
ORIGINAL ARTICLE

Expert demonstrations guide reward decomposition for multi-agent
cooperation

Liu Weiwei1,2,4 • Jing Wei2 • Liu Shanqi1 • Ruan Yudi1 • Zhang Kexin1 • Yang Jiang3 • Liu Yong4

Received: 7 December 2022 / Accepted: 12 June 2023 / Published online: 10 July 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Humans are able to achieve good teamwork through collaboration, since the contributions of the actions from human team

members are properly understood by each individual. Therefore, reasonable credit assignment is crucial for multi-agent

cooperation. Although existing work uses value decomposition algorithms to mitigate the credit assignment problem, since

they decompose the global value function at multi-agents’ local value function level, the overall evaluation of the value

function can easily lead to approximation errors. Moreover, such strategies are vulnerable to sparse reward scenarios. In

this paper, we propose to use expert demonstrations to guide the team reward decomposition at each time step, rather than

value decomposition. The proposed method computes the reward ratio of each agent according to the similarity between

the state-action pair of the agent and the expert demonstrations. In addition, under this setting, each agent can indepen-

dently train its value function and evaluate its behavior, which makes the algorithm highly robust to team rewards.

Moreover, the proposed method constrains the policy to collect data with similar distribution to the expert data during the

exploration, which makes policy update more robust. We conduct extensive experiments to validate our proposed method

in various MARL environments, the results show that our algorithm outperforms the state-of-the-art algorithms in most

scenarios; our method is robust to various reward functions; and the trajectories by our policy is closer to that of the expert

policy.

Keywords Multi-agent reinforcement learning � Expert demonstrations � Multi-agent systems � Reward decomposition �
Inverse reinforcement learning

1 Introduction

Cooperative multi-agent reinforcement learning (MARL)

[1] is widely used for multi-agent systems (MAS) on col-

laborative tasks [2, 3]. Existing cooperative MARL

algorithms often use only a single team reward to evaluate

the actions of the agents. However, since all agents get the

same global team reward, the MARL algorithms may fail

to evaluate the agents’ behaviors properly, and update their

policies incorrectly. Therefore, the key challenge to pro-

mote effective cooperation in MAS is correctly assigning

rewards to each agent, which is known as the multi-agent

credit assignment problem [4].

Existing work proposes various value decomposition

methods to solve the multi-agent credit assignment prob-

lem. As shown in Fig. 1, implicit value decomposition

(IVD) [5] evaluates actions of a single agent using a global

evaluation network trained by global state-action pairs,

which prompts the evaluation of the agents’ contribution to

the team. In addition, as shown in Fig. 1b, VDN [6] directly

performs the explicit value decomposition (EVD) opera-

tion by a summation of the local value function, which

simply maps the single-agent value function to the team

& Liu Yong

yongliu@iipc.zju.edu.cn

1 Huzhou Institute of Zhejiang University, Huzhou 313002,

China

2 Department of Autonomous Driving Lab, Alibaba DAMO

Academy, Hangzhou, China

3 China Research and Development Academy of Machinery

Equipment, Beijing, China

4 The Advanced Perception on Robotics and Intelligent

Learning Lab, College of Control Science and Enginneering,

Zhejiang University, Hangzhou, China

123

Neural Computing and Applications (2023) 35:19847–19863
https://doi.org/10.1007/s00521-023-08785-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-2496-7748
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08785-6&domain=pdf
https://doi.org/10.1007/s00521-023-08785-6

value function. VDN often fails to reflect the nonlinear

contribution made by each agent to the team. Subsequently,

QMIX [7] uses a neural network to nonlinearly map a

global value function from the local value function of each

agent. However, the global state is still required as the

auxiliary input for QMIX.

Agents share the same reward function, leading them to

use the same reward signal to evaluate the agents’ behav-

ior, even if they vary greatly. The original purpose of value

decomposition is to correctly evaluate the agent’s policy at

the value function level. Although the aforementioned

value decomposition methods achieve good performance

on some tasks, they still suffer from several shortcomings.

First, the individual agent still cannot obtain the reward

signal of a single-step state-action pair with existing

algorithms. In other words, the decomposed local value

function only averagely evaluates the agent behavior,

which may trap the algorithm in a local optimum [7, 8].

Second, EVD is difficult to train the algorithm due to its

many constraints and difficult calculations [9]. Third, the

policies obtained by the value decomposition algorithms do

not consider the gap with the real-world data, which may

lead to difficulty in generalization [9, 10].

Similar to the inverse reinforcement learning algorithm

[11, 12], we explore the guiding role of the expert policy in

rewards and propose a novel multi-agent credit assignment

method. Precisely, the similarity between the agent and the

expert policies is measured by the concept of occupancy

measure [13]. The higher the similarity, the higher the

reward, and vice versa. Decompose team rewards through

expert demonstrations, reward each agent at each time step,

let them accurately evaluate the value of their state actions,

and no longer need to decompose the global value function.

Our main contributions are as follows:

• First, to the best of our knowledge, this is the first time

to use expert demonstrations to decompose the team

reward function at each time step, and to solve the

credit assignment problem from the reward function

level, rather than value function level.

• Second, the algorithm enables the agent to have a high

ability to explore the environment, making it robust to

the reward function. Since the expert demonstration

guides the reward decomposition, even when the

reward is sparse or the task is difficult, the agent still

performs actions more similar to the expert behavior,

allowing it to explore efficiently. This reduces the

difficulty of RL reward setting and performs outstand-

ingly under challenging tasks.

• Third, the distribution of the trajectories collected by

our policy is similar to that of expert demonstrations,

because experts assign higher rewards to similar agent

behaviors, guiding agents to imitate experts. This can

guide the agent to produce realistic behavior when the

expert demonstrations come from the real world.

Furthermore, we also conduct extensive experiments

to validate the algorithm and reach the state-of-the-art

(SOTA) level.

2 Related work

It is intuitive to directly extend the single-agent algorithms

[14, 15] to the multi-agent collaborative tasks for MAS. In

such a setting, each agent is controlled by a neural network

model and collects samples to train the model. Although

these algorithms perform well in some environments [16]

for fully cooperative tasks [17], they do not perform value

decomposition [6] operations and rely only on team

rewards to update the policies, which may lead to credit

Fig. 1 Two frameworks of

value decomposition algorithm

19848 Neural Computing and Applications (2023) 35:19847–19863

123

assignment problems [18]. Additionally, these methods do

not consider the mutual interference among the actions of

each agent (non-stationarity of the multi-agent environ-

ment), so the policies trained in this setting are difficult to

converge in some scenarios [19].

Many MARL algorithms have been proposed to allevi-

ate the non-stationarity of the multi-agent environment and

solve the credit assignment problem. We can classify

existing MARL methods into two categories according to

their approach to training the agents’ local action-value

function: explicit and implicit value decomposition (EVD

and IVD). It is worth noting that these methods use cen-

tralized training [20] to address the non-stationarity prob-

lem in multi-agent environments.

2.1 Explicit value decomposition

For the credit assignment problem, EVD decomposes the

joint value function of the multi-agent system into a

specific combination of individual action-value functions

through certain constraints. VDN [6] centrally trains the

joint value function, which is equal to the sum of the local

value functions of each agent, realizes value decomposi-

tion, and alleviates the multi-agent credit assignment

problem. However, the simple summation limits the local

value function’s ability to evaluate the state-action pros and

cons of the agent. It is also unable to represent complicated

relationships between heterogeneous agents. QMIX [7]

extends this simple summation to a nonlinear monotonic

functions. However, it is still challenging to accurately

approximate the global value function directly according to

the local value function. MAVEN [21] introduces a latent

space of hierarchical control, and the shared latent variable

controls the action of each agent. This variable is con-

trolled by a hierarchical policy, which improves the

exploration ability of the algorithm. QTRAN [22] uses the

summation method to obtain the approximate value of the

joint value function and then fits the difference between the

approximate value and the actual joint value function.

2.2 Implicit value decomposition

IVD centrally trains the global value network correspond-

ing to each agent and evaluates their state action. Since the

global value function of each agent only evaluates its

policy, at this time, the global information belongs to the

auxiliary input of the value network to help the agent to act

based on the global situation. We think that this global

action implicitly acquires its local value function, enabling

value decomposition. The existing methods are as follows:

MADDPG [5] is extended use of DDPG [23] in the multi-

agent field. It focuses on training a joint evaluation network

and does not explicitly decompose team rewards, and each

agent has its independent policy network. The COMA [24]

framework is the same as MADDPG, but COMA uses the

GRU [25] network to better deal with the problem that the

agent only has a partial view. Its core lies in the intro-

duction of a counterfactual baseline function. The problem

of multi-agent credit allocation is solved by comparing the

team rewards obtained by the agent’s current policy and the

default policy decision-making. Similar to MADDPG,

MAPPO [26] extends PPO [27] algorithm to a multi-agent

setting and achieves reliable performance.

Different from the value function decomposition

method, we are the first to propose using expert samples to

guide the decomposition of the team reward function. The

algorithm improves the exploration ability of the agent and

increases the robustness to different reward functions. Its

trained policy generates state-action pairs that are closer to

expert behavior.

3 Background

3.1 Preliminaries

In this paper, we consider a decentralized partially

observable Markov decision process (dec-POMDP) [28]

with shared rewards extended to the field of multi-agents.

Dec-POMDP is described by a tuple S;A; c;P; rf g, where

S ¼ fS1; . . .; SNg and A ¼ fA1; . . .;ANg denote the space

of the joint states and joint actions of N agents, respec-

tively. Si 2 S and Ai 2 A represent the state and action

space of agent i 2 N, respectively. The agent we studied

has only partial observation ability of the environment, S�
N ! pðSÞ represents the probability distribution of the

joint state. c 2 ð0; 1Þ is the discount factor, which indicates

the degree of influence of future rewards on the agent’s

current action choices. At each time step, agent i selects

action ai based on the current state si, and his policy is

pi : Si � Ai ! ½0; 1�. PðS0 j S;AÞ is the transition proba-

bility of taking actions fa1; . . .; aNg 2 A in state

fs1; . . .; sNg 2 S to reach next state fs01; . . .; s0Ng 2 S0. All

agents share a reward function rðs~; a~Þ : S� A ! R, that is,

all agents get the same reward at each time step. All agents

cooperate in order to obtain the greatest team return

J ¼ Ea1 � p1;...;an � pn;S�PR
T
t¼0c

trtðs~; a~Þ, where T is the time

horizon, this is used to evaluate the pros and cons of joint

policies. Similarly, the joint state value function of all

agents is Vpðs~Þ ¼ Ep½rð�; �Þ j s~0 ¼ s~�, and joint state-action

value function is Qpðs~; a~Þ ¼ Ep½rð�; �Þ j s~0 ¼ s~; a~0 ¼ a~�.

Neural Computing and Applications (2023) 35:19847–19863 19849

123

3.2 Inverse reinforcement learning

The objective of reinforcement learning [29] is to maxi-

mize the cumulative reward. In contrast, the purpose of

inverse reinforcement learning (IRL) [11, 12] is to learn a

reward function that motivates the agent to generate such a

trajectory through a known behavioral trajectory. There-

fore, existing work [30, 31] often combines the two. In

areas where it is difficult to quantify the reward function,

such as autonomous driving [32], learning the reward

function behind the expert’s behavior is conducive to

algorithm convergence and makes the agent behave like an

expert.

Feature matching [33] is the most common IRL algo-

rithm, which directly extracts features from expert trajec-

tories, measures the feature loss of the trajectory generated

by the current policy and the known expert trajectories to

update the reward function [34, 35]. The disadvantage of

feature matching is that there may be multiple different but

reasonable reward functions for the same expert trajectory,

and the two cannot be matched [36]. Maximum entropy

(MaxEnt) IRL [37] employs the maximum entropy prin-

ciple [38] to eliminate this matching ambiguity, which is

based on the assumption that the policy of expert trajec-

tories to generate their feature expectations is the optimal

trajectory. The maximum causal entropy IRL [39] is to

propose the causal policy model, which considers that the

choice of action is related to all previous actions and states.

Due to the complexity of traditional IRL implementation,

GAIL [40] uses the GAN [41] idea to use the data distri-

bution generated by the current policy and the existing

expert sample distribution as a loss, and directly learn the

policy from the expert trajectory. MAGAIL [42] is an

extension of GAIL in multi-agent.

3.3 Occupancy measure

[13] proposed to measure the distribution of state-action

pairs in the agent’s exploration trajectory when executing

policy p [13, 43]. This is the key to the following analysis.

Definition 3.1 (Occupancy measure) An agent is given a

stable policy p, let qpðsÞ : S ! R and qpðs; aÞ : S �A !
R denote the density of the state distribution and the state-

action joint distribution of the agent under the policy p.

qpðsÞ, R
1

t¼0
ctPðst ¼ s j pÞ;

qpðs; aÞ,qpðsÞpðs; aÞ:
ð1Þ

qpðs; aÞ is the distribution of state-action pairs, also called

the occupancy measure of policy p. There is a one-to-one

correspondence between p 2
Q

and q 2 D.

4 Methods

Humans can accomplish challenging collaborative tasks

through teamwork. First, each player on the team will

independently determine the expected reward for acting in

the current state at each moment. For example, the reward

for scoring a goal off the dribble is more remarkable when

a goal is not scored. However, in fully cooperative tasks,

since the agents share the same reward function, which is

not conducive to the agent evaluating its behavior. To this

end, each agent should be assigned an appropriate reward

according to the state and behavior at each time step.

Second, taking autonomous driving as an example, the

behavior of the agent trained in the simulation does not

necessarily conform to real driving habits, which leads to

generalization problems when the simulation algorithm is

deployed in the real world. Therefore, agents in simulation

should behave similarly to real experts to facilitate the gap

between virtual and real.

This work uses expert demonstrations to decompose the

reward at each time step. Similar to GAIL [40] and

MAGAIL [42], our algorithm measures the similarity

between the agent and expert strategies by occupancy

measure and learns reward decomposition strategies. As

shown in Fig. 2, we train the discriminator using expert

demonstrations and RL buffer experience. Specifically,

when using an expert state-action pair as input, the dis-

criminator outputs the square of the difference between the

probability and 1 as a loss function. When using the agent

state-action pair as input, the discriminator outputs the

square of the difference between the probability and 0 as

the loss function. These two loss functions are used to train

the discriminator to distinguish between expert and agent

strategies. Finally, with each agent state-action pair as

input, the discriminator output is used as the basis for

reward distribution. That is, the higher the discriminator

output score, the closer the agent behaves to the expert, and

the higher the reward it gets. Form adversarial training as a

whole. Notably, if the agent is isomorphic, there is only

one discriminator. Otherwise, each proxy corresponds to a

discriminator. In general, our algorithm provides each

agent with a reward signal for each step and guides the

agent to behave more like an expert.

4.1 Decompose the rewards of each time step

Assumption 1 The global reward of a multi-agent system

is equal to the sum of the rewards received by each agent.

rðst; atÞ ¼ R
N

i¼0
riðoit; aitÞ; ð2Þ

Among them, st denotes the global agent state, at denotes

the joint actions of all agents, and oit and ait denote the state

19850 Neural Computing and Applications (2023) 35:19847–19863

123

and actions of agent i at time t. To simplify the derivation

process, the subscript time t of the state and action is

omitted below.

First of all, we can know from Assumption 1:

riðoi; aiÞ ¼ aiRðs; aÞ

R
n

i
ai ¼ 1

8
<

:
ð3Þ

Here R is the team reward of all agents in a time step, ri is

the reward of agent i, and ai is the team reward coefficient

of agent i, representing the contribution to teamwork, a is a

function of the agent, global state-action pairs,

a ¼ aðoi; ai; s; aÞ. So far, we only need to obtain the team

reward coefficient of each agent to decompose the team

reward.

We know that the objective of inverse reinforcement

learning is to learn a reward function that motivates the

agent to generate such a trajectory based on the known

expert trajectory. Conversely, if the two policies are the

same, then they get the same reward. From the definition of

occupancy, we know that if the agent’s policy is consistent

with the expert’s policy, the occupancy of its policy should

also be consistent. So, we get

E Vpðs0Þ½ � ¼ E R
1

t¼0
ctRðst; atÞ j p

� �

� E VpEðs0Þ½ �; ð4Þ

and

R0ðst; atÞ
REðst; atÞ

¼ ftot

qp
qpE

� �

: ð5Þ

Similarly, for agent i:

r0iðst; atÞ
rei ðst; atÞ

¼ fi
qpi
qpei

 !

; ð6Þ

where ftot and fi are monotonically increasing functions.

The occupancy can only be estimated from expert

demonstrations. R0ðst; atÞ and r0iðst; atÞ represent the esti-

mated team reward and the reward of agent i. Because the

reward of the expert demonstrations at each moment is

determined, the reward of the agent at each moment is only

related to the similarity of occupancy.

r0i ¼ ni
qpi
qpei

 !

R0 ¼ ntot

qp
qpE

� �

8
>>>><

>>>>:

ð7Þ

Since
r0i
R0 ¼ ri

R, and from equation (7), we can get

ri ¼
ni

qpi
qpe

i

� �

ntot
qp
qpE

� �R ¼ aiR; ð8Þ

and the coefficient meet this condition:

R
n

i

ni
qpi
qpe

i

� �

ntot
qp
qpE

� � ¼ 1: ð9Þ

4.2 Reward distribution coefficient

First, it should be noted that we do not directly use

fi
qpi
qpe

i

� �

rei ðstÞ as the reward of agent i. Because the cost of

obtaining expert demonstrations is high, it is challenging to

design appropriate expert rewards in practice. So, we use

very few expert demonstrations, which do not include

expert rewards. Second, from equation (3), we know that in

a multi-agent system, the reward of each agent is con-

strained by the team reward, so we use equation (8) to

decompose the reward. So far, to decompose the reward at

each time step, we only need to obtain the similarity

Fig. 2 Expert demonstrations guide reward decomposition framework

diagram. On the left is the training of discriminator, and on the right is

the use of the discriminator to decompose the global reward. In the

figure, oei and aei , respectively, represent the observation and action of

the expert agent i. R represents the global shared reward. r1; � � � ; rn
represents the respective reward of each agent

Neural Computing and Applications (2023) 35:19847–19863 19851

123

between the agent’s and the expert’s policies. Here, we

introduce maximum causal entropy IRL (MCEIRL) [39],

GAIL [40], and MAGAIL [42] algorithms to solve this

problem. Among them, MAGAIL is an extension of GAIL

in the field of multi-agents. GAIL first proposes to train

discriminators to measure the similarity between agents

and expert strategies.

Maximum causal entropy IRL looks for a cost function

c 2 C that assigns low costs to expert policies and high

costs to other policies.

maximize min � H pð Þ þ E p c s; að Þ½ �ð Þ � E p E
c s; að Þ½ �

ð10Þ

Reinforcement learning, on the other hand, maps the

learned cost function to a high-entropy policy that mini-

mizes the expected cumulative cost, enabling the imitation

of experts.

RL cð Þ ¼ argmin � H pð Þ þ E p c s; að Þ½ � ð11Þ

HðpÞ,E p½�logpða j sÞ� is a c discounted cumulative

causal entropy [39], it is used to prevent the algorithm from

overfitting. According to the definition of occupancy, the

expected cost function E p c s; að Þ½ � can be written as

follows:

E p½cðs; aÞ� ¼
X

s;a

q p s; að Þc s; að Þ ð12Þ

Define an IRL primitive process that finds a cost function

such that the expert cost is lower than all other policies, the

cost function is regularized by w:

IRL w p Eð Þ ¼ argmax � w cð Þ þ min � H pð Þð

þE p c s; að Þ½ �Þ � E p E
c s; að Þ½ �

ð13Þ

For each agent, the imitation of an expert can be defined as

an occupancy matching problem. That is, the state-action

distribution of the learned policy is consistent with the

expert.

RL � IRLw pEð Þ ¼ argmin p2
Q � H pð Þ þ w	ðqp � qpEÞ;

ð14Þ

The above equation can be interpreted as a measure of the

similarity of the occupancy between the single-agent’s

policy and the expert’s policy. The optimal negative log

loss for this binary classification problem is as follows:

w	 ¼ max
D2ð0;1ÞS�A

EpE ½logðDðs; aÞÞ� þ Ep½logð1 � Dðs; aÞÞ�;

ð15Þ

The role of this network is to act as a discriminator to

identify whether it is an expert or an agent. On the other

hand, the agent’s policy uses log(D(s, a)) as the reward

function, which makes the discriminator mistakenly con-

sider it as an expert demonstration. At this point, for agent

i, we have

ri ¼ ni
qpi
qpei

 !

¼ logðDiðsi; aiÞÞ: ð16Þ

Similarly, for multi-agents [42], assume that

wðRÞ ¼ Rn
i¼1wiðriÞ, then

MARL �MAIRLw pEð Þ ¼ argmin
p2P

R
n

i¼1
w	
i ðqpi;E�i

� qpEÞ

ð17Þ

where pi;E�1
denotes pi for agent i and pE�i

for other agents.

For agent i, the discriminator needs to be trained by expert

demonstrations and the agents’ sample data, the discrimi-

nator map it to 1 and 0 to distinguish between the two.

Instead, we use Rn
i¼1logDxi

ðs; aiÞ as the reward function of

the agents, which, in turn, helps the agents fool the dis-

criminator. We optimize the following goals:

LMD ¼
h
min

x
max Eph R

n

i¼1
logDxi

ðs; aiÞ
� ��

þ EpE R
n

i¼1
logð1 � Dxi

ðs; aiÞÞ
� �� ð18Þ

For this multi-agent system, we have a reward function

R ¼ ntot
qp
qpE

� �

¼ R
n

i¼1
logðDiðs; aiÞÞ: ð19Þ

As a result, the joint reward for each time step can be

decomposed as follows:

ri ¼
logðDiðs; aiÞÞ

Rn
i¼1logðDiðs; aiÞÞ

R ð20Þ

The above equation expresses that the contribution of the

agent to team and the distribution of the reward would

increase, when the state action of the agent is close to the

expert’s policy. Note that after decomposing the team

reward, we use the PPO [27] algorithm to train the policy

for each agent, and the objective function is as follows:

JhkðhÞ � Rðst ;atÞ min
phðat; stÞ
phkðat; stÞ

Ahkðat j stÞ
�

;

cilp
phðat; stÞ
phkðat; stÞ

; 1 � e; 1 þ e

� �

Ahkðat j stÞ
� ð21Þ

here:

A s t; a tð Þ ¼Q s t; a tð Þ � V s tð Þ

¼E s tþ1vp s tþ1js t ;a tð Þ r s tð Þ þ cV p s tþ1ð Þ � V p s tð Þ½ �
ð22Þ

19852 Neural Computing and Applications (2023) 35:19847–19863

123

5 Experiment

5.1 Experimental environments and settings

In this section, we benchmark our method with other multi-

agent reinforcement learning algorithms on the Starcraft

Micromanagement Challenge [44] (SMAC), the Multi-

agent Particle-world Environment [5] (MPE), and the Grid

World [45]. The experimental scene is shown in Fig. 3.

The baseline algorithms include VDN [6], QMIX [7],

COMA [24], QTRAN [22], MAVEN [21], MAVEN?BC

[46], MAPPO [26], MAGAIL [42], IPPO [47], RODE [48],

and MADDPG [5]. For fair comparison, we run all algo-

rithms on the same computer, with an Intel i7-8700K CPU,

16-GB RAM, and an NVIDIA GTX1080Ti GPU. For the

hyperparameters: The learning rate is 1e-4, the discount

factor c is 0.99.

We first conduct experiments in two public multi-agent

environments (Starcraft II SMAC and MPE). These are

designed with many small maps, and agents can cooperate

fully or compete with each other. Finally, we conducted

experiments in the grid world. It is a formation walking

environment. The agent is required maintain the formation

as much as possible, bypass obstacles, and reach the des-

tination. Since we can entirely manually design the rewards

for this environment, we use it to verify the algorithm’s

robustness to the handcrafted rewards. It should be noted

that each expert demonstration only includes state-action

pairs of all agents in one step, without their rewards. The

number of expert demonstrations used in different experi-

mental scenarios is shown in Table 1. These demonstra-

tions are used by MAVEN?BC, MAGAIL, and our

proposed algorithm. The algorithms used to collect expert

demonstrations in different environments are different. In

StarCraft and MPE environments, we use the converged

MAPPO to collect expert demonstrations. We also add

filtering operations to discard demonstrations with low-

performing behaviors. In grid world environment,

enhanced collision-based search algorithm (ECBS) [49] is

used to collect expert demonstrations.

5.2 Results in SMAC environment

We benchmark our algorithm with several existing algo-

rithms such as VDN, QMIX, COMA, MAVEN, QTRAN,

MAVEN?BC, and RODE, in SMAC environment.

Table 2 compares the results when all the algorithms

converge, while five random seeds are used for each

algorithm. Under each random seed, all algorithms except

RODE are evaluated 32 times after convergence to calcu-

late their average winning rate. The resultof RODE is

directly obtained from the paper [48]. First, Table 2 shows

our algorithm outperforms other methods in most scenar-

ios, i.e., achieving the highest winning rate in 20 of the 23

maps. In addition, in the two maps ‘‘so many baneling,

25 m,’’ the gap between our algorithm and the others with

the highest winning rate is very small. In our algorithm’s

worst-performing scenario, ‘‘5 m versus 6 m’’ map, the

winning rate is higher than the baseline algorithms except

RODE.

Furthermore, as the difficulty of maps increases, the

success rate of baseline algorithms, including RODE,

declines. Because, at this time, the set team reward is

difficult to guide the agent to conduct effective exploration,

resulting in poor performance of the baseline algorithm.

Nevertheless, our algorithm is less affected since the expert

demonstrations guide the team reward is appropriately

decomposed. Even if the team reward is invalid, our

algorithm encourages the agent to take actions similar to

the expert demonstrations through appropriate reward

Fig. 3 Three experimental environments. a so many banes, corridor, 8 M and MMM in Starcraft II; b spread and communication in MPE; and c a

map of size 128 with an obstacle density of 0.15 in grid world, where red squares represent obstacle

Neural Computing and Applications (2023) 35:19847–19863 19853

123

decomposition and guides the agent to take the correct

action and conduct effective exploration. Compared with

the MAVEN?BC algorithm, although MAVEN?BC is

beneficial to solve the cold start problem of the algo-

rithm because the action clone executes the sequence of

behavior, this also creates a cumulative error. Finally, the

difference between the agent’s behavior and the optimal

Table 1 The number of expert

demonstrations used in different

experimental scenarios

MPE

Communication 1000 Spread 1000

Starcraft II

1c3s5z 862 2c versus 64zg 877 2 m versus 1z 1136

2s3z 960 Bane versus bane 1020 25 m 1097

3 s versus 3z 1109 3 s versus 4z 1623 3 s versus 5z 1738

5 m versus 6 m 845 6 h versus 8z 840 8 m 1044

8 m versus 9 m 701 3 m 804 MMM 1288

2 s versus 1sc 825 corridor 875 MMM2 1064

So many baneling 1127 3s5z 1581 3s5z versus 3s6z 1031

27 m versus 30 m 1924 10 m versus 11 m 937

Grid world

32-0.05 64 32-0.15 64 64-0.05 128

64-0.15 128 128-0.05 256 128-0.15 256

256-0.05 512 256-0.15 512 512-0.05 1024

512-0.15 1024

Table 2 The percentage of victory achieved by different algorithms in 23 scenarios in the Starcraft II

Maps Difficult VDN QMIX COMA QTRAN MAVEN MAVEN?BC RODE Ours

3 m Easy 79.38% 100% 3.75% 100% 100% 100% – 100%

2s3z Easy 32.5% 88.75% 0.0% 98.75% 94.38% 98.13% 100% 100%

3 s versus 3z Easy 56.25% 100% 0.0% 100% 100% 100% – 100%

MMM Easy 51.25% 98.13% 58.16% 93.13% 99.38% 89.37% – 100%

3 s versus 4z Easy 0.0% 83.75% 0.0% 99.38% 100% 96.25% – 100%

2 m versus 1z Easy 10.63% 100% 1.25% 100% 100% 100% – 100%

Bane versus bane Easy 64.36% 77.5% 75% 96.25% 88.13% 98.75% 100% 100%

1c3s5z Easy 5.63% 20.64% 59.38% 94.33% 96.88% 96.88% 100% 100%

So many baneling Easy 25.94% 99.38% 42.81% 100% 95.94% 92.5% – 99.75%

8 m Easy 93.13% 98.75% 1.25% 100% 98.13% 99.38% – 100%

2 s versus 1sc Easy 0.63% 61.25% 1.25% 100% 91.88% 100% 100% 100%

5 m versus 6 m Hard 55% 63.75% 1.88% 44.38% 64.38% 67.5% 71.6% 68.75%

10 m versus 11 m Hard 0.0% 3.44% 2.19% 5.63% 7.5% 83.75% 95.6% 98.75%

2c versus 64zg Hard 1.88% 70.63% 95.63% 93.75% 86.88% 86.25% 96% 96.88%

3s5z Hard 66.25% 74.37% 17.5% 41.87% 38.12% 16.88% 93.75% 99.38%

3 s versus 5z Hard 0.0% 56.25% 0.0% 96.88% 98.13% 72.5% 78.9% 100%

25 m Hard 87.96% 93.6% 8.91% 96.87% 92.19% 0.0% – 96.88%

8 m versus 9 m Hard 19.38% 23.13% 10.0% 85.0% 76.88% 41.88% – 93.75%

Corridor Super hard 0.0% 80% 0.0% 71.88% 0.0% 87.5% 90.6% 100%

3s5z versus 3s6z Super hard 11.88% 79.13% 0.0% 0.0% 0.0% 0.0% 84.25% 100%

6 h versus 8z Super hard 0.0% 3.13% 0.0% 11.25% 0.63% 8.13% 59.6% 100%

MMM2 Super hard 41.25% 27.5% 0.63% 14.38% 5.63% 46.25% 86.45% 96.88%

27 m versus 30 m Super hard 10.62% 8.75% 0.63% 9.37% 1.25% 0.0% 96.05% 100%

Highlight the highest-performing sections. For example the highest success rate, the smallest loss, the shortest time, etc

19854 Neural Computing and Applications (2023) 35:19847–19863

123

behavior becomes larger and larger. However, our algo-

rithm decomposes the reward through the similarity with

the expert demonstrations to obtain the corresponding

value function to evaluate the policy, avoiding the accu-

mulation of errors caused by direct behavioral cloning.

Finally, Table 2 and Fig. 4a–g show that, compared

with such value decomposition algorithms as VDN and

QMIX, our algorithm performance is minimally affected

by the number of agents. This also shows that the expert

demonstrations-guided reward decomposition helps

improve the algorithm’s robustness to the number of

agents. However, the convergence difficulty of the tradi-

tional decomposition algorithm, such as VDN and QMIX,

is positively related to the number of agents. Figure 4h–o

compares the rewards obtained by different algorithms and

then reflects the convergence speed of the algorithms. It

can be seen from the figure that even if we are an online

algorithm, its convergence speed is still highly competitive.

Figure 5 further shows the relationship between the con-

vergence degree of the algorithm and the time. Compared

with the baseline algorithm, our algorithm takes less time

to reach convergence.

5.3 Results in MPE

We test algorithms on two cooperative tasks in the MPE

environment, including the cooperative communication

and the cooperative navigation (spread) task, and com-

parison algorithms include MADDPG, MAPPO, and

MAGAIL. It should be noted that the observation of each

agent includes the positions of other agents and obstacles,

and this observation is essentially equivalent to the global

state.

For detailed descriptions of tasks in different scenarios

in the MPE environment.1

Figure 6 shows the experimental results averaged with

five random seeds. The results comparison indicates that

our method has achieved the SOTA level performance in

all scenarios. Moreover, even though our method is an

online RL algorithm, the convergence ratio in the com-

munication tasks is faster than the off-policy MADDPG. In

addition, our method outperforms MAGAIL in both con-

vergence ratio and total rewards, because estimating

rewards directly from MAGAIL with minimal demonstra-

tions is challenging. The performance of our method is

similar to MAPPO in MPE environment; however, we

show in later section that our algorithm is more robust to

different reward design compared to MAPPO.

5.4 Results in grid world

Grid world simulation2 is used for additional benchmark.

The grid world environment can set arbitrary map size and

obstacle density. In this paper, we use map size

f32; 64; 128; 256; 512g and the obstacle density

f0:05; 0:15g (The map is shown in Fig. 3c). In this simu-

lation, the field of view for the agents is 9 grids, which

formulates a partially observable Markov decision process.

The starting point of each map is at the upper right, and the

goal point is at the lower left. Three agents must avoid

obstacles while maintaining the formation as much as

possible to reach the destination. During training, 100 maps

of each type will be randomly generated to prevent the

algorithm from overfitting. In order to verify the algo-

rithm’s robustness to the reward, we designed multiple

reward functions and compared the algorithm’s perfor-

mance in the grid world.

First, as shown in Table 3, our algorithm has achieved

the best performance in most cases. It is noted that the

performance of the proposed method is comparable to the

baseline algorithm, only when the tasks are relatively

simple, especially when the map is smaller with fewer

obstacles, and the path that the agent needs to detect is

short. For most of the difficult tasks, our algorithm sig-

nificantly outperforms the baseline algorithms, this vali-

dates the effectiveness of our proposed method using the

guidance from expert data to train the agent.

Moreover, Fig. 7 indicates that our algorithm is robust

to variation of reward functions. We vary the reward

function with increasing the penalty for formation loss. It is

observed that the reward and loss of MAPPO still converge

reasonably fast. However, the agents trained by MAPPO

stop walking to avoid losing formation and failing to reach

their destination. In contrast, our algorithm could maintain

the formation to reach the destination, with little perfor-

mance variation. This is because the single-step reward is

decomposed under the guidance of experts. Even if each

agent cannot obtain an accurate reward signal, the reward

ratio of each agent can still prompt the agent to act simi-

larly to the expert.

5.5 Analysis on data distribution and expert
data

The experimental results in Fig. 8 show the distribution

difference between state-action pairs collected by different

algorithms and that from expert data. It is observed that the

state-action pairs produced by our algorithm are closer to

1 MPE:https://github.com/openai/multiagent-particle-envs.

2 Grid world for planning: https://github.com/whoenig/

libMultiRobotPlanning.

Neural Computing and Applications (2023) 35:19847–19863 19855

123

https://github.com/openai/multiagent-particle-envs
https://github.com/whoenig/libMultiRobotPlanning
https://github.com/whoenig/libMultiRobotPlanning

Fig. 4 Compare the average round rewards of different algorithms

19856 Neural Computing and Applications (2023) 35:19847–19863

123

the expert demonstrations, compared to QMIX. In addition,

the results indicate that our algorithm produces similar

behavioral trajectories when expert demonstrations are

given by algorithms valid in the real world. Thus, our

algorithm would be easier to generalize to real-world

applications.

Figure 9 shows the effect of different numbers of expert

demonstrations on our algorithm. When the number of

expert demonstrations is too small, it is difficult to provide

adequate guidance to our algorithm. We argue that if the

demonstration number is too small, it covers fewer situa-

tions, the agents may encounter. Therefore, no guidance

can be made. In the figure, when the number of expert

Fig. 5 Convergence speed comparison of different algorithms

Fig. 6 Comparison of rewards obtained by different algorithms in different scenarios in MPE

Neural Computing and Applications (2023) 35:19847–19863 19857

123

Table 3 The experimental results of different maps in the grid world environment: D represents the density of obstacles on the map, and ‘–’

represents that the algorithm training fails to converge, and the results are unavailable

Environment setting Makespan Formation loss Success rate Step reward

Map size Agnet num D Ours IPPO MAPPO Ours IPPO MAPPO Ours IPPO MAPPO Ours IPPO MAPPO

32 � 32 3 0.05 58 60.4 58 0.11 0.194 0.08 100% 100% 100% 16.279 14.724 16.046

3 0.15 62 66.8 62.9 1 1.68 3.11 100% 80% 90% 10.73 �2.66 7.7

64 �64 3 0.05 126 129.2 128 0.59 0.692 0.326 100% 100% 100% 13.06 12.03 �5.89

3 0.15 129.2 139.2 128 1.574 1.49 1.17 100% 80% 100% 9.39 5.91 10.75

128 � 128 3 0.05 255.4 258.4 256.8 0.63 0.66 0.752 100% 100% 100% 12.85 12.44 12.26

3 0.15 256.4 309.4 283.2 0.92 2.83 1.498 100% 60% 80% 10.95 1.35 5.88

256 � 256 3 0.05 515.6 619.4 – 1.02 10.072 – 100% 60% – 0.524 �2.09 –

3 0.15 508 – – 0.87 – – 100% – – 14.21 – –

512 �512 3 0.05 1042 – – 1.3 – – 100% – – 13.58 – –

3 0.15 1236 – – 3.246 – – 60% – – �9.94 – –

Highlight the highest-performing sections. For example the highest success rate, the smallest loss, the shortest time, etc

Fig. 7 Comparison of the algorithms’ robustness to reward function:

R0, R1, R2, and R3 represent different reward functions. R1 is

relative to R0, and R3 is relative to R2, adding a penalty for formation

loss in the reward function. Average floss refers to the average

formation loss of multiple agents

19858 Neural Computing and Applications (2023) 35:19847–19863

123

demonstrations is 1000 or 2500, after convergence, there is

not much difference in the performance of the algorithm.

At this time, increasing the number of demonstrations has

little impact on the algorithm.

6 Conclusions

In this work, we propose to use expert demonstrations to

guide the reward decomposition at each time step, to

address the credit assignment problem in MAS. We have

conducted extensive experiments to validate that the pro-

posed algorithm achieves or outperforms the SOTA level

MARL methods. Compared to the EVD algorithms, such as

QMIX and VDN, the convergence of our algorithm is

scalable to the number of agents. In addition, our algorithm

is more robust to different reward functions than MAPPO.

Furthermore, our algorithm significantly outperforms imi-

tation learning algorithms such as MAGAIL and

MAVEN?BC with the same number of expert demon-

strations, because we only estimate the reward distribution

ratio, rather than directly estimating the reward of each

agent. Compared to the baseline algorithms, since the

expert data indirectly guide the policy update, the data

distribution generated by the policy is closer to the expert

demonstrations distribution.

Fig. 8 Scatter plot of samples

collected by different

algorithms and expert

demonstrations. Here, we use

t-SNE [50] to cluster the state-

action pair data generated by

different algorithms

Fig. 9 The effect of different numbers of expert demonstrations on the algorithm in the corridor and 10-m versus 11-m map

Neural Computing and Applications (2023) 35:19847–19863 19859

123

Appendix

Experimental environment details

Starcraft II

SMAC consists of a set of StarCraft II micro-scenarios

designed to evaluate the ability of agents to learn to

coordinate to solve complex tasks. These carefully crafted

scenarios require learning one or more micromanagement

techniques to defeat the enemy. Each scene is a con-

frontation between two armies. The initial location, num-

ber, and unit types of each army vary by scenario, as does

the presence of high ground or impassable terrain. A

trained algorithm controls one side, and the other side

consists of enemy units controlled by the built-in game AI

using carefully designed non-learning heuristics. At the

start of each turn, the game AI instructs its units to attack

the allied agent using its scripted strategy. An episode ends

when all units of either army die or a pre-specified time

limit is reached (in which case, the game is considered a

defeat for the allied agent). The goal of each scenario is to

maximize the winning rate of the learned policy.

Agent Observations At each time step, the agent

receives local observations drawn within its field of view.

This contains map information within a circular area

around it. From each agent’s point of view, line-of-sight

bounds make the environment partially observable. Agents

can observe other agents if they are alive and within line of

sight. Therefore, agents cannot determine whether their

teammates are far away or dead. The feature vector

observed by each agent contains the following attributes

for friendly and enemy units in view: distance, relative x,

relative y, health, shield, and unit type. Additionally, the

agent can access the last actions of allied units in view.

Finally, the agent can observe surrounding terrain features;

The global state is only available to the agent during

training and contains information about all units on the

map. Specifically, the state vector includes the coordinates

of all agents relative to the map’s center, and the unit

features present in the observation. Finally, the last actions

of all agents are attached to the central state.

Action Space The discrete set of actions the agent is

allowed to take include move[direction] (four directions:

north, south, east, or west), attack[enemy-id], stop, and no-

op. A dead agent can only take no-ops, but a live agent

cannot. Medivacs must use the heal[agent-id] action

instead of attack[enemy-id] as healing units. The maximum

number of actions an agent can perform is between 7 and

70, depending on the scene.

Reward The overall goal is to achieve the highest win

rate in each combat scenario. We provide options for

sparse rewards, which will cause the environment to return

rewards of only ?1 (for wins) and -1 (for losses). However,

we also provide a default setting for the shape reward

signal calculated based on the health damage, the agent

does and receives, some positive (negative) bonus after

killing an enemy (allied) unit, and/or positive (negative)

rewards for winning (losing) a battle.

For more specific details about the SMAC environment

see the link: https://github.com/deepmind/pysc2; https://

github.com/oxwhirl/smac.

MPE

MPE is a time-discrete and space-continuous two-dimen-

sional multi-agent environment developed by OpenAI. The

environment completes a series of tasks by controlling the

movement of different character particles in two-dimen-

sional space. At present, it is widely used in the simulation

verification of various MARL algorithms. As shown in

Fig. 3b, we use spread and communication maps in this

paper.

Spread The number of agents and landmarks in the

spread map is the same, where black is the landmark and

blue is the agent. The agent sees the landmark location and

is rewarded based on its proximity to the landmark, and the

agents need to negotiate to avoid the same landmark as

their goal.

Communication There are two agents in the communi-

cation map and three landmarks of different colors. But one

of the agents is a non-moving ‘‘speaker’’ (gray) (able to see

the other agent’s goal), and the other agent is a listener

(cannot speak, but must navigate to the correct landmark

and its goal subject to change). The gray agent sends a

message to another agent, telling it the location of the

target and helping it to complete the task.

Since the state and action space of each environment are

inconsistent, please refer to the link for details of the MPE

environment: https://github.com/openai/multiagent-parti

cle-envs.

Grid world

As shown in Fig. 3c, grid world is a discretized environ-

ment, and the number of agents in this environment is

always 3. The agent walks from the upper right corner to

the lower corner target position in maps of different sizes.

Its state space is a square field of vision nine grids away

from the agent’s position, within which obstacles and other

agents can be observed; the action space is five actions,

including up, down, left, right, and stop. The round ends

when the agents reach the target position or hit an object

(obstacle or agent). For more specific details about the

19860 Neural Computing and Applications (2023) 35:19847–19863

123

https://github.com/deepmind/pysc2
https://github.com/oxwhirl/smac
https://github.com/oxwhirl/smac
https://github.com/openai/multiagent-particle-envs
https://github.com/openai/multiagent-particle-envs

SMAC environment see the link: https://github.com/whoe

nig/libMultiRobotPlanning.

Baseline algorithm

The baseline algorithms we use include VDN [6], QMIX

[7], QTRAN [22], MAVEN [21], MAVEN?BC [46],

COMA [24], MAPPO [26], IPPO [47], MAGAIL [42],

RODE [48], and MADDPG [5]. VDN, QMIX, QTRAN,

and MAVEN are all explicit value decomposition algo-

rithms, but they use different decomposition mechanisms.

The VDN fits the joint action-value function in a summa-

tion fashion. QMIX uses a family of nonlinear functions for

nonlinear fitting, which is bound by monotonicity. Based

on VDN and QMIX algorithms, QTRAN proposes a more

general value decomposition method to decompose any

decomposable task successfully. The MAVEN algorithm

improves the QMIX algorithm, which overcomes the

problem that QMIX cannot perform effective exploration

due to monotonic constraints. Specifically, it introduces a

hierarchically controlled latent space, mixing value-based

and policy-based methods, so that the behavior of each

value-based agent depends on shared latent variables, and

hierarchical policies control latent variables. MAVEN?BC

introduces the behavior cloning (BC) [46] algorithm based

on the MAVEN algorithm, which combines it with imita-

tion learning. Note that BC directly models expert behavior

through state-to-action supervision signals. MAVEN?BC

will serve as an important baseline for comparison with our

algorithm. COMA measures how much an agent’s behavior

contributes to the team via a counterfactual baseline.

MAPPO is an extension of the PPO algorithm in the field

of multi-agents. IPPO sets each agent as an independent

learner. MAGAIL is an algorithm that combines imitation

learning and inverse reinforcement learning. Similar to us,

it learns expert strategies through the similarity between

agent and expert behaviors. Note that MAVEN?BC and

MAGAIL use the same amount of data as our expert

demonstrations. RODE is a role-based multi-agent rein-

forcement learning method that uses a role selector to

decompose the joint action space into a limited action

space corresponding to different roles. The problem of too

sizeable joint action state space in a multi-agent environ-

ment can be solved by dividing roles and layering. The

MADDPG algorithm is an extension of the DDPG algo-

rithm in the multi-agent field. The core is that each agent

obtains all agent information to train its action-value

function. We think that it is an implicit value decomposi-

tion algorithm.

Additional experimental hyperparameters

Table 4 shows the general hyperparameters, and

Tables 5, 6, and 7 are the parameters fine-tuned according

to the specific environment. In the following tables, ‘‘Max

Table 4 Generic

hyperparameters
Common hyperparameters Value

Value loss Huber loss

GAE lambda 0.95

Max clipped value loss 0.2

Gradient clip norm 10

Use reward normalization True

Use feature normalization True

Network initialization Orthogonal

Optimizer Adam

Huber delta 10

Optimizer epsilon 1e-5

Weight decay 0

Gradient clip norm 10

Batch size Num envs � buffer length � num agents

Mini batch size Batch size/mini-batch

Gamma 0.99

Table 5 The hyperparameters

used by our algorithm in the

Starcraft II environment

Hyperparameters Value

Num envs 8

Num GRU layers 1

RNN hidden state dim 64

fc layer dim 64

Num fc 2

Num fc after 1

Buffer length 400

Neural Computing and Applications (2023) 35:19847–19863 19861

123

https://github.com/whoenig/libMultiRobotPlanning
https://github.com/whoenig/libMultiRobotPlanning

clipped value loss’’ refers to the value-clipping term in the

value loss. ‘‘Huber delta’’ refers to the delta parameter in

the Huber loss function. ‘‘Gamma’’ refers to the discount

factor. ‘‘Num fc’’ refers to the number of linear layers in

the MLP, and its dimension is represented by ‘‘fc layer

dim.’’ ‘‘Num layer after’’ indicates the number of linear

layers after RNN.

Funding This work was supported by the National Defense Basic

Research Program (JCKY2021204B051).

Data Availability The datasets generated during and/or analyzed

during the current study are not publicly available due to

REASON(S) WHY DATA ARE NOT PUBLIC but are available

from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

1. Ferber J, Weiss G (1999) Multi-agent systems: an introduction to

distributed artificial intelligence vol. 1. Addison-Wesley Reading,

???

2. Hönig W, Kiesel S, Tinka A, Durham JW, Ayanian N (2019)

Persistent and robust execution of mapf schedules in warehouses.

IEEE Robot Autom Lett 4(2):1125–1131

3. Pendleton SD, Andersen H, Du X, Shen X, Meghjani M, Eng YH,

Rus D, Ang MH (2017) Perception, planning, control, and

coordination for autonomous vehicles. Machines 5(1):6

4. Sutton RS (1984) Temporal credit assignment in reinforcement

learning. PhD thesis, University of Massachusetts Amherst

5. Lowe R, Wu Y, Tamar A, Harb J, Abbeel P, Mordatch I (2017)

Multi-agent actor-critic for mixed cooperative-competitive envi-

ronments. Neural Inform Process Syst (NIPS)

6. Sunehag P, Lever G, Gruslys A, Czarnecki WM, Zambaldi V,

Jaderberg M, Lanctot M, Sonnerat N, Leibo JZ, Tuyls K (2018)

Value-decomposition networks for cooperative multi-agent

learning based on team reward. In: Proceedings of the 17th

international conference on autonomous agents and multiagent

systems (AAMAS’18), vol. 3, pp. 2085–2087. Assoc Computing

Machinery

7. Rashid T, Samvelyan M, Schroeder C, Farquhar G, Foerster J,

Whiteson S (2018) Qmix: Monotonic value function factorisation

for deep multi-agent reinforcement learning. In: International

Conference on Machine Learning, pp. 4295–4304. PMLR

8. Dou Z, Kuba JG, Yang Y (2022) Understanding value decom-

position algorithms in deep cooperative multi-agent reinforce-

ment learning. arXiv preprint arXiv:2202.04868

9. Gronauer S, Diepold K (2022) Multi-agent deep reinforcement

learning: a survey. Artif Intell Rev, 1–49

10. De Hauwere Y-M, Vrancx P, Nowé A (2010) Generalized

learning automata for multi-agent reinforcement learning. AI

Commun 23(4):311–324

11. Ng AY, Russell S (2000) Algorithms for inverse reinforcement

learning. In: Icml, vol. 1, p. 2

12. Arora S, Doshi P (2021) A survey of inverse reinforcement

learning: challenges, methods and progress. Artif Intell

297:103500

13. Puterman ML (1995) Markov decision processes: discrete

stochastic dynamic programming. J Oper Res Soc 46(6):792–792

14. Tan M (1993) Multi-agent reinforcement learning: independent

vs. cooperative agents. In: Proceedings of the 10th international

conference on machine learning, pp. 330–337

15. Tampuu A, Matiisen T, Kodelja D, Kuzovkin I, Korjus K, Aru J,

Aru J, Vicente R (2017) Multiagent cooperation and competition

with deep reinforcement learning. PLoS ONE 12(4):0172395

16. Lee KM, Subramanian SG, Crowley M (2021) Investigation of

independent reinforcement learning algorithms in multi-agent

environments. arXiv preprint arXiv:2111.01100

17. Canese L, Cardarilli GC, Di Nunzio L, Fazzolari R, Giardino D,

Re M, Spanò S (2021) Multi-agent reinforcement learning: a

review of challenges and applications. Appl Sci 11(11):4948

18. Zhang K, Yang Z, Başar T (2021) Multi-agent reinforcement

learning: a selective overview of theories and algorithms.

Handbook of Reinforcement Learning and Control, 321–384

19. Du W, Ding S (2021) A survey on multi-agent deep reinforce-

ment learning: from the perspective of challenges and applica-

tions. Artif Intell Rev 54(5):3215–3238

20. Claus C, Boutilier C (1998) The dynamics of reinforcement

learning in cooperative multiagent systems. AAAI/IAAI

1998(746–752):2

21. Mahajan A, Rashid T, Samvelyan M, Whiteson S (2019) Maven:

multi-agent variational exploration. In: Proceedings of the 33rd

international conference on neural information processing sys-

tems, pp. 7613–7624

22. Son K, Kim D, Kang WJ, Hostallero DE, Yi Y (2019) Qtran:

learning to factorize with transformation for cooperative multi-

agent reinforcement learning. In: International conference on

machine learning, pp. 5887–5896. PMLR

Table 6 The hyperparameters

used by our algorithm in the

MPE environment

Hyperparameters Value

Num envs 128

Num GRU layers 1

RNN hidden state dim 64

fc layer dim 64

Num fc 2

Num fc after 1

Buffer length 25

Table 7 The hyperparameters used by our algorithm in the grid world

environment

Hyperparameters Value

Num envs 100

Num GRU layers 1

RNN hidden state dim 64

fc layer dim 64

Num fc 2

Num fc after 1

Buffer length Map size � 1.5

19862 Neural Computing and Applications (2023) 35:19847–19863

123

http://arxiv.org/abs/2202.04868
http://arxiv.org/abs/2111.01100

23. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver

D, Wierstra D (2016) Continuous control with deep reinforce-

ment learning. In: ICLR (Poster)

24. Foerster J, Farquhar G, Afouras T, Nardelli N, Whiteson S (2018)

Counterfactual multi-agent policy gradients. In: Proceedings of

the AAAI conference on artificial intelligence, vol. 32

25. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical eval-

uation of gated recurrent neural networks on sequence modeling.

In: NIPS 2014 workshop on deep learning, December 2014

26. Yu C, Velu A, Vinitsky E, Wang Y, Bayen A, Wu Y (2021) The

surprising effectiveness of mappo in cooperative, multi-agent

games. arXiv preprint arXiv:2103.01955

27. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017)

Proximal policy optimization algorithms. arXiv preprint arXiv:

1707.06347

28. Littman ML (1994) Markov games as a framework for multi-

agent reinforcement learning. In: Machine learning proceedings

1994, pp. 157–163. Elsevier, ???

29. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement

learning: a survey. J Artif Intell Res 4:237–285

30. Hadfield-Menell D, Russell SJ, Abbeel P, Dragan A (2016)

Cooperative inverse reinforcement learning. Adv Neural Inform

Process Syst, 29

31. You C, Lu J, Filev D, Tsiotras P (2019) Advanced planning for

autonomous vehicles using reinforcement learning and deep

inverse reinforcement learning. Robot Auton Syst 114:1–18

32. Wu P, Jia X, Chen L, Yan J, Li H, Qiao Y (2022) Trajectory-

guided control prediction for end-to-end autonomous driving: a

simple yet strong baseline. arXiv preprint arXiv:2206.08129

33. Baumberg A (2000) Reliable feature matching across widely

separated views. In: Proceedings IEEE conference on computer

vision and pattern recognition. CVPR 2000 (Cat. No. PR00662),

vol. 1, pp. 774–781. IEEE

34. Abbeel P, Ng AY (2004) Apprenticeship learning via inverse

reinforcement learning. In: Proceedings of the 21st international

conference on machine learning, p. 1

35. Ratliff ND, Bagnell JA, Zinkevich MA (2006) Maximum margin

planning. In: Proceedings of the 23rd International Conference on

Machine Learning, pp. 729–736

36. Herman M, Gindele T, Wagner J, Schmitt F, Burgard W (2016)

Inverse reinforcement learning with simultaneous estimation of

rewards and dynamics. In: Artificial intelligence and statistics,

pp. 102–110 . PMLR

37. Ziebart BD, Maas AL, Bagnell JA, Dey AK (2008) Maximum

entropy inverse reinforcement learning. In: Aaai, vol. 8,

pp. 1433–1438. Chicago, IL, USA

38. Guiasu S, Shenitzer A (1985) The principle of maximum entropy.

Math Intell 7(1):42–48

39. Bloem M, Bambos N (2014) Infinite time horizon maximum

causal entropy inverse reinforcement learning. In: 53rd IEEE

conference on decision and control, pp. 4911–4916. IEEE

40. Ho J, Ermon S (2016) Generative adversarial imitation learning.

Adv Neural Inf Process Syst 29:4565–4573

41. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,

Ozair S, Courville A, Bengio Y (2020) Generative adversarial

networks. Commun ACM 63(11):139–144

42. Song J, Ren H, Sadigh D, Ermon S (2018) Multi-agent generative

adversarial imitation learning. arXiv preprint arXiv:1807.09936

43. Syed U, Bowling M, Schapire RE (2008) Apprenticeship learning

using linear programming. In: Proceedings of the 25th interna-

tional conference on machine learning, pp. 1032–1039

44. Samvelyan M, Rashid T, de Witt CS, Farquhar G, Nardelli N,

Rudner TGJ, Hung C-M, Torr PHS, Foerster J, Whiteson S

(2019) The StarCraft multi-agent challenge. CoRR abs/
1902.04043

45. Liu S, Wen L, Cui J, Yang X, Cao J, Liu Y (2020) Moving

forward in formation: a decentralized hierarchical learning

approach to multi-agent moving together. arXiv preprint arXiv:

2011.02373

46. Codevilla F, Santana E, López AM, Gaidon A (2019) Exploring

the limitations of behavior cloning for autonomous driving. In:

Proceedings of the IEEE/CVF international conference on com-

puter vision, pp. 9329–9338

47. de Witt CS, Gupta T, Makoviichuk D, Makoviychuk V, Torr PH,

Sun M, Whiteson S (2020) Is independent learning all you need

in the starcraft multi-agent challenge? arXiv preprint arXiv:2011.

09533

48. Wang T, Gupta T, Peng B, Mahajan A, Whiteson S, Zhang C

(2021) Rode: learning roles to decompose multi- agent tasks. In:

Proceedings of the international conference on learning repre-

sentations . OpenReview

49. Barer M, Sharon G, Stern R, Felner A (2014) Suboptimal variants

of the conflict-based search algorithm for the multi-agent

pathfinding problem. In: Seventh annual symposium on combi-

natorial search

50. Van der Maaten L, Hinton G (2008) Visualizing data using t-sne.

J Mach Learn Res 9(11)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2023) 35:19847–19863 19863

123

http://arxiv.org/abs/2103.01955
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2206.08129
http://arxiv.org/abs/1807.09936
http://arxiv.org/abs/2011.02373
http://arxiv.org/abs/2011.02373
http://arxiv.org/abs/2011.09533
http://arxiv.org/abs/2011.09533

	Expert demonstrations guide reward decomposition for multi-agent cooperation
	Abstract
	Introduction
	Related work
	Explicit value decomposition
	Implicit value decomposition

	Background
	Preliminaries
	Inverse reinforcement learning
	Occupancy measure

	Methods
	Decompose the rewards of each time step
	Reward distribution coefficient

	Experiment
	Experimental environments and settings
	Results in SMAC environment
	Results in MPE
	Results in grid world
	Analysis on data distribution and expert data

	Conclusions
	Appendix
	Experimental environment details
	Starcraft II
	MPE
	Grid world

	Baseline algorithm
	Additional experimental hyperparameters

	Data Availability
	References

