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Abstract—Cross-domain generalizable depth estimation aims to
estimate the depth of target domains (i.e., real-world) using models
trained on the source domains (i.e., synthetic). Previous meth-
ods mainly use additional real-world domain datasets to extract
depth specific information for cross-domain generalizable depth
estimation. Unfortunately, due to the large domain gap, adequate
depth specific information is hard to obtain and interference is
difficult to remove, which limits the performance. To relieve these
problems, we propose a domain generalizable feature extraction
network with adaptive guidance fusion (AGDF-Net) to fully acquire
essential features for depth estimation at multi-scale feature levels.
Specifically, our AGDF-Net first separates the image into initial
depth and weak-related depth components with reconstruction
and contrary losses. Subsequently, an adaptive guidance fusion
module is designed to sufficiently intensify the initial depth features
for domain generalizable intensified depth features acquisition.
Finally, taking intensified depth features as input, an arbitrary
depth estimation network can be used for real-world depth estima-
tion. Using only synthetic datasets, our AGDF-Net can be applied
to various real-world datasets (i.e., KITTI, NYUDv2, NuScenes,
DrivingStereo and CityScapes) with state-of-the-art performances.
Furthermore, experiments with a small amount of real-world data
in a semi-supervised setting also demonstrate the superiority of
AGDF-Net over state-of-the-art approaches.

Index Terms—Depth estimation, domain generalization, domain
generalizable depth features, adaptive guidance fusion.

I. INTRODUCTION

MONOCULAR depth estimation is an important per-
ception task that has been widely applied in many

applications, such as autonomous driving [1], [2], 3D scene
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reconstruction [3], [4] and augmented reality [5], [6], etc.
Promising results have been achieved by deep convolution
neural networks (DCNNs) based supervised depth estimation
methods [7], [8], [9], [10], which mainly use the annotated depth
ground-truth to supervise the DCNNs to estimate well depth
maps. However, supervised learning requires large amounts of
depth acquired by the sensors and aligning with the images
as ground truth, which are costly and time-consuming [11],
[12]. Therefore, approaches [13], [14], [15] have been proposed
to use video sequences or stereo images to estimate depth
in a self-supervised manner. However, consecutive video se-
quences and stereo images are not always available in current
datasets, and the results are commonly limited to a single train-
ing dataset, which is difficult to generalize to different unseen
scenes.

To relieve the problems, several solutions are proposed, using
synthetic data that depth annotations can be directly obtained for
training, and testing in real data (synthetic to real) to generalize
to multiple real scenarios, which we summarized as: (1) Direct
approaches: Some methods [7], [13] try to estimate real-world
depth using models trained by synthetic datasets that are easy
to obtain ground truth annotations. However, there is a vast
gap between synthetic and real-world domains, which essen-
tially limits the performance of real-world depth estimation.
(2) Domain adaptation based methods: In order to bridge the gap
from synthetic to real, an intuitive consideration is to directly
convert the synthetic domain images into the real, including
reducing the gap of the domain in the image level [12], [16]
or feature level [17], [18], [19]. The above methods are domain
adaptation based methods that require both synthetic domain
and real domain images for training to reduce the domain gap.
Nevertheless, a large number of real-world images of various
scenes are hard to obtain. (3) Domain generalization based
methods [20]: To relieve the above limitations, synthetic to
real domain generalization methods only use labeled synthetic
data for training, and directly test in several real data scenes,
which is a more difficult task because the style of real data
cannot be obtained during training. These approaches aim to
learn a depth specific feature map for depth estimation of both
synthetic and real-world images using only synthetic datasets,
and enhancement operations are commonly utilized on the depth
specific feature map, thus obtaining good generalization results
on the real datasets. However, the pre-trained encoder obtained
with both synthetic and additional real-world images is com-
monly needed to obtain the depth specific features in these
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approaches, which brings in new domain problems and limits the
performance of the depth specific feature map. Besides, simple
attention operation is commonly utilized to enhance the depth
specific feature map, and limited improvement can be obtained.

In order to relieve the above limitations, we expect to find
the essential expression of information for depth estimation. We
propose a novel domain generalization based framework, which
learns multi-scale domain generalizable depth features from the
feature level for depth estimation, and only synthetic data is
used for training without any real data. Previous work [20],
[21] has proved that the structures and textures of images
play key important roles in observing depth, while style and
illumination, etc., are disturbance terms for depth perception.
Therefore, we aim to relieve the influence of disturbance terms
and extract domain invariant components from the images for
depth estimation. To obtain domain invariant components with
better generalization, we first extract initial depth features from
the image with reconstruction and contrary losses, and enhance
the initial depth features using the adaptive guidance fusion
module to strengthen the domain invariant information inspired
by [17], [22], and finally obtaining intensified depth features that
are domain generalizable for input into the subsequent depth
estimation network. Note that the domain generalizable depth
features are invariant for different domains. And we expect to
learn domain generalizable depth features at the multi-scale
feature levels, thus obtaining better generalized depth maps and
further narrowing the synthetic-to-real domain gap.

To obtain domain generalizable features for depth estimation,
we propose a framework, i.e., AGDF-Net, to separate images
into multi-scale initial depth and weak-related depth parts using
two network branches constrained by reconstruction loss and
contrary loss. The initial depth part should be depth related in-
formation, which is similar to [20], [21], while the weak-related
depth part should contain the disturbance terms of depth esti-
mation. Then, the extracted initial depth features are enhanced
by the adaptive guidance fusion module to obtain intensified
depth features. Specifically, at each scale, the intensified depth
features of the previous scale are used to enhance the extracted
initial depth features with the adaptive guidance fusion module.
The largest scale is guided by features extracted from the color
image. The purpose of this adaptive guidance fusion module is
to make the network pay more attention to the domain invariant
parts. This module can enhance the initial depth features to
further eliminate the disturbing information and recover the
domain invariant information as well. Finally, the intensified
depth features that are domain generalizable are obtained for
subsequent arbitrary depth estimation networks, and constrained
by depth loss. In general, the practical design of our framework
(initial depth branch, weak-related depth branch and adaptive
guidance fusion module) and different kinds of losses (contrary
loss, reconstruction loss and depth loss) used to constrain feature
extraction can help obtain domain generalizable features for
depth estimation.

Fig. 1(b) and (c) show the visualization of the initial depth
and weak-related depth features extracted by our AGDF-Net.
The initial depth features contain more obvious structural in-
formation, especially on the object areas and the corresponding

Fig. 1. Visualization of the learned intermediate features and depth maps of
our approach. From top to bottom: (a) Input Image, (b) Initial Depth Feature, (c)
Weak-related Depth Feature, (d) Intensified Depth Feature, and (e) Depth Map.
The first and second columns represent the features learned on the synthetic
dataset (vKITTI) of different image styles, and column 3 represents the features
learned on the real-world dataset (KITTI). Additionally, the initial depth feature
and weak-related depth feature in (b) and (c) are the single-channel features
of fDin (1) and fDwr (2) at maximum resolution, which are summed at the
channel level for display. The intensified depth feature is the single-channel
feature, which is the output of the intensified branch.

edges. Weak-related depth features are the remaining informa-
tion separated from the image. Fig. 1(d) shows the intensified
depth features, which are enhanced in domain invariant areas for
depth estimation, and further weakened and almost eliminated
in object interiors texture, etc. Meanwhile, the depth estimation
results in Fig. 1(e) have distinct object boundaries, which also
demonstrate generalization abilities in both synthetic and real
domains. Note that the first and second columns in Fig. 1 show
the results of different style images with similar initial depth
features and almost the same intensified depth features, while
weak-related depth features have different strengths for different
styles.

The main contributions of our paper can be summarized as:
� We propose an effective domain generalizable depth fea-

ture extraction framework (AGDF-Net), which separates
the image into initial depth and weak-related depth com-
ponents to efficiently extract depth related information for
cross-domain generalizable depth estimation;

� An adaptive guidance fusion module is designed to suffi-
ciently reuse and intensify the extracted initial depth fea-
tures at multi-scale levels to get intensified depth features
that are domain generalizable. This module can further
enhance the domain invariant components for depth es-
timation. Finally, generalize well to unseen real domains
after training only on synthetic domains;

� Without using any real-world dataset, our AGDF-Net can
be well applied to the various depth estimation datasets
(i.e., KITTI [23], NYUDv2 [24], NuScenes [25], Driving-
Stereo [26] and CityScapes [27]) and achieve state-of-the-
art performance, more applicable to practical scenarios.
Furthermore, the experiments using a small amount of
labeled real-world data in a semi-supervised setting also
demonstrate the superiority of our AGDF-Net.

The rest of our paper is organized as follows. We intro-
duce and discuss the related work in Section II. Then the
proposed AGDF-Net is introduced in Section III, including
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the framework pipeline, image separation design, adaptive
guidance module and loss functions. We give details of the
experimental settings and show more detailed analysis in Sec-
tion IV, including results of generalization experiments on var-
ious datasets (i.e., trained on vKITTI [28] and SUNCG [29],
evaluated on KITTI [23], NYUDv2 [24], NuScenes [25], Driv-
ingStereo [26] and CityScapes [27]); comparative experiments
in semi-supervised settings; detailed analysis and validation of
each module in the framework. Finally, we conclude the paper
in Section V.

II. RELATED WORK

With the great success of deep convolutional neural net-
works, DCNN-based monocular depth estimation methods have
achieved exciting depth perception capabilities by studying the
neural network structure or borrowing auxiliary information. In
this section, we first introduce the progress made by previous
monocular depth estimation methods, then introduce the related
developments of domain adaptation methods, and finally, we
discuss cross-domain depth estimation methods that have begun
to receive attention in recent years.

A. Monocular Depth Estimation

Monocular depth estimation takes a color image as input
and estimates the depth map through the encoding-decoding
network [7], [30]. This task can be divided into image-only depth
estimation tasks [13], [31] and depth completion tasks [32],
[33], [34] with the help of other sensors, where image-only
depth estimation tasks can be further divided into supervised
and self-supervised methods. For supervised depth estimation
methods, some approaches modify the structure of the network
module to improve the depth estimation performance [8], [31],
and some methods combine other tasks to help improve depth
estimation performance, such as surface normal [35], [36],
segmentation [37], [38] and optical flow [39], etc. For depth
completion tasks, images are combined using related sensors
such as LiDAR to obtain more accurate depth results. Most
methods improve the completion accuracy by designing a feature
fusion module [22], [40], [41]. All of the above approaches
require obtaining annotated depth ground truths for training.
Obtaining annotated depth ground truths requires additional
sensors and algorithms to align with the color images, which
is costly and time-consuming. Subsequently, self-supervised
depth estimation methods appeared to solve the above prob-
lems. Self-supervised monocular depth estimation methods do
not require labeled data for training, avoiding costly and time-
consuming problems. Some methods are trained by estimating
inter-frame poses and warping inter-frame images [13], [14],
and other methods are trained by stereo matching [42], [43].
Most of the above methods are trained on a specific dataset and
validated in a single domain, and all achieve superior results
on specific datasets. These methods aim to achieve better depth
estimation results on a single dataset, ignoring the multi-scene
generalization of a single model. When generalizing to other
scenes, the network estimation results will fail. In this work, the
generalization of the network is paid attention to, and we aim to

obtain an essential representation of depth estimation, and use
this representation to learn depth, which generalizes well to real
datasets from networks trained only on synthetic datasets.

B. Domain Adaptation and Generalization

Domain adaptation is a task that trains on one or more related
source domains and the unlabeled target domain, and tests in
the target domain [44]. This task is to bridge the gap between
the source domain and the target domain by fine-tuning the
network with target data to diminish the domain shift [45],
[46], [47], using domain discriminators to encourage domain
confusion through an adversarial objective [48], [49] and using
data reconstruction as an auxiliary task to ensure feature invari-
ance [17], [18]. [50] proposes a novel parameter-free adaptive
feature norm approach for unsupervised domain adaptation by
progressively adapting the feature norms of the two domains to
a large range of scalars. [51], [52], [53] obtain stable action
recognition results by narrowing the gaps between different do-
mains(modalities, data forms and views), where [51] enhances
action recognition in vision-sensor modality (videos) by adap-
tively transferring and distilling the knowledge from multiple
wearable sensors, [52] enhances action recognition in videos by
transferring knowledge from images using video keyframes as
a bridge, and [53] addresses recognizing human actions from
varied views by learning view-invariant representations hierar-
chically. Domain generalization is a task which only trained on
the source dataset and tested on the target dataset [54], containing
data augmentation and generation [55], [56], domain-invariant
representation learning and feature disentanglement [57], [58]
and learning strategies such as self-supervised learning [59]
and gradient operation [60], etc. Among them, some methods
transfer the image by decomposing the image into domain
invariant and domain specific components [61], [62], [63]. In
this work, we propose an efficient domain generalizable depth
feature extraction framework that utilizes image separation,
image reconstruction, and domain invariant representation learn-
ing to obtain domain generalizable depth features for depth
estimation results with strong generalization across domains.
In other words, our approach does not require any real-world
data for training, but extracts domain generalizable features
for depth estimation from synthetic images through feature
disentanglement and reconstruction, and finally, superior depth
estimation results with strong generalization are obtained in real
images.

C. Cross-Domain Depth Estimation

Recently, many methods have focused on depth estimation
across domains, including domain adaptation based and domain
generalization based methods. For domain adaptation based
approaches, in order to obtain superior results for cross-domain
depth estimation, these methods are trained on labeled synthetic
data and unlabeled real-world data, and tested on real-world
data. [11], [16], [64] perform feature alignment between the
synthetic domain and the real domain to transfer the depth
estimation from the synthetic domain to the real domain. Specif-
ically, [64] mitigates the inherent shift across domains through
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Fig. 2. Overview of the network architecture. Taking image I as input, the (Ein, Din) and (Ewr , Dwr) are used to extract initial depth features and weak-related
depth features, respectively. Then the initial depth features from Din are fused in Eit and Dit to get intensified depth features (fEit and fDit) that are domain
generalizable. Finally, the intensified depth features are input to DepthNet to get the domain generalizable depth result. The adaptive guidance fusion process is
framed by a red-dotted rectangle. The loss functions in green boxes are introduced in Section III-F.

adversarial learning and explicitly imposes content consistency
on the adapted target representation. [11] take advantage of style
transfer and adversarial training to predict pixel perfect depth on
real-world data by training on synthetic data. [16] uses an image
translation network to enhance the realism of the input image,
and then obtains a cross-domain invariant depth estimation result
through a depth prediction network. [12] proposes a geometry-
aware symmetric domain adaptation framework to explore the
labels in the synthetic data and epipolar geometry in the real
data jointly. The above methods mainly perform cross-domain
depth estimation by aligning the synthetic domain and a single
real domain at the image level or feature level. [65] makes
the model have strong cross-domain generalization ability by
designing consistent loss applicable to multiple datasets. This
method needs to use a large number of real-world datasets and
their corresponding labeled data for training, which is very
costly and time-consuming. For domain generalization based
approaches, these methods focus on the study of model gener-
alization, i.e., training only on synthetic domains and achieving
superior results on real domains. The goal of [20] is to learn a
depth-specific feature to improve generalization, which extracts
structural information using a pre-trained encoder obtained by
synthesizing images and appending real-world images. And use
an additional network to learn a single weight map as an attention
module to attenuate useless information. Our work achieves a
more general representation using an adaptive guided fusion
strategy for domain generalizable feature learning for depth
estimation at multi-scale levels using only synthetic data. It
avoids new cross-domain problems caused by the introduction of
additional datasets, and the enhancement and fusion of features
at different scales can avoid the problem of incomplete informa-
tion purification by a single-scale simple attention mechanism.
Our approach demonstrates that transforming the representation
of domain generalizable features from the single level to the
multi-scale feature levels can lead to more vital generalization
ability.

III. APPROACH

Remarkable progress has been achieved in monocular depth
estimation [8], [13], where the training and testing processes
of most methods are in the same domain. However, the perfor-
mance is heavily limited when training and testing are in differ-
ent domains. To relieve the problem, we propose a generalizable
depth estimation framework by learning domain generalizable
depth features with adaptive guidance fusion, i.e., AGDF-Net,
and we provide more details of the proposed network in this
section.

A. Overview

[20], [21] have proven that structural information is more
related to depth while style and illumination, etc., are disturbance
terms for depth perception. Therefore, our approach aims to
extract domain invariant representations for cross-domain gen-
eralizable depth estimation. As shown in the light yellow area
in Fig. 2, to extract features that are related to depth estimation
preliminarily, taking a color image I as input, our AGDF-Net
first utilizes the initial branch (initial depth encoder and decoder:
Ein and Din) and weak-related branch (weak-related depth
encoder and decoder: Ewr and Dwr) to extract initial depth
features from the color image. The purpose is to extract initial
depth features that are related to depth for depth estimation while
the interferential information can be preliminarily removed. In
this process, contrary loss and reconstruction loss are employed
to separate and extract the two kinds of initial depth features
and weak-related depth features. Precisely, the initial branch
and the weak-related branch extract two kinds of features from
the same image, and these two kinds of features are constrained
by contrary loss to obtain features that are mutually exclusive. In
order to avoid losing information, the reconstruction loss is used
to reconstruct the two features back to the original image, so as
to ensure that the information extracted by the two branches is
different but complementary.
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To further intensify the initial depth features to get domain
generalizable depth features, in the lilac region in Fig. 2, the
intensified branch (intensified depth encoder and decoder: Eit

and Dit) reuses color images to further guide the initial depth
features for feature enhancement, resulting in more effective
domain generalizable features for depth estimation. Specifically,
after obtaining two completely different features, one of the
features (the feature extracted by the initial branch) is sent to
the adaptive guidance fusion module to intensify the multi-scale
initial depth features to obtain multi-scale intensified depth
features (domain generalizable features for depth estimation)
for subsequent cross-domain depth estimation.

Finally, in the light gray area of Fig. 2, arbitrary depth esti-
mation networks can be applied to obtain domain generalizable
depth estimation results. In this process, depth loss is imposed
during training to constrain the predicted depth results.

Better depth results are obtained, domain generalizable fea-
tures for cross-domain depth estimation can be obtained by the
initial branch and adaptive guidance fusion module, and the
remaining information can be separated into the weak-related
branch (with contrary loss and reconstruction loss). Note that
the initial and weak-related branches are for preliminary fea-
ture disentangling. The resulting initial depth features are not
entirely domain invariant for depth estimation. The initial depth
features can be further enhanced using the proposed adaptive
guidance module, where the small texture information is further
eliminated and adequate information is further strengthened.
Finally, the fully decoupled domain generalizable intensified
depth features are obtained for subsequent depth estimation.

B. Initial Feature Extraction

This process aims to extract common information from im-
ages of different domains. Inspired by [17], two encoding-
decoding branches are used to separate images of different do-
mains into initial depth features and weak-related depth features.
These two branches are defined as initial branch (Ein and Din)
and weak-related branch (Ewr and Dwr) as shown in the light
yellow area in Fig. 2.

Initial Branch: The initial branch consists of an initial depth
encoder Ein and an initial depth decoder Din. Ein aims to
extract initial depth encoding features fEin from images of
different domains. Then fEin are fed into Din to extract ini-
tial depth decoding features fDin, and reconstruct the initial
depth map I

′in for subsequent image reconstruction. Note that
commonly used ResNet18 [66] encoder is utilized here, and the
process can be formulated as:

fEin = Ein(I)

fDin, I
′in = Din(fEin) (1)

wherefEin = {fEin
1 , . . ., fEin

n },fDin = {fDin
1 , . . ., fDin

n },n
is the number of features extracted at each of the different
encoding/decoding scales. And the shapes of these features are
B × C ×H ×W , where B is the batch size, C is the number
of channels of features, H and W are the height and width of the

features, C,H,W are variable. Similar features in the following
sections have the same shapes and will not be described again.

Weak-Related Branch: The weak-related branch consists of
weak-related depth encoder Ewr and weak-related depth de-
coder Dwr. Ewr aims to extract weak-related depth encoding
features fEwr that are disturbances for depth estimation from
images of different domains. Then fEwr are fed into Dwr to
extract weak-related depth decoding features fDwr, and recon-
struct the weak-related depth map I

′wr for subsequent image
reconstruction. The process can be formulated as:

fEwr = Ewr(I)

fDwr, I
′wr = Dwr(fEwr) (2)

where fEwr = {fEwr
1 , . . . , fEwr

n }, fDwr = {fDwr
1 , . . . ,

fDwr
n }, n is the number of features extracted at each of the

different encoding/decoding scales.
Initial Depth Feature Extraction: The purpose of the initial

branch and weak-related branch is to separate the image into
initial depth and weak-related depth parts. According to the
previous work [20], [21], when the neural network observes
depth, structure and texture play a significant role, which is
domain invariant for depth estimation. This is also in line with the
conclusion that humans observe 3D geometry (depth) through
sketches and structures [67], [68]. Therefore, inspired by image
decomposition [69], the initial depth information (related to
depth perception) and weak-related depth information (the re-
maining interference information) separated from the same im-
age should be independent and complementary. In this process,
the initial depth encoding features fEin and weak-related depth
encoding features fEwr are constrained by contrary loss, so that
the two branches can extract different information independently
of each other, where the initial branch is used for domain
generalizable depth estimation. The reconstructed images from
the initial depth and weak-related depth features (I

′in and I
′wr)

extracted by the two branches can be jointly reconstructed to the
input image, which is formulated as:

I ′ = I
′in + I

′wr (3)

where I ′ is the reconstructed image, which should be the same
as the input image I . The reconstructed image I ′ and the
input image I are constrained by the reconstruction loss. See
Section III-F for the details of the contrary loss (8) and recon-
struction loss (9). Note that only the initial branch is involved
in inference. Visualization and quantitative results are provided
in Section IV to clarify the extracted features and prove the
necessity of our architecture. Please see Figs. 7, and 8, Table VIII
and Section IV-B for details.

C. Intensified Feature Extraction

Our goal is to learn domain generalizable depth features for
cross-domain generalizable depth estimation. To further remove
the influence of interference information for depth estimation,
such as some detailed textures, in this process, we design the
intensified depth branch to further optimize the extracted initial
depth features, removing the residual disturbing information and
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Fig. 3. Details of adaptive guidance fusion. Each subsection in this figure represents: (a) Adaptive guidance fusion, (b) Adaptive guidance module (AG in (a)).

Fig. 4. Visualization of the learned initial depth, weak-related depth and intensified depth features in outdoor scenes. From left to right: (a) Input Image,
(b) Initial Depth Feature, (c) Weak-related Depth Feature, (d) Intensified Depth Feature. The top two rows are features of synthetic images on vKITTI, the bottom
two rows are features of real-world images on KITTI. Note that the brighter the color, the higher the value. Additionally, the initial depth feature and weak-related
depth feature in (b) and (c) are the single-channel features of fDin (1) and fDwr (2) at maximum resolution, which are summed at the channel level for display.
The intensified depth feature is the single-channel feature, which is the output of the intensified branch.

TABLE I
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON KITTI
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TABLE II
COMPARISON ON KITTI FOR SEMI-SUPERVISED SETTING

Fig. 5. Visualization of the learned initial depth, weak-related depth and
intensified depth features in indoor scenes. From left to right: (a) Input Image,
(b) Initial Depth Feature, (c) Weak-related Depth Feature, (d) Intensified Depth
Feature. The top two rows are features of synthetic images on SUNCG, the
bottom two rows are features of the real-world images on NYUDv2. Note that
the brighter the color, the higher the value. Additionally, the initial depth feature
and weak-related depth feature in (b) and (c) are the single-channel features
of fDin (1) and fDwr (2) at maximum resolution, which are summed at the
channel level for display. The intensified depth feature is the single-channel
feature, which is the output of the intensified branch.

TABLE III
QUANTITATIVE COMPARISON ON NYUDV2

enhancing the domain invariant information for depth estima-
tion. Images contain a large amount of texture information and
have certain corresponding relationships with the depth map
in structure and texture. Therefore, in the intensified feature
extraction process, image information is reused to learn adaptive
convolution parameters to guide the optimization of domain
invariant information.

Intensified Branch: As shown in the lilac area in Fig. 2, the
intensified branch consists of intensified depth encoder Eit and
intensified depth decoder Dit. Eit aims to intensify the initial
depth decoding features fDin with adaptive guidance fusion
(Section III-D), getting intensified depth encoding features fEit.
Then fEit are fed into Dit to extract the multi-scale intensified
depth maps fDit that are domain generalizable for the subse-
quent domain generalizable depth estimation.

D. Adaptive Guidance Fusion

Adaptive Guidance Fusion: The details of the adaptive guid-
ance fusion are shown in Fig. 3(a). At each scale of the neural
network, the image information is combined to guide the opti-
mization of initial depth information with the adaptive guidance
module (AG) to obtain multi-scale intensified depth features.
The whole process can be formulated as:

fEit
0 = Eit

1 (I)

fEit
1 = Eit

2 (AG1(f
Eit
0 , fDin

1 ))

fEit
2 = Eit

3 (AG2(f
Eit
1 , fDin

2 ))

. . .

fEit
n−1 = Eit

n (AGn−1(f
Eit
n−2, f

Din
n−1 ))

fEit
n = (AGn(f

Eit
n−1, f

Din
n ))

fDit = Dit(fEit) (4)

where fEit = {fEit
0 , fEit

1 , . . ., fEit
n }, fEit

0 is the extracted im-
age feature, fDit = {fDit

1 , . . ., fDit
n }, Eit = {Eit

1 , . . ., E
it
n }, n

is the number of features extracted at each of the different
encoding/decoding scales. AGi means the adaptive guidance
operation on the i-th feature scale. For fEit

i and fDin
i , feature

scales are from large to small as i increases.
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Fig. 6. Visualization of reconstruction images and errors. From top to bottom: (a) Reconstructed Image I
′in from Initial Depth Features, (b) Reconstructed

Image I
′wr from Weak-related Depth Features, (c) Final Reconstructed Image I ′, (d) Input Image I , (e) Reconstruction Error Image. The first two columns are

images on vKITTI, and the last two columns are images on KITTI. The reconstructed image is almost the same as the input image. The darker the reconstruction
error color, the smaller the error, and the overall reconstruction error is kept at a low level.

Fig. 7. Depth prediction using initial depth and weak-related depth features on the KITTI dataset. From left to right: (a) Input Image, (b) Initial Depth Feature,
(c) Initial Depth Prediction Map (din), (d) Weak-related Depth Feature, and (e) Weak-related Depth Prediction Map (dwr). din is clearer in object boundaries,
while the result of dwr has blurred object boundaries and even predicts wrongly. For a quantitative comparison, we compare din and dwr on the Abs_Rel, where
the weak-related depth maps are much worse than the initial depth maps.

TABLE IV
GENERALIZATION ON MORE DATASETS
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Fig. 8. Different styles of images from the same scene with similar initial depth and nearly the same intensified depth features on vKITTI. From top to bottom:
(a) Image, (b) Initial Depth Feature, (c) Weak-related Depth Feature, (d) Intensified Depth Feature, (e) Differential Map of Initial Depth Feature relative to the first
column, and (f) Differential Map of Intensified Depth Feature relative to the first column. For images of different styles, our approach can generate similar initial
depth features and almost the same intensified depth features, while weak-related depth features have different strengths for different styles, and depth detailed
information is lost.

TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS WITH DIFFERENT DEPTH ESTIMATION NETWORKS. DEPTHNET MEANS DEPTH ESTIMATION NETWORK USED IN

THE PREVIOUS WORK [16], [20] AND RB-NET MEANS COMMONLY USED RESNET BASED DEPTH ESTIMATION NETWORK [13]. RB-NET (PRE-TRAINED) MEANS

RB-NET PRE-TRAINED ON IMAGENET

TABLE VI
ABLATION STUDY RESULTS TO ILLUSTRATE THE EFFECTIVENESS OF EACH MODULE. INE MEANS INITIAL FEATURE EXTRACTION, WHICH IS THE ENTIRE PROCESS

OF INITIAL DEPTH FEATURE AND WEAK-RELATED DEPTH FEATURE EXTRACTION, ITE MEANS INTENSIFIED FEATURE EXTRACTION. INB MEANS INITIAL

BRANCH, WHICH IS A SINGLE BRANCH

TABLE VII
ANALYSIS OF INITIAL FEATURE EXTRACTION AND LOSS FUNCTIONS. INB MEANS INITIAL BRANCH, WRB MEANS WEAK-RELATED BRANCH. THE INITIAL

EXTRACTION PROCESS (INE) CONSISTS OF INB AND WRB. Lrec MEANS RECONSTRUCTION LOSS, Lcon MEANS CONTRARY LOSS
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TABLE VIII
ANALYSIS OF CASCADE OF HOURGLASS ARCHITECTURES BEFORE BASELINE DEPTH ESTIMATION NETWORK. THE HOURGLASS ARCHITECTURES ARE THE SAME

AS THE INITIAL BRANCH

Adaptive Guidance Module (AG): Convolution is applied as
an adaptive form of feature enhancement. AG aims to learn
convolution kernel parameters combined with image informa-
tion, and optimize initial depth decoding features (fDin) with
convolution to obtain intensified depth features (f it). Fig. 3(b)
demonstrates the details of the AG. Inspired by the separable
convolution [22], [70], convolution operations can be separated
into channel-wise convolution and cross-channel convolution.
AG optimizes initial depth features by adaptively learning
channel-wise convolution kernels and cross-channel convolu-
tion kernels. Specifically, the combined feature groups input into
AG are defined as G, where Gi = {fEit

i−1 , f
Din
i }, i ∈ [1, n]. The

initial depth feature groups that need to be optimized are defined
as D, where Di represents fDin

i , i ∈ [1, n].
More specifically, in the channel-wise convolution process,

given an initial depth feature group Di with m channels, AG
uses the combined feature group Gi to learn single-channel
convolution kernels of different sizes, and performs convolution
optimization of Di for each channel. Here, 1× 1, 3× 3 and
5× 5 kernels adaptively learned from Gi (as shown in Fig. 3(b))
are used respectively, denoted as Wcw

1×1, Wcw
3×3 and Wcw

5×5.
The optimized feature D′i

j of the j-th channel obtained after
channel-wise convolution can be expressed as:

D′i1
j = Wcw

1×1 ⊗Di
j

D′i2
j = Wcw

3×3 ⊗Di
j

D′i3
j = Wcw

5×5 ⊗Di
j

D′i
j = D′i1

j +D′i2
j +D′i3

j (5)

where j ∈ [1,m], Di = {Di
1, . . ., D

i
j , . . ., D

i
m}, and D′i =

{D′i
1 , . . ., D

′i
j , . . ., D

′i
m}. ⊗ indicates the convolution operation.

In the cross-channel convolution process, since the kernel
of this process is only related to the number of channels, the
previously optimized initial depth features are added first to
obtain D′i as shown in (5), and then the cross-channel convo-
lution operation is used for further optimization, which can be
formulated as:

D̂i = Wcc ⊗D′i (6)

where D̂i is the final optimized feature at the i-th scale. Wcc is
the cross-channel kernel adaptively learned from Gi as shown
in Fig. 3(b), and the size is m×m.

E. Domain Generalizable Depth Estimation

After obtaining intensified depth maps fDit that are domain
generalizable (introduced in Sections III-C and III-D), an ar-
bitrary depth estimation network can be used for subsequent
domain generalizable depth estimation, getting cross-domain
generalizable depth results dit as follows:

dit = DepthNet(fDit) (7)

We will give more analysis in the experiments.

F. Loss Functions

1) Contrary Loss: In order to separate initial depth and
weak-related depth features from the same image, an opposite
constraint is imposed on initial depth encoding feature fEin

n

and weak-related depth encoding feature fEwr
n to extract in-

dependent and complementary information from two branches
(initial and weak-related), which is defined as contrary loss.
Specifically, in order to ensure that initial depth and weak-related
depth features are as independent as possible, the contrary loss
constrains these two features to be orthogonal in the vector space,
which can be expressed as:

υin =
Θ(fEin

n )

||Θ(fEin
n )||2 + γ

υwr =
ΘT(fEwr

n )

||ΘT(fEwr
n )||2 + γ

Lcon = υin · υwr + λ1 + λ2 (8)

where Θ is a layer of convolution operation and straightens the
feature into a one-dimensional vector. || · ||2 is 2-norm operation,
γ is set to 1e− 6 to avoid a denominator of zero. λ1 and λ2 are
regularization terms. The purpose is to avoid the feature terms
being zero, where λ1 = abs(||υin||2 − 1), λ2 = abs(||υwr||2 −
1), abs(·) is absolute operation.

2) Reconstruction Loss: As shown in Fig. 2, in order for
the initial depth branch and the weak-related depth branch to
learn complementary information, reconstruction constraints are
imposed on the reconstructed image I ′ (3) and the original input
image I , named reconstruction loss, which is defined as:

Lrec = ||I ′ − I||2 + ||I ′ − I||2 + σ1 + σ2 (9)

where || · || is 1-norm operation. σ1 and σ2 are regularization
terms, where σ1 = −||I ′in||, σ2 = −||I ′wr||. Since (8) avoids
the feature items of the encoder from converging to zero, I

′in and
I

′wr integrate the features of the encoder, so under the constraints
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of all losses, it can also prevent the final reconstructed output
of the decoder from being zero. Various results demonstrated in
Fig. 6(a) and (b) further prove that the output I

′in and I
′wr do

not converge to zero.
3) Depth Loss: The predicted multi-scale cross-domain gen-

eralizable depth maps dit and the corresponding depth ground
truth mapsdgt are constrained by depth loss, which is formulated
as:

Ld = w1

n∑
i

||dgti − diti ||+ w2

n∑
i

SSIM(dgti , diti ) (10)

where w1 and w2 are the weighted parameters, which are empir-
ically set to 1 and 5. SSIM means structural similarity loss [71].

The total loss is defined as:

Ltotal = a1 · Lcon + a2 · Lrec + a3 · Ld (11)

where a1 to a3 are the weighted parameters, which are empiri-
cally set as 0.1, 1.0 and 1.0.

All the above three losses are used to separate the image into
initial depth and weak-related depth features. The contrary loss is
used to separate the two features of the image as far as possible,
and the reconstruction loss is used to constrain the separated
features to be different but complementary, and can be combined
back to the original image without losing information. Depth loss
guarantees that final depth estimation results can be obtained,
better depth estimation results are with domain generalizable
features, and the remaining information can be separated into the
weak-related branch (with contrary loss and reconstruction loss).
Qualitative results are provided in Figs. 7 and 8 to demonstrate
the separated features. Please see Section IV for details.

G. Implementation Details

For the initial branch, weak-related branch and intensified
branch, all encoders used in our framework are based on
ResNet18 [66]. The encoder-decoder backbones are the same
as [13], and there are skip connections between the encoder and
decoder. For DepthNet, two network structures are applied to
demonstrate the generalizability of our AGDF-Net, including the
depth estimation network architecture of previous works [12],
[16], [20] and the widely used ResNet18 [66] depth estimation
network [13].

The whole network is trained in an end-to-end manner for 20
epochs. The training procedure starts with an initial learning rate
of 1e-4 and reduces by 50% every 5 epochs. We use a step learn-
ing rate decay with Adam optimizer (β1 = 0.9,β2 = 0.999), and
the batch size is set as 24.

IV. EXPERIMENTS

In this section, we first introduce the details of our experimen-
tal setup. Then, we verify the effectiveness of our approach in
the synthetic to real generalization of depth estimation both in
outdoor and indoor scenes. A comparison of a semi-supervised
setting is also provided to further prove the capability of the
network. Then, generalization results on more datasets further
prove the generalizability of our approach. Finally, the ablation

study is provided to analyze the effectiveness of each part of our
architecture.

A. Experimental Setup

1) Outdoor Datasets: Virtual KITTI (vKITTI) [28]: vKITTI
is a photo-realistic synthetic video dataset designed to learn and
evaluate computer vision models for several video understand-
ing tasks, which contains 21260 frames generated from five
different virtual worlds in urban settings under different imaging
and weather conditions. In this paper, this dataset is used as
the outdoor scene source domain dataset for training. Following
previous works [12], [16], [20], 20760 image-depth pairs are
randomly selected as our training dataset. The image resolution
is downsampled from 375× 1242 to 192× 640. Following prior
works [16], [20], the range of the depth ground truth is clipped
to 80 m.

KITTI [23]: KITTI is a large real outdoor autonomous driving
dataset, which includes color images and depth collected from
Velodyne HDL64. In this paper, this dataset is used as the
real-world outdoor dataset for evaluation. Following [16], [20],
697 test frames are used for evaluation, and the frames are
downsampled to 192× 640.

2) Indoor Datasets: SUNCG [29]: SUNCG is a large-scale
indoor dataset of synthetic 3D scenes, which includes 45622
3D houses with various room types. In this paper, this dataset is
used as the indoor source domain dataset for training. Following
previous works [16], [20], 130 k image-depth pairs are chosen
for training. Since the input resolution of our network needs to be
a multiple of 16, similar to previous works [7], the original image
of resolution 480× 640 pixels is downsampled and cropped to
224× 304 pixels as input.

NYUDv2 [24]: NYUDv2 is a real-world indoor dataset, which
contains a large set of video frames captured from Microsoft
Kinect, with 1449 test frames. In this paper, this dataset is used
for evaluation. The evaluation split is selected from 1449 test
frames following [7], which contains 654 frames. The original
image of resolution 480× 640 is downsampled and cropped to
224× 304 as input.

3) Evaluation Metrics: All results of our approach are eval-
uated with standard evaluation metrics described in [7], [64],
[72], including RMSE, Abs Rel, RMSElog , Sq Rel, log10 and
Threshold δ. Let di and d̂i denote the ground truth depth and
estimated depth at the pixel location i, i ∈ [1, N ], N is the
number of valid pixels in the ground truth depth. The evaluation
metrics are specified as follows:
� RMSE:

√
1
N

∑N
i=1(d̂i − di)2

� Abs Rel: 1
N

∑N
i=1

|d̂i−di|
di

� RMSElog:
√

1
N

∑N
i=1(log(d̂i)− log(di))2

� Sq Rel: 1
N

∑N
i=1

|d̂i−di|2
di

� log10: 1
N

∑N
i=1 |log10(d̂i)− log10(di)|

� Threshold δ: percentage of d̂i, s.t. max( d̂i

di
, di

d̂i
) < δ, δ ∈

{1.25, 1.252, 1.253}.
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B. Analysis of ADGF-Net

Our AGDF-Net only uses synthetic datasets for training, and
directly tests on real-world data both in outdoor and indoor
scenes. Note that real-world data is not utilized in the training
process. In order to obtain domain generalizable depth estima-
tion results, our AGDF-Net is divided into three steps, including:
(1) initial feature extraction; (2) intensified feature extraction;
and (3) domain generalizable depth estimation. Note that our
method is trained in an end-to-end manner.

1) Initial Feature Extraction: For initial feature extraction,
our AGDF-Net decomposes the image into initial depth and
weak-related depth parts with two encoder-decoder branches,
and only the former is used for the subsequent cross-domain
generalizable depth estimation. The final map of each part
obtained by the network is added to obtain the full image.
For outdoor scenes, the visualization results of initial depth
and weak-related depth features are shown in Fig. 4(b) and (c)
represent fDin and fDwr at maximum resolution, which are
summed at the channel level for display, respectively. As shown
in Fig. 4, the initial depth features contain more structure-related
information. Weak-related depth features are the remaining in-
formation separated from the image. It is consistent with [20],
[21], which proves that the depth map is mainly recovered
from the structural information of the image. Furthermore, we
also provide the visualization of the reconstructed images (I

′in)
from initial depth features of Din, reconstructed images (I

′wr)
from weak-related depth features of Dwr, final reconstructed
images I ′, input images I and reconstruction errors in Fig. 6 for
reference. The results show that I

′in and I
′wr are the components

of the final reconstructed image, and the two are summed to
form the final reconstructed image, which is almost the same
as the input image. The darker the reconstruction error color,
the smaller the error, and the overall reconstruction error is
kept at a low level. For indoor scenes, as shown in Fig. 5(b)
and (c) represent the initial depth and weak-related depth
features, which are summed at the channel level using the
fDin and fDwr at maximum resolution. Consistent with
outdoor scenes, initial depth features contain more over-
all structural information, while weak-related depth features
contain the remaining information separated from the im-
age, such as tile grids, checkerboards, textures of quilt and
carpet, etc.

To further demonstrate the extracted initial depth and weak-
related depth features, these pre-trained two features are directly
used as the input to predict the depth maps with the same depth
estimation networks on KITTI, respectively. Fig. 7 shows the
results of the pre-trained initial depth and weak-related depth
features, and the retrained results of the depth map using the
corresponding features as input, respectively. Note that the pre-
trained initial depth features and weak-related depth features are
directly passed into the corresponding new DepthNet models,
respectively. During training, the initial depth features (Ein and
Din) and weak-related depth features (Ewr andDwr) are frozen,
and the corresponding DepthNet models are trained from scratch
respectively. As shown in Fig. 7, the initial depth prediction
map (din) is clearer in object boundaries, while the results
of the weak-related depth prediction map (dwr) have blurred

object boundaries and even predicts wrongly. For a quantita-
tive comparison, we give comparisons of din and dwr on the
Abs_Rel, where the dwr is much worse than din (0.344 versus
0.104, etc.). The clear boundaries of din indicate that initial
depth features are related to depth estimation. On the contrary,
using weak-related depth features that are missing depth details
information separated from the image cannot correctly estimate
the depth of the object, resulting in poor estimation results.

2) Intensified Feature Extraction: For intensified feature ex-
traction, the intensified branch is applied to further optimize the
extracted initial depth features, enhancing the domain invariant
information. Finally, intensified depth features that are domain
generalizable are obtained with adaptive guidance fusion and
input to the final depth estimation network. For outdoor scenes,
as shown in Fig. 4(d), where (d) is the intensified depth features
fDit at maximum resolution, lane lines and building surface
textures, etc., have been almost removed, resulting in domain
generalizable depth feature maps that do not change with image
domains. It is worth noting that our intensified depth features
have a high contribution in the sky, which is the same as the
depth-specific maps of S2R-DepthNet [20] have the stronger
response in the sky region, and is also similar to [73]. The
reason for this phenomenon is that the sky with the farthest
depth value represents the vanishing point, which is an essen-
tial clue for depth estimation, and has the same infinite depth
representation for the sky in different domain images, which
can be seen as a strong domain invariant depth information. For
indoor scenes, as shown in Fig. 5(d), interference information
such as tile grids, checkerboards, and textures of quilts and
carpets are almost eliminated. An interesting observation is
that the indoor intensified depth features have more obvious
lines and edges. Indoor scenes have a smaller depth of field
than outdoor scenes, and have richer structure information than
outdoor scenes. Furthermore, the sky area of outdoor scenes has
a large value, and the distribution of depth range in the image
is nonlinear. [20], [21] prove that image structure has a stronger
contribution to depth estimation, so our intensified depth feature
has more obvious lines and edges in the indoor scene with a small
depth of field than in the outdoor scene with a large depth of field.
And because of the nonlinear depth range, the structural lines
of outdoor scenes in the visualization are not obvious enough,
but the overall structure edges, such as buildings, are clearly
visualized, which is also consistent with the results of [20].

Besides, these domain generalizable intensified depth features
are almost consistent between the synthetic domain and the
real domain. Then the intensified depth features are input into
subsequent depth estimation networks to estimate cross-domain
depth maps, and obtain excellent results.

3) Feature Stability of Different Style Images: To further
demonstrate the extracted initial depth, weak-related depth and
intensified depth features, we provide the three extracted features
of images with different styles from the same scene in Fig. 8,
which have similar initial depth features and nearly the same in-
tensified depth features. As shown in Fig. 8, for images captured
in the same scene with different styles, our approach can generate
similar initial depth features in row (b) and almost the same
intensified depth features in row (d), while weak-related depth
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features have different strengths for different styles and depth
detailed information is lost in row (c). We also provide the differ-
ential map of initial depth features and intensified depth features
in row (e) and (f), where row (e) represents the differential map
between the initial depth feature of the corresponding column
and the initial depth feature of the first column, row (f) represents
the differential map between the intensified depth feature of
the corresponding column and the intensified depth feature of
the first column. The results show that the differential map of
the first column is zero relative to itself, and the differential maps
of other columns are relatively small on the initial depth features
and almost zero on the intensified depth features. These similar
initial depth features further prove that the proposed framework
can extract features that are related to depth estimation. And the
almost same intensified depth features prove that our proposed
intensified feature extraction process (with adaptive guidance
module) can obtain fully decoupled domain generalizable depth
features for subsequent depth estimation.

C. Experimental Results

Following [20], we only train on synthetic datasets and test on
real-world datasets. We conduct experimental comparisons on
the outdoor dataset vKITTI to KITTI and indoor dataset SUNCG
to NYUDv2, including synthetic to real experiments and semi-
supervised learning experiments. To show the generalization
ability of our AGDF-Net, we provide comparison results from
vKITTI to NuScenes, DrivingStereo and CityScapes. Besides, to
further prove the generalization ability of the extracted domain
generalizable depth features, we also provide comparison results
of our AGDF-Net with state-of-the-art approaches with different
depth estimation networks for real-world depth estimation.

1) vKITTI to KITTI: Synthetic to Real: Table I demonstrates
the experimental results of vKITTI to KITTI. Following [20], we
compare with the state-of-the-art unsupervised domain adapta-
tion methods [16], [64] and domain generalization method [20].
Meanwhile, we also compare with real-world supervised depth
estimation method [7], [65], [74], where [7] is trained on the
KITTI dataset, MiDaS [65] is trained on MIX 5 dataset, and
DPT-Hybrid [74] is trained on MIX 6 dataset which contains
about 1.4 million images and finetuning on KITTI dataset. Note
that the results of MiDaS are evaluated on the official pre-trained
model1 using the same input as ours, the results of DPT-Hybrid
are pulled from the official paper which are finetuned on KITTI.
As shown in Table I, our approach outperforms the existing
state-of-the-art methods trained on vKITTI under the depth
range of 50 m and 80 m for all evaluation metrics, while our
approach is trained without any real-world data, and the result is
still significantly better than the existing unsupervised domain
adaptation methods. At the same time, our approach does not
use any external images for training except vKITTI, and is still
superior to the domain generalization method [20], which trained
on the external real-world PBN dataset.2 Specifically, compared
with [20], Abs_Rel is reduced by 6.06%, Sq_Rel is reduced by

1[Online]. Available: https://github.com/isl-org/MiDaS
2[Online]. Available: https://www.kaggle.com/c/painter-by-numbers

22.35% in the 80 m range. Besides, the qualitative comparisons
are illustrated in Fig. 9, and compared with T2Net [16] and
S2R-DepthNet [20], our approach can obtain more obvious
structures and details in depth.

Semi-Supervised Learning: Following previous moth-
ods [20], [64], [75], we selected the first 1000 frames of real-
world captured KITTI for further training, which only contains
4.42% of the total dataset. This is more in line with actual
usage scenarios and can be considered as a semi-supervised
setting. The semi-supervised methods [64], [75] and the domain
generalization based semi-supervised learning method [20] are
compared here with the same settings, as shown in Table II. Our
approach outperforms the compared methods on all metrics.
Specifically, our approach does not use any additional dataset
other than vKITTI in the domain generalization training process,
and is still superior to [20] using an external dataset (PBN) on all
metrics. Besides, though [76] uses more KITTI frames (7346,
32.5% of total dataset) and 12600 stereo pairs for training, our
approach still surpass [76] on most evaluation metrics.

2) SUNCG to NYUDv2: Next, we report a SUNCG [29]
to NYUDv2 [24] transfer experiment in the indoor scenes in
Table III, which means the network is trained on SUNCG [29]
and directly tested on NYUDv2 [24]. Following [7], [16], [20],
we use the Eigen 654 split as the testing dataset. To compare
equally, we retrain S2R-DepthNet [20] on the SUNCG under
the same setting with the input size 224 × 304. The results
show that our approach yields better results than S2R-DepthNet
on all metrics in the indoor scene, and Abs_Rel is reduced
by 2.93%. In addition, we also provide the comparison results
of the deep learning based real-world supervised methods [7],
[58], [65], [74] for reference, where [7], [58] are trained on the
NYUDv2 dataset, MiDaS [65] is a strong supervised method
trained on MIX 5 dataset, and DPT-Hybrid [74] is another strong
supervised method trained on MIX 6 dataset which contains
about 1.4 million images and finetuning on NYUDv2 dataset.
Note that the results of MiDaS are evaluated on the official
pre-trained model3 using the same input as ours, the results
of DPT-Hybrid are pulled from the official paper which are
finetuned on NYUDv2. In order to evaluate the effectiveness
of our approach in indoor scenes, we report qualitative results
on NYUDv2 in Fig. 10, which shows that our approach can
capture more complete object boundaries than S2R-DepthNet,
such as chairs, desk lamps, etc.

D. Generalization on More Datasets

We then verify the cross-dataset generalized performance on
different datasets, including vKITTI [28] to NuScenes [25],
DrivingStereo [26] and CityScapes [27]. In other words, the
network is trained on the synthetic vKITTI dataset and directly
evaluated on NuScenes, DrivingStereo and CityScapes.

NuScenes [25] dataset is a large-scale autonomous driving
dataset with 3D object annotations, including 1000 driving
scenes, where 850 scenes are for training and validation, and 150
scenes for testing. In this paper, we randomly select 174 frames

3[Online]. Available: https://github.com/isl-org/MiDaS
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Fig. 9. Qualitative comparison with state-of-the-art methods on KITTI. From top to bottom: (a) Image, (b) Ground Truth, (c) T2Net [16], (d) S2R-DepthNet [20],
and (e) Ours. Compared with [16], [20], our approach can obtain clearer object boundaries, such as persons and signs.

Fig. 10. Qualitative comparison with state-of-the-art methods on NYUDv2.
From top to bottom: (a) Image, (b) Ground Truth, (c) S2R-DepthNet [20],
and (d) Ours.

from the test set for evaluation. In evaluation, the original image
resolution is first cropped from 900 × 1600 to 480 × 1600, then
downsampled to 192 × 640.

DrivingStereo [26] dataset is a large-scale stereo dataset,
containing over 180 k images covering a diverse set of driving
scenarios. We randomly select 463 frames from the testing data
for evaluation. The original image resolution is first cropped
from 800×1762 to 528×1762, then downsampled to 192×640
for evaluation.

CityScapes [27] dataset is a large-scale dataset that contains
a diverse set of stereo video sequences recorded in street scenes
from 50 different cities. We randomly select 495 frames from the
testing data for evaluation. The original image resolution is first
cropped from 1024 × 2048 to 614 × 2048, then downsampled
to 192 × 640 for evaluation.

For a fair comparison, all approaches are evaluated under the
same setting, which is consistent with vKITTI to KITTI. Note

that T2Net [16] and S2R-DepthNet [20] are evaluated on dif-
ferent datasets with officially provided pre-trained models.4 As
shown in Table IV, our approach outperforms the unsupervised
domain adaptation method [16] and the domain generalization
method [20] on all metrics. The qualitative results are shown in
Fig. 11, from which we can see that our approach can better
estimate the object boundaries, such as people, cars, trunks,
signs, etc.

E. Generalization on Different Depth Estimation Networks

To further demonstrate the generalization of our approach,
we present the experimental results of our AGDF-Net and state-
of-the-art approaches with different depth estimation networks,
including the DepthNet network used in the previous work [16],
[20] (DepthNet in Table V), commonly used ResNet based
depth estimation network [13] without pre-trained on ImageNet
(RB-Net in Table V) and commonly used ResNet based depth
estimation network [13] with pre-trained on ImageNet (RB-Net
(pre-trained) in Table V). Note that when using RB-Net [13]
as the depth estimation network, the results of S2R-DepthNet
are retrained with the officially provided code. Furthermore, as
shown in Table V, Ours with pre-trained models on ImageNet
can achieve better results than without pre-trained ones, where
Abs_rel of ours with and without pre-trained models are 0.164
and 0.168, respectively. As shown in Table V, using DepthNet
and RB-Net, the Abs_rel results of S2R-DepthNet [20] are
0.165 and 0.186, respectively, and the results of our approach
are 0.155 and 0.168, respectively. Our approach has more stable
results on all evaluation metrics under different depth estimation
networks. Furthermore, the learned domain generalizable depth
features are completely decoupled from the subsequent depth
estimation network. Therefore, these features can be cascaded

4T2Net: https://github.com/lyndonzheng/Synthetic2Realistic, S2R-
DepthNet: https://github.com/microsoft/S2R-DepthNet
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Fig. 11. Qualitative comparison with state-of-the-art methods on more datasets. From left to right: (a) Image, (b) T2Net [16], (c) S2R-DepthNet [20], (d) Ours.
“Nusc”, “City” and “Driv” denote NuScenes, CityScapes and DrivingStereo datasets, respectively.

TABLE IX
ADAPTIVE GUIDANCE ANALYSIS ON DIFFERENT KERNEL SIZES

with any other depth estimation networks to improve the gener-
alization of depth estimation, and further narrow the gap between
the synthetic domain and the real domain.

F. Inference Time

Our approach achieves real-time performance, and the av-
erage inference time of our network on the KITTI dataset is
0.037 s using a GTX 1080 GPU. The size of the input image is
192× 640.

G. Ablation Study

We provide the ablation study in the outdoor scene vKITTI to
KITTI in Tables VI, VII, VIII and IX. All results are obtained
within the depth range of 80 m.

Initial Feature Extraction (INE): The baseline of our network
is the same as [16], [20], and the results are shown in the first row
of Table VI. The initial feature extraction (INE) process consists
of an initial branch (INB) and a weak-related branch (WRB),
where the initial branch is used to extract initial depth features,

and the weak-related branch is used to extract weak-related depth
features. The initial depth features extracted by INE are directly
input into the baseline network for depth estimation, and the
results are shown in the second row of Table VI. The results show
that depth estimation using the initial depth features extracted
by our framework can significantly improve the Abs_rel from
0.230 to 0.173, compared to directly inputting images into
DepthNet [20]. The comparison shows that separating the image
into initial depth and weak-related depth components can extract
depth related information preliminarily for cross-domain depth
estimation, and generalize it from the synthetic scene to the real.

Specifically, in order to analyze the effectiveness of each mod-
ule and its loss function in the INE process, the ablation study
results are shown in Table VII, where INB and WRB denote the
initial depth branch and weak-related depth branch respectively.
When adding both INB and WRB to the baseline (second row),
the Abs_rel reduced from 0.184 to 0.179 compared to adding
only INB (first row). This shows that separating images into
initial depth and weak-related depth components is effective for
cross-domain generalizable depth estimation and can improve
generalization. Note that after adding INB and WRB to the
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baseline, the reconstruction loss (Lrec) is used to constrain
the images of the two branches to reconstruct back to the
input image. The third row in Table VII shows the results of
adding contrary loss (Lcon), Abs_rel decreased from 0.179
to 0.173. This shows that the contrary loss can effectively
disentangle the features of the initial branch and the weak-
related branch, and obtain more generalized initial depth
features.

Another interesting result is the improvement of adding
the initial branch (hourglass architecture) only to the baseline
(Abs_Rel 0.230 versus 0.184). As shown in Table VIII, we
provide the experiments of cascading multiple (1-4) hourglass
architectures before the depth estimation network. With the
stacking of hourglass structures from 2 to 4, there is little
impact on the depth estimation results. It is proved that the
results of stacking the hourglass network before the depth es-
timation network are limited and the features related to depth
estimation can not be extracted only with cascaded hourglass
architecture. Besides, our approach with initial and weak-related
branches can improve the performance from 0.184 to 0.155,
which also proves that the proposed framework can sepa-
rate effective features related to depth estimation from the
image.

Intensified Feature Extraction (ITE): The intensified feature
extraction (ITE) process consists of the intensified branch. The
obtained initial depth features are input to the intensified branch
to get intensified depth features that are domain generalizable.
Rows 3,4,6 of Table VI show the analysis of the ITE process,
where the third row represents adding the intensified branch,
and fuses the initial depth features and the features of the
intensified branch in an additive manner. The purpose of the
intensified branch is to enhance the previously obtained initial
depth features. Traditional fusion methods such as addition and
concatenation cannot adaptively fuse and enhance features, so
the performance is still limited, as shown in rows 3 and 4 of
Table VI. Therefore, we propose an adaptive feature fusion
and enhancement module named adaptive guidance (AG). By
learning different convolution kernel parameters, the interfer-
ence information in the features is further eliminated, and the
domain invariant information is enhanced. As shown in row 6 of
Table VI, after adding AG, Abs_rel dropped from 0.164 to
0.155, demonstrating the effectiveness of AG. Additionally,
rows 5 and 6 of Table VI further prove the effectiveness
and essentiality of extracting initial depth features using two
branches, where row 5 denotes the full method using a sin-
gle initial branch to extract initial depth features(Abs_Rel:
0.171), and row 6 means the full method with two branches
to separate initial and weak-related depth features(Abs_Rel:
0.155).

Adaptive Guidance Kernel Analysis: We design convolution
kernels of different sizes in the AG for feature fusion. The
performance of feature fusion of different sizes of convolution
kernels is provided in Table IX. Lines 1–3 show the results
of only learning 1× 1, 3× 3 and 5× 5 kernel parameters and
guiding feature fusion, respectively. Row 4 shows the result of
adding convolution kernels of three sizes before guiding feature

Fig. 12. Visualization of the learned intermediate features and depth maps
of failure cases. From top to bottom: (a) Input Image, (b) Initial Depth
Feature, (c) Weak-related Depth Feature, (d) Intensified Depth Feature, (e)
S2R-DepthNet [20] Depth Map, and (f) Ours Depth Map. The first and second
columns represent the features learned on the synthetic dataset (vKITTI), and
column 3 represents the features learned on the real-world dataset (KITTI).
The results show that our approach performs unsatisfactorily in extremely harsh
conditions, such as fog (the first column) and darkness (columns 2–3). The
areas circled in purple specifically indicate imperfect depth estimation results
for low-visibility and distant objects in the image (signs or houses).

fusion. The results show that compared with learning a single
kernel parameter, the fusion of multiple convolution kernels can
enhance the features in different receptive fields, and then obtain
better depth estimation results.

H. Failure Cases

Fig. 12 shows some failure examples of our approach (row
(f)) and S2R-DepthNet [20] (row (e)). The results show that
both our approach and S2R-DepthNet perform unsatisfactorily
in extremely harsh conditions, such as fog (the first column) and
darkness (columns 2–3). The areas circled in purple specifically
indicate imperfect depth estimation results for low-visibility
and distant objects in the image (signs or houses), where our
approach cannot estimate the complete circled signs or houses
while the S2R-DepthNet cannot recover them. Due to the limited
image collection information under extremely harsh conditions
(fog or darkness, etc.), some objects are obscured by fog or
the outline of the object is unclear due to darkness. This limits
the proposed framework to separate depth-related information
and extract domain generalizable features, ultimately leading
to depth estimation failure. Extremely harsh conditions have
always been one of the unaddressed problems in the field of
depth estimation. Most current depth estimation methods, such
as S2R-DepthNet and our approach, cannot estimate the depth
under such conditions well. Future research can focus on depth
estimation for low-visibility images. More general depth esti-
mation results can be obtained by designing separation modules
under harsh conditions, or uniform image depth estimation
can be achieved after improving visibility through pre-image
processing.
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V. CONCLUSION

In this paper, we propose a novel domain generalizable depth
feature extraction network with adaptive guidance fusion, i.e.,
AGDF-Net, to more fully acquire essential depth features that are
domain generalizable at multi-scale feature levels. Our approach
can be well generalized to unseen real-world images with models
only trained on synthetic data. We separate the image into initial
depth and weak-related depth components with reconstruction
loss and contrary loss to efficiently extract useful information
for cross-domain generalizable depth estimation. The key is to
extract intensified depth features from initial depth features.
Therefore, an adaptive guidance fusion module is designed
to sufficiently reuse and intensify the extracted initial depth
features at multi-scale levels to get intensified depth features
that are domain generalizable. This module can further enhance
the depth related components and eliminate the disturbing com-
ponents. Therefore, with the extracted intensified depth features
that are domain generalizable, the gap bottleneck of the synthetic
domain to the real domain is broken and further narrowed. Our
AGDF-Net can be well applied to the various depth estimation
datasets and achieve state-of-the-art performance without using
any real-world dataset. The experiments using a small amount of
labeled real-world data in a semi-supervised setting also demon-
strate the superiority of our AGDF-Net over state-of-the-art
approaches. In the future, we would like to apply our AGDF-Net
to other pixel-level estimation tasks, such as stereo matching and
semantic segmentation, etc. Furthermore, another challenging
domain in monocular depth estimation is outdoor to indoor
domain generalization. In the future, we would like to apply
our AGDF-Net from outdoor to indoor domain generalization
to obtain the depth of field generalization abilities by designing
loss functions like [65] or other disentangle strategies.
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