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MFF-Net: Towards Efficient Monocular Depth
Completion With Multi-Modal Feature Fusion
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Abstract—Remarkable progress has been achieved by current
depth completion approaches, which produce dense depth maps
from sparse depth maps and corresponding color images. However,
the performances of these approaches are limited due to the insuf-
ficient feature extractions and fusions. In this work, we propose an
efficient multi-modal feature fusion based depth completion frame-
work (MFF-Net), which can efficiently extract and fuse features
with different modals in both encoding and decoding processes,
thus more depth details with better performance can be obtained.
In specific, the encoding process contains three branches where
different modals of features from both color and sparse depth input
can be extracted, and a multi-feature channel shuffle is utilized
to enhance these features thus features with better representation
abilities can be obtained. Meanwhile, the decoding process con-
tains two branches to sufficiently fuse the extracted multi-modal
features, and a multi-level weighted combination is employed to
further enhance and fuse features with different modals, thus
leading to more accurate and better refined depth maps. Extensive
experiments on different benchmarks demonstrate that we achieve
state-of-the-art among online methods. Meanwhile, we further
evaluate the predicted dense depth by RGB-D SLAM, which is
a commonly used downstream robotic perception task, and higher
accuracy on vehicle’s trajectory can be obtained in KITTI odom-
etry dataset, which demonstrates the high quality of our depth
prediction and the potential of improving the related downstream
tasks with depth completion results.

Index Terms—RGB-D perception, recognition.

I. INTRODUCTION

ECENTLY, researchers in many areas have taken depth as
key information, for it can provide complementary cues in
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Fig. 1. Comparison of depth completion results. Both DenseLiDAR [4] and
our approach use color image (a) and sparse LiDAR depth (b) to predict dense
depth map. In the zoomed area, (d) can get more details than (c), e.g. sharper
depth edges.

many tasks, including robotics, augmented reality, virtual reality
and SLAM [1], [2], [3]. High precision depth information in
centimeter-level accuracy can be obtained by LiDAR, which is
commonly used for depth acquisition, such as autonomous driv-
ing and robotics. However, due to the inherent characteristics,
depth information obtained by LiDAR is always sparsely dis-
tributed, which greatly limits the performance of LiDAR-based
applications. Therefore, the task of depth completion is drawing
more and more attention.

Feature fusion based approaches [5], [6], [7], [8] are com-
monly used for depth completion, which use color and sparse
depth information as input, and depth completion process can
be guided by color information. Various feature extraction and
fusion strategies are employed to effectively improve depth
completion performance. However, several problems exist. Most
of the current feature fusion based approaches directly input the
sparse depth map into the network for depth completion (named
one-stage task). However, [9] prove that direct convolution on
the sparse map can easily lead to suboptimal results, so [10],
[11] first interpolate the sparse map to get the intermediate
dense map, and then feed it to the network for refinement
(known as two-stage task). These methods usually include one
or two branches (early fusion or late fusion) for color and depth
feature extraction, resulting in insufficient depth and image
feature extraction. Moreover, the performance is limited due
to the inherent characteristics of sparse depth input. The feature
extraction of depth branch is insufficient, leading the obtained
dense depth maps to suffer edge blurring. Secondly, color and
depth features are extracted without information interchanging,
and color guidance is missing in the depth branch, which also
leads to insufficient depth feature extraction and depth details
losing. Besides, concatenation and add operations are commonly
used for color and depth feature fusion, and the lack of extraction
and screening of key features limits the representation abilities
of the fused features. Fig. 1 demonstrates the qualitative results
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of state-of-the-art approaches. In Fig. 1(c), the recovered depth
maps often suffer from blurred edges and details.

In this paper, we propose an efficient multi-modal feature
fusion based network, i.e., MFF-Net, which contains a sparse-
to-dense stage and a dense-to-fine stage. The sparse-to-dense
stage aims to obtain coarse dense depth maps by interpolating
the sparse depth maps with only a single convolution operation.
Then, the obtained coarse dense depth map and color image
are input to the dense-to-fine stage. Specifically, the dense-to-
fine stage consists of encoding and decoding processes. For
encoding, the multi-modal features are extracted from color
and coarse dense depth maps. A multi-feature channel shuffle
operation (MCS) is designed to fully mix the color and depth fea-
tures at multi-scale feature levels by interleaving these features
at the channel level. For decoding, the extracted multi-modal
features by encoding process are fused using two different
fusion branches, containing concatenate fusion and multi-level
weighted combination, then the features of these two decoders
are fused using weighted summation. Concatenate fusion is
the commonly used concatenation operation. The multi-level
weighted combination operation (MLC) is proposed to fuse
the features obtained by the encoding process to enhance and
combine the multi-modal features with the learned weights,
which can further effectively refine and fuse the color and depth
features. With the operations proposed above, more effective
features can be extracted, thus, more accurate results can be
expected. As demonstrated in Fig. 1(d), depth maps obtained by
our approach are with sharper boundaries and more depth details
can be recovered.

The main contributions of the paper can be summarized as:

® We propose an efficient multi-modal feature fusion based
framework, i.e., MFF-Net, which contains sparse-to-dense
and dense-to-fine stages. Sparse-to-dense stage aims to
obtain coarse dense depth maps with a single convolution
operation, and the dense-to-fine stage further refines the
coarse dense depth maps with multi-modal feature extrac-
tion and fusion strategies.

e A multi-feature channel shuffle (M C\S) extraction op-
eration is utilized for effective color and depth feature
extraction, which effectively fuses the features of color
and depth information at the multi-scale feature levels, and
significantly improves the final performance.

¢ A multi-level weighted fusion (A/ LC) operation is utilized
to further fuse the features obtained by M C'S' to enhance
and combine the multi-modal features with the learned
weights, which further refine and fuse the features extracted
from color and depth information.

e Extensive experiments on different benchmarks prove
that we achieve state-of-the-art among online methods.
Compared to SoTA non-online work [12], our approach
achieves competitive performance but runs more than 5x
faster. Further RGB-D SLAM experiment demonstrates the
high quality of our predicted depth and the potential of
improving the downstream tasks with depth completion.

II. RELATED WORK

A. Depth Completion

Recovering the dense depth from the sparse depth is divided
into two types of methods. One uses only the sparse depth as
input to achieve depth completion [13], [14], and the other uses

both the sparse depth and the monocular image as input [15],
[16]. In recent years, most approaches use both sparse depth and
image as network input, which involves the fusion of different
information. The current mainstream depth completion fusion
approaches of depth and image can be divided into signal level
fusion and feature level fusion.

For signal level fusion, [17], [18] directly stack the sparse
depth and image before feeding into the network, which fuses
them at the signal level. Some approaches [19], [20], [21] add
various post-processing operations to further improve the depth
completion performance. [19], [20] present a novel convolu-
tional spatial propagation network (CSPN) for learning the affin-
ity matrix of depth prediction. [21] proposes a non-local spatial
propagation network (NLSPN) to estimate non-local neighbors
of each pixel. All of the above approaches directly integrate
depth and image at the signal level, and lack the integration and
mutual help of semantics and feature levels.

For feature level fusion, the [4], [15] approaches use two
independent encoders to extract depth and image features, and
integrates the extracted features into the decoder to complete
the feature-level fusion. [16] makes the depth feature guide
the image to get the dense depth by changing the convolution
kernel. [22] reports a recover architecture to fuse the features
in multi-level. The above methods merge depth and image at
the macro-level, lacking the sufficient fusion at the micro-level
such as the channel level. In this work, the extracted multi-modal
features exchange information at the channel level to make the
fusion more sufficient and get better results.

When sparse depth is input to networks directly, convolution
on sparse map can easily lead to suboptimal results [9]. To solve
this problem, some approaches [11], [23] first fill the sparse
depth with non-zero values, then input the filled depth into the
network. [11] fills the sparse depth with nearest-neighbor inter-
polation. [24] expands the depth value from sparse cues while
estimating the confidence of the expanded region. To improve the
filling performance and the running speed of the model while
reducing the network parameters as much as possible, in this
work, we use a simple and efficient convolution layer to fill
the sparse depth coarsely, then optimize the subsequent depth
completion network.

B. Feature Fusion

Feature fusion includes homogenous feature fusion, such
as image fusion, and heterogeneous feature fusion, such as
multi-modal feature fusion. For image fusion, images from
different sensors are fused using different strategies, such as
parallax attention based images pairs feature fusion [25], image
features addition fusion and L1-norm and soft-max fusion [26].
For multi-modal feature fusion, some methods consider the
inter-modality and intra-modality correlation or design a new
search space tailored for the multi-modal fusion [27]. These
methods aim to design different rational ways to fuse multi-
modal features better. The common points of image fusion
and multi-modal color depth feature fusion are to merge two
different maps into a new map using addition, concatenation,
etc. In this work, the multi-modal features are fused at the
channel level to obtain fully mixed information in the encoder.
An attention-based multi-modal color and depth feature fusion
is designed in the decoder, and the extracted features are fused
using these new strategies to get more efficient depth completion
results.
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Overview of our framework, which contains two stages: sparse-to-dense stage (blue dotted area) and dense-to-fine stage (orange dotted area). A simple

convolution layer is used in sparse-to-dense stage, and dense-to-fine stage contains encoding and decoding processes. Multi-modal features extraction and fusion

are utilized in sparse-to-dense and dense-to-fine stages.

III. METHOD

Different from previous approaches, we define depth com-
pletion as a two-stage task, including a sparse-to-dense stage
and a dense-to-fine stage. Fig. 2 demonstrates the pipeline
of our approach. First, the dense depth map is obtained by
the sparse-to-dense stage with a single convolution operation.
Second, using the dense depth map as input, the refined dense
depth map is recovered by the dense-to-fine stage. In specific,
a multi-feature channel shuffle (M C'S) extraction operation,
a multi-level weighted combination (M LC') operation and a
residual learning strategy are implemented in the dense-to-fine
stage. Moreover, using M C'S extraction operation, different
modal of features with better representative abilities from color
encoding, color decoding and depth multi-modal features can be
effectively extracted. Meanwhile, with M LC' operation, differ-
ent multi-modal features obtained from M C'S can be sufficiently
fused, to obtain better depth completion results. Finally, the
residual learning strategy further improves the quality of depth
completion by learning residual information.

A. Sparse-to-Dense

Uhrig et al.,[9] proves that direct convolution on the sparse
map can easily lead to suboptimal results. Therefore, in the
sparse-to-dense stage, many handcrafted ways first interpolate
the sparse depth map to the dense, such as nearest-neighbor
and bilinear interpolations[10], [11]. [23] also proves that deep
convolutional neural network (DCNN) based approaches can
get better dense depth than handcrafted ways. In this paper, in
order to improve the filling performance and improve the running
speed of the model while reducing the network parameters as
much as possible, we use a single convolution layer for dense
depth input acquisition. The input is a sparse depth map, and
the obtained dense depth map d*? is input to the subsequent
dense-to-fine stage.

B. Dense-to-Fine

The inputs of the dense-to-fine stage are the color image and
the corresponding dense depth map obtained by the sparse-
to-dense stage, which provide consecutive information in the
training process. The dense-to-fine stage contains encoding and
decoding processes. As shown in Fig. 2, the encoding pro-
cess means the multi-modal feature extraction, which has three
branches that different modal of features are extracted. Note that
to sufficiently extract features from a color image, two branches
are used for color feature extraction. Meanwhile, in the encoding
process, inspired by [28], multi-feature channel shuffle (M C'S)
is exploited to enhance the extracted features, which effectively
fuse the multi-modal features at the multi-scale feature levels.
The M C'S operation guarantees that the multi-modal features
extracted from depth and color images are exchanged and mixed
at the channel level sufficiently, thus, better features can be
obtained. The decoding process means the multi-modal feature
fusion, which contains two decoding branches: concatenate
fusion and multi-level weighted combination (M LC)), to suffi-
ciently fuse the extracted multi-modal features. Note that M LC
is employed to further fuse features with different modalities
effectively and sufficiently.

1) Encoding: Multi-Modal Feature Extraction: [18], [20]
propose to extract color and depth features with commonly used
backbones, such as ResNet [29], etc. In these strategies, a single
feature extractor is usually used to extract features by stacking
the color image and sparse depth directly, and the information
from different modalities is performed with the same feature
extraction. Limited information exchanges are contained in these
processes, and it is impossible to extract modal-specific features
to a certain extent. Meanwhile, [15] uses two feature extrac-
tors to extract features from the color image and sparse depth
separately, then combine these features using concatenate or
add operations in the decoding process. However, these feature
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Fig. 3.

(b) Multi-level Weighted Combination

(a) The proposed Multi-feature Channel shuffle (M C'S) operation. The blue fj‘.i, yellow fjCe and orange fjc‘i denote depth, color encoding and color

decoding features, respectively. The M C'S obtains new features f]‘.i, f jce and ffd by feature mixing in channel level, and returns to their respective convolutions

for the next step. (b) The proposed Multi-level Weighted Combination () LC') operation. The blue f jl, yellow f]’ and orange f ]k features are enhanced and fused
by the proposed operation, and get the fused feature f]‘?m for the next multi-modal feature fusion process.

extraction processes cannot take advantage of the consistency of
color and depth information, i.e., feature information at the same
scale level. Therefore, features of different modalities cannot
interact at the same scale level, and more representative features
cannot be obtained. Since more representative features are not
available, the performances of these methods are limited.

Inspired by [28], to make full use of the multi-modal features
from the color image and depth map, a multi-feature channel
shuffle feature extraction strategy (M C'S) is utilized in the
dense-to-fine stage. [30] extracts the two branch color and depth
features with channel shuffle operation. To further enhance
the multi-modal feature extraction, in this paper, we use three
branches in the encoding process to extract the multi-modal
features from color encoding, color decoding and depth encod-
ing features. Then M C'S is used to these three branches with
different modalities at multi-scale channel levels.

Multi-feature Channel Shuffle (M C'S): Fig. 3(a) shows the
process of multi-feature channel shuffle operation. Given the
depth encoding feature of the j-th convolution block, i.e., f]d =

{fd e f d } and the color encoding and decoding features are
fee=As50 . fio ) and Si={fed, ..., 5} respectively,
where m 1s the number of channels The corresponding outputs
after M C'S can be obtained as follows:

fd ce rcd d ce cd
]1’ Judao o djmo Jjmo Jjm [0
fce o ce ed d ce ed
Jm+1’ Jmpr? I’ ]ZTm’ ]%’ Jam )
fcd ce cd d ce cd (1)
]2m+1 j2773”4+1’ j%+1’.'.’ Im? Y Im 7 Im )

where ff, ffe and f;d denote depth encoding, color encoding
and color decoding features after M C'S operation.

After the features are mixed by M C'S, the enhanced multi-
modal feature maps f‘»i, fjce and fj‘?d are generated, which are
the input of the (j + 1)-th convolution block.

2) Decoding. Multi-Modal Feature Fusion: This strategy is
used in the decoding process with the features obtained by
the encoding process as input. The decoding process has two
decoders, containing concatenate fusion decoder and multi-level
weighted combination decoder. For concatenate fusion decoder,
the commonly used concatenation in decoder [16] is used here to
fuse the features obtained by multi-feature channel shuffle. For
the multi-level weighted combination decoder, inspired by [31],
in order to fuse the multi-modal features sufficiently, we pro-
pose an effective multi-level weighted combination operation

(M LC) to further fuse the features obtained by multi-feature
channel shuffle.

Specifically, in the decoding process, two up-sampling feature
fusion U and U™ are exploited to fuse the multi-modal
features in different ways, where U°** means the concatenate
fusion decoder, U™ means the multi-level weighted combina-
tion decoder. d°** and d"™'¢ are the fined residual depth maps
generated from U and U™, respectively. f°* and f™!¢
are the multi-scale features in U°* and U™, where f°* =
{fgat ... featy, fmle = {fmle . fmieY n is the number of
up-sample blocks in U and U™, The decoding process can
be formulated as follows:

feat = Ut (Cat(f2, Ce,ffid)%

fet = Ut (Cat(fityy, F2 fo, f5),

d°* = CB(Cat( “”,fo»,

e = Umie(MLC, (f2, 1)),

frle = Upte(Cat(£71%), MLC;( 12 F5),
dmie — CB(fmie), (2)

where j € [1,n — 1], Cat means concatenation operation, C' B
means ConvBlock layer, U = {Ufet .. UL}, U™e =
{upte, ..., umey, MLC = {MLCy, ..., MLC,}.
Multi-level Weighted Combination (M LC'): MLC aims to
solve the problem of insufficient feature fusion. Fig. 3(b) demon-
strates the process of the multi-level weighted combination
operation. The M LC' is exploited to enhance and combine the
multi-modal features with learned weights. In specific, the inputs
of the M LC are the multi-modal features obtained from the
encoding process, containing depth encoding, color encoding
and color decoding features. The output of the M LC'is defined
as f, where fo" = {ff™, ..., fo™}. The M LC operation is

defined as:
@(Conu?)’(fz)) ©) \I/(Conv3’(fz)),z € [1, k]
uj = C’at(uj, ce uf),

wj = Avg(u;) + Var(u;),
U (Convl*(w;)),

om __ 1 1

i
w; =

—&-wf@u;‘?, 3)
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where j € [1,n], n is the number of convolution blocks in
U™ which set as 5. © and ¥ mean Sigmoid and PReLU
activate functions. Conv3® and Conv1? are the 3x3 and 1x 1
convolution layers of the i-th feature. ® denotes element-wise
product. Cat, Avg and Var denote concatenate, average and
variance operations. In our setting,

L= e Y g e [Lin — 1],

f=A{rd feed, 4)

where i € [1,k], k = 2,3.

3) Residual Learning: In the dense-to-fine stage, given the
depth maps obtained by the decoding process are d°° and d"°,
where d°° is the summation of the residual depth map d°** and
the result of sparse-to-dense stage d*?, d"° is the summation of
the d™!¢ and d*?. The final depth d° of the dense-to-fine stage
can be obtained by the weighted summation of d°° and d™°. The
process can be formulated as:

4 = dcat + de, dme — dmlc + de,
d°=a-d°+(1—a)-d™, 5)

where v € [0, 1] is a learnable parameter.

C. Loss Function

The proposed two-stage network is trained in an end-to-end
manner, and smooth L1 loss [32] and L2 loss are used here.
The smooth L1 loss is more robust to outliers, which can reduce
the appearance of outliers in the overall depth range. L2 loss is
differentiable everywhere, and as the error decreases, the gra-
dient also decreases, which is conducive to faster convergence.
Therefore, we combine the smooth L1 loss and L2 loss, and the
total loss function is defined as:

SL1 :51'SLl(doydgt)+52'SL1(dcoadgt)-l-ﬂg'SLl(dmO»dgt)
L2 = By-||d°—d?"||o+ B2 || —d?"||o+ B3 [|d™° —d?" ||,
Loss = SL1 + L2, (6)

where d9! is the depth map ground truth, 31 = Ba=33=1. 511
is smooth L1 loss [32], || - ||2 denotes mean-square error loss.

IV. EXPERIMENTS

In this section, we evaluate the performance of our approach
on diverse publicly available datasets, including the KITTI and
NYUDv?2 datasets. And further experiments on RGB-D SLAM
also verify the high quality of our depth prediction.

A. Datasets and Implementation Details

Outdoor: The KITTI dataset [33] is a large outdoor au-
tonomous driving dataset. We use the KITTI depth completion
dataset for evaluation, where the training set contains 85 k
frames, the selected validation set contains 1 k, and the test set
contains 1 k. Following [16], for training and testing, the color
and depth images are bottom-cropped to 256x 1216.

Indoor: The NYUDv2 [34] dataset consists of video se-
quences of various indoor scenes recorded by the RGB-D cam-
eras of Microsoft Kinect. A subset of 50 K images from the
official training split is utilized as training data. The evaluation
set contains 654 official labeled images. Following [16], the
original frames 480x 640 are half down-sampled to 256 <320

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 2, FEBRUARY 2023

TABLE I
PERFORMANCE COMPARISON ON KITTI BENCHMARK RANKED BY THE
RMSE (IN MM)

Method Online | RMSE] MAE] iRMSE iMAE |[FPST FPS?
B-ADT [5] No |148036 29872 4.16 123 | 83 -
CSPN [20] No |[1019.64 27946 293 115 ]| 1.0 -
CSPN++ [19] No | 743.69 209.28 2.07 090 | 50 -
NLSPN [21] No | 741.68 19959 199 084 | 45 6.3
GuideNet [16] No | 736.24 21883 225 099 | 7.1 87
RigNet [22] No | 712.66 20325 2.08 090 | 50 -
SemAttNet [12] | No | 709.41 20549 2.03 090 | 50 2.8
DySPN [36] No | 709.12 19271 188 0.82 | 63 -
PSM [37] Yes [1239.84 29830 3.76 1.21 | 167 -
STD(gd) [18] Yes | 814.73 24995 280 121 | 125 -
GAENet [38] Yes | 773.90 23129 229 108 | 200 -
ABCD [7] Yes | 764.61 220.86 229 097 | 403 -
DeepLiDAR [15]| Yes | 758.38 22650 2.56 1.15 | 143 14.9
DenseLiDAR [4] | Yes | 755.41 214.13 2.25 0.96 | 50.0 -
MDANet [39] Yes | 738.23 21499 212 0.99 | 333 25.1
FCFR-Net [30] Yes | 735.81 217.15 220 0.98 | 10.0 10.0
PENet [35] Yes | 730.98 210.55 2.17 094 | 313 256
Ours Yes | 719.85 208.11 2.21 094 | 19.6 149

for training. The prediction of the network is center-cropped to
228%304 during evaluation for a fair comparison.

Implementaion Details: For both indoor and outdoor scenes,
the sparse-to-dense and dense-to-fine stages are trained in an
end-to-end manner. The proposed model is trained on NVIDIA
V100 GPU. We use Adam optimizer with 5; = 0.9, 2 = 0.999.
The weight decay is 0.05. The batch size is set to 8. The initial
learning rate is 1e~® and decreases by 0.5 every 5 epochs. The
total model is trained for 20 epochs, which takes about 70 h to
train on the KITTT and 12 h on the NYUDv2.

B. Evaluation on Outdoor Dataset

Table I shows the quantitative comparison and runtime of our
method and baselines on the KITTI depth completion bench-
mark. Follow [4], [35], FPS! is quoted from the leaderboard.
For a fair comparison, FPS? is tested on our single 1080Ti GPU
with source codes released by the authors. Since the sampling
frequency of most LiDARs is 10 Hz, we refer to methods
faster than 10 Hz as online methods. Our method achieves
the state-of-the-art (SoTA) results among all online methods,
where the RMSE error drops from 730.98 to 719.85. Compared
to SoTA non-online work DySPN [36] and SemAttNet [12],
our method achieves competitive results but runs more than
3x faster for FPS! and more than 5x faster for FPS?, getting
SoTA performance under the online conditions and creating
more possibilities for downstream tasks. In Fig. 4, the qualitative
comparison with typically online methods is also consistent
with the quantitative analysis. Our results have more complete
boundaries and object details, which proves that the multi-modal
feature fusion is more helpful for efficient depth completion.

C. Evaluation on Indoor Dataset

Table II is the quantitative comparison result on the indoor
NYUDv2 dataset. Following CSPN++ [19], 500 random points
are sampled as sparse depth input. The results show that when
the random sampling points are 500, our approach is better
than other SOTA methods in almost all metrics. Compared with
CSPN [20] and DeepLiDAR [15], the fusion of color image
and depth at the multi-modal feature level is significantly better
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Fig. 4.

Qualitative comparison on KITTI test set. (a) Image, (b) Sparse input, (c) DeepLiDAR [15], (d) STD(gd) [18], (e) Ours. The results are from the KITTI

depth completion leaderboard, where depth images are colorized along with depth range.

TABLE II
PERFORMANCE COMPARISON ON NYUDV2 DATASET. ALL METHODS USE 500
SAMPLED DEPTH POINTS AS THE SPARSE INPUT

Method RMSE (m) REL () 615 0 052 01053
STD [40] 0230 0044 O97.1 994 998
STD(gd) [18] 0123 0026 99.1 999 100.0
CSPN [20] 0.117 0016 992 999 100.0
CSPN++ [19] 0.116 - - - -

DeepLiDAR [15]| 0.115  0.022  99.3  99.9 100.0
FCFR-Net [30] 0.106 0015 995 999 100.0
PRNet [17] 0104 0014 994 999 100.0
Ours 0.100 0015 995 999 100.0

s

L::,M.,

L
ml aln

U e e
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Qualitative comparison on NYUDv2. (a) Color image, (b) Dilated

@ ~(b)

Fig. 5.
sparse input for visualization, (c) STD(gd) [18], (d) Ours result, (¢) Ground
Truth. The dotted box areas show the recovery of object details, which (d) is
able to capture more complete chair armrest details and full pillow edges than

(©).

than that at the signal level, proving the effectiveness of the
multi-modal feature fusion in the indoor scenario. The quali-
tative comparison result is shown in Fig. 5. The visualization
results show that our approach can capture more details of the
edge structure and depth of the object. Specifically, our approach
(d) is able to capture more complete chair armrest details and
full pillow edges than STD(gd) (c), which proves the superiority
of our approach in indoor scenes.

D. Ablation Studies

For fast training, the depth maps are sorted in time series
and uniformly sampled 1/4 of the data as mini-training data for
ablation studies. Table III shows the results of ablation studies,
containing sparse or dense input (S/D), residual learning (R),
the number of extractors (), the number of decoders (D),
multi-feature channel shuffle (M C'S), multi-level weighted

TABLE IIT
ABLATION STUDY ON KITTI DEPTH COMPLETION SELECTED VALIDATION
DATASET
Name |S/D R E D MCS MLC WS Loss |RMSE
S S 1 1 L2+SL1 | 928.26
DI D 1 1 L2+SL1 | 909.68
DR D v 1 1 L2+SL1 | 860.66
D2E D v 2 1 L2+SL1 | 841.51
D3E D v 3 1 L2+SL1 | 840.71
D2ECS| D Vv 2 1 v L2+SL1 | 823.34
D3ECS| D v 3 1 v L2+SL1 | 819.32
D2D D v 3 2 v L2+SL1 | 815.98
DMLC| D v 3 2 v v L2+SL1 | 805.92
DL2 D v 3 2 v v v L2 809.49
DL1L2 | D v 3 2 v v v' L2+L1 | 807.53
D2CM | D v 2 2 (CS v v’ L2+SL1 | 811.85
ALL D v 3 2 v v v L2+SL1 | 803.25

S/D: sparse/dense input. R: residual learning, E: extractor, D: decoder.
MCS: multi-feature channel shuffle. MLC: multi-level weighted combination.
WS: weighted summation. L2: 12 loss. SL1: smooth 11 loss.

combination (M LC') and different loss functions (L1, L2 and
smooth L1 loss). As shown in Table III, the performance is
improved when adding each module to the network, proving the
effectiveness of the proposed module and method. Specifically,
the final RMSE performance is 13.5% better than that of the
baseline method in the first line. Lines SI and DI show the
results (928.26 mm and 909.68 mm) of sparse and dense
depth input under the same framework. This indicates that the
consecutive information in dense depth can reduce the loss of
the valid values during convolution. Lines D3E and D3ECS
show the results (840.71 mm and 819.32 mm) without and with
MC'S. The results demonstrate that sufficient channel exchange
between depth and image features with different modalities
can improve the fusion and representation capabilities of
the multiple types of information and play a role in mutual
guidance. Lines D2D and DM LC compare the difference
(815.98 mm and 805.92 mm) before and after adding the
MLC. This shows that the proposed M LC' can enhance and
combine the multi-modal features at multiple levels to obtain
new fusion features, which ultimately help to obtain better
depth completion results. Lines ALL and D2CM show a
comparison (803.25 mm and 811.85 mm) of our approach and
replacing M C'S with “channel shuffle” in [30], proving that
multi-modal feature shuffle can make feature extraction more
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TABLE IV
QUANTATIVE RESULTS ON KITTI ODOMETRY SEQUENCE

trel/Trel 00 01 02 03 04 05 06 07 08 09 10
Monocular (M) 0.80/1.32 - - 0.49/0.37 0.70/0.25 0.88/0.90 1.10/0.42 0.89/0.23 3.06/1.41 - 1.01/9.16
Stereo (S) 0.71/0.25 1.48/0.21 0.80/0.26 0.80/0.20 0.47/0.15 0.39/0.16 0.47/0.15 0.49/0.28 1.03/0.30 0.89/0.26 0.66/0.30
M+DeepLiDARD [15] | 0.83/0.39 7.41/2.43 1.00/0.37 1.25/0.39 3.83/3.18 1.30/0.36 3.52/1.08 1.08/0.45 2.23/0.60 2.44/0.47 2.83/1.01
M+DenseLiDARD [4] | 0.81/0.38 45.70/9.24 1.03/0.39 1.24/0.37 1.17/1.29 0.51/0.32 0.57/0.39 0.46/0.38 1.33/0.48 0.94/0.35 0.89/0.53
M+OursD 0.69/0.30 10.79/3.08 0.76/0.28 0.95/0.33 1.51/1.35 0.42/0.24 0.45/0.25 0.41/0.32 1.25/0.41 0.80/0.30 0.66/0.35
‘-> denotes tracking failure. ¢,,; is in %, 7,,; is in deg/100 m.
N P ooy =
= < | <

—— STD(gd)
—e— Ours

1400

1200

RMSE [mm]

1000
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Fig. 6. Different input LIDAR point density ratio performances of different
methods in RMSE (mm). The performance of our method, STD(gd) [18] and
the GuideNet [16] degrades more gently compared to that of NConv-CNN [41].

adequate, thus improving the final result. To further prove the
effectiveness of the single convolution layer in the first stage, we
make a comparison that our method with convolution operation
for sparse depth map interpolation outperforms our methods
with the nearest-neighbor for sparse depth map interpolation
(803.25 mm v.s. 826.17 mm), which proves the effectiveness.

E. Robustness in Input Point Density

The sparse input of the KITTI dataset is the collected 64-line
Velodyne LiDAR. In more practical applications, the inputs have
32-line, 16-line or even more sparse LiIDAR. To demonstrate the
performance robustness of our approach under different input
point densities, we compare the performance of two state-of-
the-art methods and ours under the same setting. We evaluate
the performance differences of these different approaches on
the KITTI dataset with different input densities, and change
the density of the LiDAR input on the KITTI validation set
(1 k images) to analyze the effect of sparsity on the final
results. Specifically, we divide the LiDAR input from KITTI
into 5 density levels, where different density levels indicate
different numbers of LiDAR points input into the network.
Following [16], we randomly sample the original LiDAR points
according to the given density ratio, and input the sampled
points into the network, where the density ratios are 0.4, 0.6,
0.8 and 1.0. All methods are trained from scratch on the KITTI
dataset. In the evaluation, we only change the density ratio of
the input to the model trained with 64-line LiDAR. Fig. 6 shows
the RMSE performance of Nconv-CNN [41], STD(gd) [18],
GuideNet [16] and ours under different density ratios. As the
density ratio decreases, the performance of Nconv-CNN drops
sharply, and the performance gap between GuideNet and ours
gradually increases. What’s more, our performance consistently
outperforms the other methods on all density ratios, proving the
superiority and robustness of our method with different input
density ratios.

FE. Application in RGB-D SLAM

To further evaluate the quality of the depth maps produced
by our method, we apply the depth maps to a common robotics

i
400 L — / § 300
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0
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Stereo — RGB+DeepLiDAR — RGB+OursDepth

=+ GroundTruth — Mono(scale aligned)

Fig. 7. Estimated trajectories of KITTI 00 and 05 sequences.

task: RGB-D SLAM. Following DenseLiDAR [4], we choose
ORB-SLAM?2 [42] as the evaluation baseline, which is a popular
real-time SLAM library for Monocular, Stereo and RGB-D
cameras. We evaluate our method on the KITTI odometry
dataset, where for RGB-D SLAM, we input the depth completed
by ours and other state-of-the-art methods (DeepLiDAR [15]
and DenseLiDAR [4]) into the ORB-SLAM?2 to compare the
estimation results. We keep the same settings as DenseLiDAR,
run the KITTI odometry 00-10 sequences 25 times, and take the
average t,.;(%) and R,..;(deg/100m) errors as the final results
shown in Table IV.

Because the depth value of each ORB feature point is nec-
essary for trajectory tracking in RGB-D mode, study [4] has
shown that if ‘D’ is a sparse depth map, it will fail. As shown
in Table IV, when ‘D’ is a dense depth map completed with a
sparse depth map, excellent positioning results can be obtained.
The accuracy of the dense depth and the positioning results
obtained by ORB-SLAM?2 are positively correlated as a whole.
Specifically, except for the 01 sequence, our method can obtain
robust results on different sequences, outperform the monocular
method and other RGB-D methods using depths from existing
depth completion methods, and is comparable to the stereo
method. The 01 sequence is a challenging highway scene, con-
taining a lot of weakly textured areas such as the sky, and having
fewer structural objects. Therefore, due to the limited accuracy,
the dense depths obtained by the depth completion methods are
not as accurate as the stereo method after inputting them into
the RGB-D SLAM. The qualitative trajectory comparison on
selected 00 and 05 sequences are shown in Fig. 7, our method is
much closer to ground truth in the overall trajectory. Specifically,
in the enlarged dashed area, our trajectory is almost identical
to the ground truth trajectory compared with other methods,
proving the effectiveness of our method on the downstream tasks
like SLAM.

V. CONCLUSION

In this paper, we propose a multi-modal feature fusion based
framework (MFF-Net) for depth completion, which consists of
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two stages, i.e., a sparse-to-dense stage and a dense-to-fine stage.
The sparse-to-dense stage fills the sparse depth into a dense
depth, which provides a consecutive dense input depth map to the
dense-to-fine stage, thereby improving the performance of depth
completion. Meanwhile, in the dense-to-fine stage, in order to
fuse the depth and color information and obtain more useful
multi-modal features for depth completion in both encoding and
decoding processes, we propose multi-feature channel shuffle
and multi-level weighted combination operations, thus better
depth completion results with more depth details and sharper
boundaries can be expected. Extensive experiments across in-
door and outdoor benchmarks demonstrate the superiority of our
approach over state-of-the-art online approaches. And further
experiment on RGB-D SLAM not only demonstrates the high
quality of our depth prediction, but also proves the potential of
improving the related downstream tasks with depth completion
results.
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