Aj
10: fori=1to N do

11: C=C+T;

Therefore, we have
N

G
Foi(s, w) = D (ra(or,a)) + 3 (re(dF™ uy)) (D)

i=0 j=0

where r,; means the total return from the environment under
state s and joint action u. r, is the return reward that is only
related to each agent itself, o; and a; is the observation and
action of each agent. r. is the return of each small team, onolm
stands for the local joint observation of all agents in team
J» and u; is the joint action of the team. N means the total
number of agents in the environment and G means the number
of teams in the environment. However, we cannot directly
calculate the reward decomposition from the environment.

Therefore, we propose our value decomposition method to
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ECC loss
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Architecture of our method. Left: The architecture for total Q values. Each agent belongs to a team composed of all agents whom the agent can

observe. If there are no agents in the local view, the team consists of a single agent. Teams with the same agent composition are considered as the same team.
Middle: How the Q values of team j and the ECC loss are computed. Right: The architecture used for Q values of a single agent.

approximate the global Q value Qq(s, #) which is similar
to other CTDE methods.
Based on the decomposition of the reward, we have

o0
E Zytrtot(sz» uy) | m

t=0

=E Zy Z(m(oi,a,-)) |7

i=0

+E Zy Z(n(aﬂfﬁ“‘,u»nn L®

=0 j=0

Oor(s, u) =

To decompose Qi (s, u), we consider decomposing both
items in (2) separately. If we have Q' (0;,a;) stands for the
agent i’s expected future return of r,(o;, a;), we can transfer
the first item in (2) item into

00 N
E| D v D (raloi a) |
t=0 i=0

=

=2 Qu6.u)

; .
> 0l a). 3
i=0

The reason behind this is that for each agent, the Q value
Qfl(s, u) of agent i means the expected return of acting inde-
pendently, which is only related to the agent’s own observation
and action (o;, a;). A more intuitively understanding is that
when all agents have no interaction with each others, the
rc(ojjomt,uj) is all zeros. re(s, u) is the sum of r,(0;, a;),
so the Qo (s, u) equals to the sum of all agents’ Q; (0, a;).

The second item in (2) is related to the cooperative reward
return. We have Qi(ojjmm, u;) means the agent i (in team /)’s
expected future return of rc(oj;nm, u;). First, we know that the
cooperative return is shared among all agents who participate
in the cooperation. In this way, the Q'.(c"", u;) of each agent
in the same team j should be equal, and each of them can
represent the total Q values of team j noted as Qi (0 " u).
We have the unbiased estimate Q values of all G teams in the

environment by computing the average of Qi(oj;]m, u;) in each
team

G
—
> Ql(of™,
j=0

where M; is the number of agents in team j. Additionally,
each team’s return is only related to the team’s own state and
action (ojjmm, u;), we have (5) similar to (3)

Z Q(,tut(s u) = Z chot OJ‘Oim,

Then we bring (4) and (5) into (2)’s second item, we
have (6)

G M;

u) =2 | 5 2 2l

=0\ """ =0

ojjoim7 uj) (4)

u,) (5)

G
Z yt z Ojoml )) | 7
j=0
:
= Z chot(s u)
j=0
G M;
— Z Qlc omt ) ) (6)
j= ] i=0

Finally,

Quls, u)-ZQ (o,,a)+z

we have the decomposition of Q. (s, u) as

Z Q Joml )

)

C. Greedy Action Searching Policy Based on Optimistic
Belief

The proposed Q values decomposition function overcomes
the nonmonotonic limitation of past methods like QMIX by
considering the behavior of others. However, it is still infea-
sible to learn the proper Q values function. First, each team’s
agent number is dynamically changing no matter in an ad hoc
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team play environment or an environment with fixed agents
number. The value function network with a fixed dimension
of inpqt cannot handle such a situation. Furthermore, the u; in
QL("™, u;) is the joint action of all agents in team j which
makes the potential action space grow exponentially as the
number of agents in the team grows. These make the learning
of Qi(ojjomt, u;) inconvenient.

To overcome the uncertainty of the number of agents and
enable decentralized execution, we consider finding an alterna-
tive form of the Q' (0]Olnt u ;) function of agent i. Fortunately,

as Q’ (ojomt uj) is only related to agents in team j, we can
decompose it within the team. First, when an agent considers
cooperating with others, what affects the agent’s policy is the
actions that other agents are taking, not the observations that
other agents see. The reason is that all potential cooperative
agents are in the agent’s field of view, so the agent’s obser-
vation includes all necessary observation information about
other agents which is needed for cooperation. Therefore, since
Qi(o Jmm uj)is the Value function of agent i, we can simplify

it by replacmg ()J " with o;. In this way, we can have the
fixed size of local observation input no matter how the team
changes. Second, we notice that we only care about finding
a; ~ argmax(Q}(0;,a;) + QL(oi, u}, a;)) where u; is the
Joint action of other agents. Naturally, we consider taking u;
as the input observation instead of the output actions. We have

L™, uj) ~ Qltor, up) = Q((or, u7) ). (®)

However, agents are unable to select actions without knowl-
edge of u; which are inaccessible during execution. A simple
idea to address this is that we fix the order in which all
agents take actions. The agent who acts first cannot access any
others’ actions, and the last one can observe all other’s actions.
It is clear that this method relies on the predefined order of
actions and cannot get an accurate value function. Moreover,
accessing others’ actions requires communication between
agents which prevents decentralized execution. To solve this
problem, we propose a greedy action searching method based
on optimistic belief assuming that for any agent, all the agent’s
teammates will adopt the optimal actions to cooperate with the
agent. In other words, the greedy action searching method does
not need the true u; of agent i. It optimistically uses the u;
that can lead to the maximization value of a;. Therefore, our
method still enables decentralized execution. In this way, the
greedy action searching policy of agent i can be represented
as

mi(a;|o;) = argmax (Q.,(0;, a;) + QL((0;, u u7), a)). 9

a;€A

The policy represented by greedy action searching method
has many advantages. First, we find that the greedy action
searching method can promote cooperation by increasing
exploration and jumping out of the suboptimal policy. Because
the suboptimal policy is often a policy where the agent is
worried that other agents will not cooperate with itself and
take negative action (i.e., staying still) to ensure that it will
not be punished. Using the greedy action searching method
can increase the possibility of taking the cooperative actions.
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Thereby, improving the exploration of cooperative behaviors
which helps to converge to the optimal policy.
Furthermore, we have

Theorem 1:
Q. (01 uj").a7) = Qc((oru;™). @)
> Oc((0i> uy), ai) = Qc((0iu7) @) (10)
where uj_* is the optimal joint actions of other agents in team

J, a} is the optimal action, and alf is other suboptimal action
of agent i.
Proof: Since we know the greedy action searching policy
can be view as
7i (ailoi) = argmax (Qy,(0i, a;) + Q.. ((017

a; €A

") ai))

where the uj_* are the optimal joint actions of other agents in
team j. The original policy that uses u; instead of uj_* is

(allol) - argmax (Q (0,,61,) + Q ((011 .‘)s Cl,')) (12)

where the u; is the ground true joint actions that interact with
the environment of other agents in team j. For the same q;,
we have

AQi(0i,a) = (Q%(0i,a;)) + QL((0i, u
— (@l (0i,a) + Qi((0i, u7), ai))
= 0c((01.u;7). ai) = Qc((oi- u7). i)

Let a be the optimal action that we want to find. We take
a} into the (13)

AQi(oi,a;") = Qi.((oi, u;*),ai*) — Qi.((oi, u;),a?‘).
Since we know that only when g; equals af, the team can

complete the cooperative task. Any other a; will lead to a
suboptimal state. So, we have

0 (0, u;). @) = Q:((0r, u5™)

(1)

7))

(13)

(14)

“).af)

(15)
* under a suboptimal g]. Thus, we have

AQi(oi. af) = Q¢ (01, uj™). a) — Qc((oi. u). af) = 0.
(16)

)z 0 (o u;

where uj_* is u

Then we take the suboptimal a; in (13)
AQi(0ia)) = Qi ((0i, u7*), af) — QL((0i, u7), a)). (17)
Similarly, we have
Q. (0 u3™). af)) = Qc((0. u5
We find that we have
£i(o1.a)) = € ((or.1°). ) = OL{(o1.17).a)) =0

) ai).

(18)

AQi(oi,a;") = Qi((oi, u;*),a;") — Qi((oi, u;),a;‘) > 0.
(19)
In other words
0:((0i,u;™). @) = Qc((01 ;™). )
> Q.((01,u7), af) = Qc((0, u7), @) (20)
This completes the proof. (]
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Theorem 1 indicates the excellent property of the greedy
action searching policy that it has a better representation of
the optimal cooperative policy by increasing the distinction
between optimal and suboptimal actions. As when taking the
optimal action, it has higher Q values and when taking the
suboptimal action, it has lower Q values. This can also prove
that the greedy action searching policy has no bias compared
to the typical greedy policy. Thus, we can promise

= argmax (Q (0i,a;) + 0. ((o,-, u]_*) a;)).

However, we stlll have to go through all possible combi-
nations of u; to find uJ_* which leads to the maximization
of Qi ((o;, u;),a;) using (9). The time complexity is O(N?)
which is hard computationally. Moreover, using u;* still
faces the problem that the number of observable agents is
dynamically changing. Fortunately, due to the property of O,
we can view the function in a decomposition form. First,

we have
Assumption 1:

2y

M;

2. (Qi(or @), ap))
k=0,k#i
where QAZ(((),', a;),a}) is the decomposition of Qi,(ojjmm, ujp),
a; means the optimal cooperative action that agent i believes
agent k in the team will do. And M; is the number of agents
in team j.

Analysis: Let rj((o,-,ai),u;*) stands for the cooperative
reward given (o;, a;) in team j. We find r;((0;, a;), u;*) can
decompose into

rj((o,-, a[), u;*) = r?((oi, ai), af)k) NN r;‘((oi, a[), a,f)

(01, ar) aiy,)

Oc((0i. @), u;™) ~ (22)

+o (23)

where r}‘((o,-, a;),a}) can be viewed as a reward that mea-
sures the contribution of agent k to cooperative tasks under
(0, a;). Similarly, this reward decomposition is actually an
intermediate result of the Q value decomposition process. It is
not necessary to directly calculate the reward decomposition
from the environment. We still use a value decomposition to
approximate the Q values. Because the 7;((0;, a;), u;*) is the
return reward that given only when the specific cooperative
task is finished. If a; is not af that can finish the task,
rj((oi,a;),u;*) should equals zero as the reward of each
agent acting independently has already been represented by
rqo(or, a;) of each agent. And each item rf((o,-,a,-),a;:) in
the decomposition should equal zero as well. When g; is af,
we assume that each agent contributes equally to the task,
so the rj((o,-,ai),u;*) can be decomposed no matter the
cooperation is achieved or not. In this way, we have

Qi (0, ai), u3™) [Zyr, (05, a1), u7") | }
.
=E[ D > v (i a). ) | =
k=0 t=0
M/
= > (01((oi. a). u7")). (24)
k=0
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Furthermore, the action-value function QAﬁ,((oi, a;), u;*) is
the expected future return of rj?((oi,ai),a,i‘), which could
be expected to depend more strongly on actions a; under
observation (0;, a;). In this way, we have

M; M;
(i (0 @), uj™)) = 2 (Qi((0r @), ap)). (25
k=0 k=0
Thus
MJ
0. ((01, ai), Z 0,,a, a,’f)). (26)
k=0
This completes the analysis. ]
According to Assumption 1, we have
Q:((or, u57), ai) = Oc((o, ar), u;™)
M;
~ (Q:((01: ). af))
k=0,k+£i
M;
= (QQ((oi,aZ),a[)). 27
k=0,k+£i

Intuitively, the decomposition indicates that when searching
for a; of agent k in the team, we only need to consider agent k
cooperating with agent i to find the optimal cooperative action
a;. We believe this assumption may have some limitations like
the approximation can be inaccurate when the value function
is not well trained, which may add randomness during the
training process. However, this assumption is correct on the
whole, and it has been proved by both above analysis and
experiments.

Now the policy can be represented as

M;
7 (ailo;) = arg max Q' (0i,a;) + Z (0i((0i. a5). )] -
a;€A k=0,k£i
(28)

Theorem 2: The time complexity of finding the maximiza-
tion of

(29)

Q. (0i, a;) + Z

k=0 ki

H(0 @), @)

is O(N).

Proposition 1: Let {Y;,...,Y,} be estimates of
{Xi,...,X,} that are conditionally unbiased in that
E(Y;|Xy,...,X,) = X, for all i. Let i* denote the alternative
with the maximal estimated value Y;» = max(Yy,...,Y,).
Then

E(X;» —Yix) <0. (30)

If X;« is the maximal in {X4, ..., X,,} then E(X;«—Y;+) = 0.
This result has been proven in previous work [35].
Proof: We want to find a; by searching for the a; that
lead to the maximization of

Qi(0i, a;) = Q) (o,,al>+z

k=0

t((01 ag). ai)).

€19
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According to proposition 1, for each a; € A, we have

M;
max(Q; (o, ;) = max Qﬂ%a0+ggéﬂwhwxm»

IA

Elklg‘((Qi, (01, a)))
M, R

+ Z(ina}(Qi((Oi, a), ai)))
k=0 \€

M;

- 2 (ms(Gcn )
k=0

Thus, the searching time of finding the maximization of
each a; is O(M) x O(A), where M is the average number
of agents in the team and A is the dimension of action space.
As we want to find the maximization of all a;, we need to go
through all a;, so the total searching time is O(M) x O(A?).
The A is a constant number, so the total time complex is
O(N). This completes the proof. (|

Theorem 2 indicates that we can use such a decomposition
to find the optimal action within in linear computation time.
In this way, we manage to have a model with flexible input
dimensions and reduce the searching time complexity from
O(N?) to O(N). Finally, we have the decomposition of Qi

G

~2 |3, DIDNL:

j= M; i=0 k=0,k#i

(32)

Oior(s, u) 0,,a;:),a,~))

+ZZ@%)
i=0

(33)

D. Environmental Cognition Consistency Loss

As our method is based on Q-Learning, our method can be
trained end-to-end to minimize the following loss:

Lo®) =E, [(Q(Sz, ur; 0)

2
—|:r(st, u) +y max O(Sr+15 Urs1s 9/)]) :|
34

where 7 is the time step and 6’ means the parameter of the
target network. Notable, although we use the searching method
to find u;‘ when interacting with the environment, we use
the true u; when updating the Q values function. Because
all transitions have been stored in the replay buffer, there is
no problem accessing others’ actions. We can use the actual
joint actions that lead to the transitions to train a precise Q
values function. In such a case, the optimized policy is not the
behavior policy. We usually need to use importance sampling
to update the Q values functions. However, we prove that the
off-policy updating process of our method does not need the
importance sampling.

Proof: The update of our Q values function can be viewed
as

Q(ss, up) < r(se, u) +y max Q(se41, Ur41) (35)
Ur+1
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where the u, is from the greedy action searching policy

7 (usls,) <« (argn;ax (Q (ol,al) + 0. ((01, ul_*),al))

argrr;ax (Q%(0i,a) + QL ((o:, u j*),ai)) )

" (36)

and u,, is the greedy action chosen by the optimized policy
TP (Mt-H |St+1)

< (mglgax (Q1(01,111) + Q ((01’ ) al))

aIgmax(Q (0i, a;) + Q. ((0,, j)’ai))"'

a; €A

). (37)

We find that although our method uses a different policy to
interact with the environment, the r(s;, u,) is not influenced
by the interacting policy like the Q-Learning method. Further-
more, since we use one-step updating, the target Q values
function’s action is chosen by maximizing the optimized
policy Q values function. There is no bias when updating
the Q values. In fact, we also use the e-greedy method in the
greedy action searching policy. However, this has no influence
on the updating for the same reason. This completes the
proof. |

Moreover, the decomposition so far does not promise the
QL("™, u;) of agents in the same team j is equal. To ensure
this, we propose an environmental cognition consistency loss
(ECC loss) as an auxiliary loss to promote training process.
The auxiliary loss can be viewed as

G M;

1 < o
o 2| Mi - Qo™ )
0

j=0 =

L£.(0)=E

M;

2 CACARY)

k=

<

(38)

Notable, we use Q' (OJOmt j) in (38) just for conciseness
]omt )
uj

of expression, we use the decomposition form of Q' (0]
in actual calculation. By minimizing auxiliary loss, we can

make the difference of each Qi.(ojjoml, u;j) zero in the same
team. And since we know the auxiliary loss is related to
cooperation, we make it equals to zero when no successful
cooperation event is detected during the episode. These events
are easy to detect because they are consistent with the task to
be completed. Thus, we have the overall loss objective

L©O) = LoO) + A Le(6) (39)

where ) is positive multipliers to control the optimization ratio
of these two losses.

E. PER With ECC Loss

A few works use PER buffer [30] to improve the sample
efficiency of the learning process. However, the original PER
buffer is designed for single-agent reinforcement learning.
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Fig. 2. Tllustrations of the experimental environments. Left: Pursuit scenario where agents need to surround the preys and attack it together (upper). A fail

case is attacking the preys while not surrounding it (bottom). Middle: Battle scenario where agents need to form a group to attack enemy and kill it (upper).
Fail cases are attacking enemy alone but not kill it or attacking when no enemy around (bottom). Right: Tiger scenario where tigers need to attack deer
together but not kill it (upper). A fail case is that the tiger attacks deer on its own (bottom).

TABLE II
SETTINGS OF SCENARIOS FROM EASY TO HARD
Pursuit easy | Pursuit hard | Battle easy | Battle hard | Tiger easy | Tiger hard
Agents number 8 8 5 5 10 5
Map size 180 x 180 270 x 270 80 x 80 100 x 100 40 x 40 50 x 50
Wall number 20 20 20 200 40 40

It uses temporal difference (TD) error as the priority of
sampling which is not suitable for a MARL situation. In the
fully cooperative settings, we would like to make the learn-
ing process focus on the transitions related to collaboration.
However, TD error cannot distinguish the transition is related
to collaboration or not, as it is only determined by training
times.

To overcome this, we propose a novel PER buffer that uses
our ECC loss as the priority instead of TD-error. The ECC
loss is closely related to the cooperation process, which can
guide the agents to learn more about cooperation.

V. EXPERIMENTS
A. Environments and Training Settings

For the experiments, we evaluate all methods in two
different kinds of environments with monotonic tasks and
nonmonotonic tasks. We choose SMAC environment as the
monotonic tasks environment as the optimal action of each
agent does not depend on other agents’ actions [25], [36].
In this environment, methods such as VDN or QMIX do not
suffer from the monotonic restriction in these tasks and can
represent the optimal policy.

However, in nonmonotonic tasks where the optimal action
of each agent depends on other agents’ actions, these meth-
ods fail to learn the optimal policy. On the contrary,
our method can solve the nonmonotonic tasks efficiently.
Therefore, we compare our method with other methods in
nonmonotonic tasks to present the ability of our method to
tackle the monotonic restriction. For the nonmonotonic tasks’
experiments, we adopt a grid-world platform MAgent [13].
In MAgent, each agent corresponds to one or multiple grids
and has a local observation that contains a square view cen-
tered at the agent and a feature vector including coordinates,
health point (HP) and ID of agents nearby, and the agent’s
last action. The discrete actions are moving, staying, attacking,
etc. To verify the effectiveness and versatility of our method,
we designed easy and hard scenarios for all three tasks, namely
pursuit, battle, and tiger. Each task has a unique mission,

as shown in Fig. 2, which requires cooperation between agents
to complete. There are the detailed settings of these scenarios,
as shown in Table II.

The global state that used by reward-optimized decision-
making (RODE), QMIX, and MAVEN is a mini map of the
global information in MAgent and the default global state
in SMAC. The opponent’s policies used in experiments are
randomly escaping policy in pursuit and tiger and pretrained
policy in battle. For view range, we set the view ranges of
agents to five grids in pursuit, four grids in tiger, and six grids
in battle, and we use the default view range setting in SMAC.
We run all the experiments three times with different random
seeds. We set the discount factor as 0.99 and use the RMSprop
optimizer with a learning rate of 5e—4. The e-greedy is used
for exploration with € annealed linearly from 1.0 to 0.05 in
700 k steps. The batch size is 32 and updating the target
every 200 episodes. The length of each episode is limited
to 350 steps in MAgent. The A that is used to control the
optimization ratio of the ECC loss is 0.05. Specially, RODE
involves extra parameters, including number of roles is 3 and
role interval is 5. All experiments are carried out on the same
computer, equipped with an Intel i7-7700 K, 32 GB RAM, and
an NVIDIA GTX1080Ti. The system is Ubuntu 18.04 and the
framework is PyTorch.

In the experiments, we compare our method with VDN [7],
QMIX [8], MAVEN [27], RODE [37], and QTRAN [24].
We use a network structure consists of two CNN layers and
two hidden layers in MAgent and use a network structure con-
sists of three multi-layer perceptron (MLP) layers with 64 units
in SMAC for our method, VDN, and QMIX. Specifically, the
kernel size of CNN layer is three and each hidden layer has
512 units with ReLU nonlinearities. The network of RODE,
MAVEN, and QTRAN use the same LSTM network, which
consists of a recurrent layer composed of a GRU with a 512-
D hidden state in MAgent and 64-D hidden state in SMAC,
with one fully connected layer before and two after. The rest
hyperparameters are the same as the former ones. Notable,
RODE, QMIX, and MAVEN have access to the global state
while other methods just utilize the local observations.
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Fig. 3. Experiments in three MAgent domain. Upper left: Results in easy pursuit scenario. Upper middle: Results in easy battle scenario. Upper right: Results
in easy tiger scenario. Lower left: Results in hard pursuit scenario. Lower middle: Results in hard battle scenario. Lower right: Results in hard tiger scenario.

B. Performance on MAgent Scenarios

We show the results of six different scenarios from easy to
hard in Fig. 3. In pursuit, agents need to learn to surround and
attack preys. The easy scenario has a smaller map size that
the hunters can encounter the preys more frequently and easily
surround them. On the contrary, the hard scenario has a vast
map that the preys have more space to escape, which means the
hunter must cooperate tightly to surround preys. The results
show that our method outperform all comparison methods
significantly. We find that some comparison methods can even-
tually catch up with our method with a longer learning process
in the easy scenario. However, all these methods cannot exert
excellent performance in the hard scenario. The reason is
that the effective attack after rounding up is challenging to
achieve in hard scenarios. These methods not considering
teammates’ actions tend to converge to a local optimal policy,
which never attacks to avoid the punishment of ineffective
attacks. However, such a policy is also impossible to execute
an effective attack. On the opposite, our method can increase
the exploration of cooperative behaviors and converge to the
cooperative policy in the hard scenario.

In battle, agents learn to fight against enemies who have
superior abilities than the agents. The superior enemies used
in the experiment are agents pretrained by VDN. To keep the
balance of battlefield, after the death of an agent or enemy,
we will add a new agent or enemy at a random location.
The easy scenario has fewer walls and a smaller map size
making it easier for agents to gather as a group or focus
fire. As estimated in the easy scenario, we find that only our
method, QMIX and MAVEN learn the proper policy to gather
as a group and focus fire. Meanwhile, all other methods learn
suboptimal policies such as escaping from the enemies and
rarely firing back. When it comes to the hard scenario, the
result shows that our method still converges to the optimal
policy even if the walls obstruct gathering and focusing fire.
However, it is hard to escape from enemies with too many
walls blocking the ways. Thus, these suboptimal policies have
a lower reward in the hard scenario.

In tiger, the task of agents is to pincer deer together, which
is similar to pursuit. However, agents in tiger need to learn to
let the deer escape, not kill the deer immediately as the deer
can recover HP and tigers can attack deer after the recovery
to get higher rewards. The easy scenario has more agents
and a smaller map size that agents can switch attack targets
conveniently. The results show that our method learns the
optimal policy in both easy and hard scenarios. Meanwhile,
only QMIX and MAVEN learn a suboptimal policy in the
easy scenario and all the comparing methods fail in hard
scenarios. We believe that QMIX and MAVEN have a better
performance than other compared methods is because they
have access to the global state information. Finally, we find
RODE has poor performance in these scenarios. We believe
this is because the RODE has more hyperparameters like role
numbers, etc. We did not find the feasible parameters for the
current environment, thus causing an undesirable performance.

In general, our method has achieved better performance in
six scenarios of three environments than all other methods,
including RODE, QMIX, and MAVEN, which can use global
state information. These results prove the effectiveness of our
method in nonmonotonic multi-agent cooperative scenarios.

C. Performance on SMAC Scenarios

We also conduct several experiments in the SMAC envi-
ronment scenarios to demonstrate that our method can also
work in monotonic tasks. In SMAC, all maps have classified
as easy, hard, and super hard. We use two hard scenarios
3s_vs_4z and 5m_vs_6m as well as a super hard scenario
corridor for experiments. The results are shown in Fig. 4.
The results demonstrate that our method still has relatively
better performance in SMAC scenarios. In the easiest scenario
3s_vs_4z, the result shows that VDN and QMIX have faster
converge speed, which is because they have suitable simpler
structures for easy tasks and do not face the nonmonotonic
issue in SMAC scenarios. However, our method has superior
performance in all other two harder scenarios. This indicates
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TABLE III
SETTINGS OF AD HoC TEAM PLAY
Pursuit Battle Tiger
Adding agents number +8 +2 +5

Removing agents number -4 -2 -5
Changing map size map size | +90 x +90 - +40 x +40
Changing wall number - +180 -
Changing agent configuration - - +1 attack point

that our method can apply to monotonic tasks and can solve
the nonmonotonic tasks that other methods struggle with.

D. Ad Hoc Team Play Experiments

Now we demonstrate that our method is robust to the chang-
ing settings during test time. We test the ad hoc team play in
changing the following settings: adding or removing agents,
changing environment settings such as map size or the number
of walls, and changing the configuration of agents such as
adding attacking damage. The adding, removing, and changing
agents’ configuration scenarios mean only adding, removing
agents, or changing agents’ configuration. Particularly, the
mixing settings mean changing the environment setting as well
as adding or removing agents. The mixing setting of pursuit
is the combination of adding agents (4+8) and changing map
size (4+90). In battle, the mixing setting is the combination
of removing agents (—2) and changing wall number (+180).
The mixing setting of tiger is the combination of adding
agents (43) and changing map size (4-40). We also test a
setting that changes configuration of the agent in tiger. We add
one point to the attack point in this setting. The detailed
implementations of all ad hoc team play settings are shown
in Table III. The “-” in the table means do not change the
original parameters. The adding or removing agents’ settings

are directly implemented as described in the table. We estimate
the final model’s performance in the ad hoc team plays settings
as the results. All tested models are well trained in three easy
scenarios. All methods are tested 50 episodes in each setting
with different random seeds and plot the mean/std in the figure.

From Fig. 5, we can see that our method can generalize
better to the ad hoc team play test settings in all three envi-
ronments. In pursuit, our method outperforms other methods
largely no matter adding or removing agents. The result can
prove that our method has learned to cooperate flexibly, as no
matter how teammates change, our method can still produce
the optimal action to complete the task. However, when testing
in a larger map with more agents, our method has a lower
advantage than the comparison method. We believe this is
because the preys are too sparse on the large map that agents
has to spend more steps to surround them, which leads to lower
returns. In battle, the results are similar that our method can
handle ad hoc team play settings perfectly. However, we notice
that MAVEN fails in the setting which changes the number of
walls in the environment. We believe this is because MAVEN
needs to generate z variables based on the global state at the
beginning of the episode to control the behavior mode of the
agents. Thus, the changing in environment static items (e.t.,
walls) can affect the policy and lead to poor performance.
We add a unique setting (Diff config in Fig. 5) that changes the
attacking damage point of agents in tiger. We notice that our
method fails to outperform other methods a lot in this setting
compared to other three settings. The reason is that our method
learns a policy that attacks a deer and then stops the attack for
a few steps. However, adding attacking damage point can kill
the deer faster and agents have to chase other deer again. The
chasing process gets more challenging as fewer deer leaves
and causes a drop in our method’s performance. The result
shows the limitation of our method that our method can only
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Fig. 6. Ablation experiments on training without theECC Loss and without
the PER. Left: Results in easy battle scenario. Right: Results in easy pursuit
scenario.

handle the ad hoc team play setting in team level but not in
the agent level.

E. Ablations

We conduct several ablations on the pursuit and battle
scenarios. We first consider training without the ECC loss.
Furthermore, we try to train without the novel PER buffer.
The ablations results are shown in Fig. 6. The experiment
shows that the PER buffer improves the sample efficiency
as the policy trained with PER buffer learns faster in both
scenarios. Furthermore, the ECC loss promotes the training
process, as the policy trained without ECC loss has a more
unsatisfactory performance in battle. However, we notice that
the ECC loss has no significant improvement in pursuit.
We believe it is likely that the task is simpler in pursuit that the
cooperation requires a fixed number of agents (i.e., four agents
to surround). Thus, the bias of the learned value function may
not affect the final performance.

VI. CONCLUSION

In this work, we propose a novel Q values decomposition
that considers both the return of an agent acting independently
and cooperating with other observable agents to address the
nonmonotonic problem of current value-based CTDE methods.
We propose a greedy action searching method that can deal
with the dynamically changing number of observable agents
and the agents’ pending order of actions to find cooperative
actions. In this way, our method can naturally adapt to various
agents’ numbers. Moreover, we utilize an auxiliary loss related
to environmental cognition consistency and a modified PER
buffer to assist training. We test our method in both monotonic
and nonmonotonic tasks. Specifically, we test our method in
three challenging nonmonotonic MAgent domains with six
scenarios from easy to hard and in monotonic SMAC tasks.
Additionally, we conduct experiments in different ad hoc team
play settings. The experimental results show that our method
achieves significant performance improvements in all domains,
especially the nonmonotonic domains that current methods
struggle with, and generalizes in the ad hoc team play settings.
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