
1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 1

Learning Communication for Cooperation in
Dynamic Agent-number Environment

Weiwei Liu, Shanqi Liu, Junjie Cao, Qi Wang, Xiaolei Lang, Yong Liu,Member, IEEE,

Abstract�The number of agents in many multi-agent sys-
tems in the real world changes all the time, such as storage
robots and drone cluster systems. Still, most current multi-
agent reinforcement learning algorithms are limited to �xed
network dimensions, and prior knowledge is used to preset the
number of agents in the training phase, which leads to a poor
generalization of the algorithm. In addition, these algorithms
use centralized training to solve the instability problem of multi-
agent systems. However, the centralized learning of large-scale
multi-agent reinforcement learning algorithms will lead to an
explosion of network dimensions, which in turn leads to very
limited scalability of centralized learning algorithms. To solve
these two dif�culties, we propose Group Centralized Training
and Decentralized Execution-Unlimited Dynamic Agent-number
Network (GCTDE-UDAN). Firstly, since we use the attention
mechanism to select several leaders and establish a dynamic
number of teams, and UDAN performs a non-linear combination
of all agents’ Q values when performing value decomposition, it
is not affected by changes in the number of agents. Moreover,
our algorithm can unite any agent to form a group and conduct
centralized training within the group, avoiding network dimen-
sion explosion caused by global centralized training of large-scale
agents. Finally, we veri�ed on the simulation and experimental
platform that the algorithm can learn and perform cooperative
behaviors in many dynamic multi-agent environments.

Index Terms�multi-agent reinforcement learning, recurrent
neural network, attention mechanism, multi-agent system.

I. I NTRODUCTION

A LTHOUGH reinforcement learning (RL) has reached a
human-level level of control in many complex single-

agent tasks, such as Atari video games [1], Go games [2], and
complex continuous control scenarios, both model-based [3]
and model-free [4]. However, most of the real environments
are multi-agent systems, agents change their strategies based
on actions taken by other agents, so the multi-agent environ-
ment is complex and dynamic, which brings great dif�culties
to the learning process [5] [6] [7].

One of the dif�culties is that in the current multi-agent
reinforcement learning algorithm, only a �xed number of
agents can be trained [8] [9] [10], which creates a serious
contradiction with the reality of the ever-changing number
of agents in the real world, especially in a cooperative en-
vironment. Agents need to change their strategies according

This work was supported in part by the National Key R&D Program of
China under Grant 2017YFB1302003 and in part by the National Natural
Science Foundation of China under Grant 61836015.

All authors are with the Advanced Perception on Robotics and Intelligent
Learning Lab, College of Control Science and Enginneering, Zhejiang Uni-
versity, Hangzhou 310027, China.

Corresponding authors: Junjie Cao and Yong Liu, e-mail: cjun-
jie@zju.edu.cn and yongliu@iipc.zju.edu.cn

�&�D�U

�&�D�O�L�E�U�D�W�L�R�Q���P�D�U�N�H�U

�5�*�%
�F�D�P�H�U�D

�Z�D�O�O�&�D�U

Fig. 1: Map of the experimental site and equipment, the map
size is 2.8 * 2.8m, rasterized to 9 * 9. Use the calibra-
tion marker to establish a coordinate system. The car uses
mecanum wheels to enable it to move in any direction.

to changes in the environment continually. Some scholars have
proposed some solutions to this problem to a certain extent.
Peng and Yuan et al. [8] proposed the BiCNet algorithm, which
can handle different types of battles under different terrains,
and both sides have different numbers of AI agents during the
battle. However, due to the RNN network’s characteristics, the
number of agents has a �xed upper limit. Jiang al. [11] use
graph convolutional neural network to deal with the problem
of the uncertain number of neighbors of an agent. As the
convolutional layer increases, the perceptual domain of each
agent expands. However, the number of convolutional layers
still needs to be set in advance. The number of agents that need
to communicate cannot be dynamically changed according to
environmental changes. Although different numbers of agents
can use the above methods under a clear upper limit to
complete the cooperation task, they did not solve learning
cooperation with an unlimited number of agents.

Another dif�culty of the multi-agent system is that most
of the current multi-agent reinforcement learning algorithms
are Centralized Training and Centralized Execution (CTCE)

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 2

or Decentralized Execution (CTDE), which makes each agent
need the local information of all agents in the training phase to
estimate the value function. As a result, these algorithms are
complicated to extend to large-scale agent systems. For exam-
ple, CommNet [12] needs to communicate between agents in
the training and execution stages; that is, the network input
is the local information of all agents, so this is a CTCE
algorithm. MADDPG requires local observations and actions
of all agents in the training stage. However, only each agent’s
local information is needed in the execution phase, namely the
CTDE algorithm.

In order to solve the above problems, we proposed the
Unlimited Dynamic Agent-number Network (UDAN), which
can Group Centralized Training and Decentralized Execution
(GCTDE), we named this algorithm GCTDE-UDAN. Our
method is not affected by the increase in the number of
agents, and can still consider the information of agents inside
and outside the group to make more cooperative actions. The
contributions of this article are as follows:

1. We use the attention mechanism to build dynamic number
groups and give the attention network training method. Unlim-
ited Dynamic Agent-number Network, effectively trained in
the dynamic number of agents, is proposed, enabling agents
to learn the communication protocol within the group and non-
linearly �t the Q value of each group in the number of dynamic
agents to solve the problem of the agent’s credit assignment.

2. Unlimited Dynamic Agent-number Network is Group
Centralized Training and Decentralized Execution. Since this
algorithm only needs the agent information in the group for
Group Centralized Training. Our method solves the problem
that ordinary algorithms are dif�cult to expand as the number
of agents grows.

3. We have carried out simulation and physical experi-
ments in the Magent environment and the real-world en-
vironment, and compared our methods with various multi-
agent reinforcement learning algorithms. The result shows
that our method achieves excellent performance. All ex-
perimental demonstrations can be viewed from this link:
https://youtu.be/xeFmfK9zgMU.

II. RELATED WORK

The research on cooperation and competition between
multi-agents has a long history [13] [14]. They are called
random games, and reinforcement learning has been a fea-
sible method to promote cooperation between multi-agents
for a long time. However, as the multi-agents environment’s
complexity continues to increase, these traditional methods
are not effective. With the development of arti�cial neural
networks in recent years, scholars have begun to pursue an
end-to-end solution to multi-agents problems, typically in
Deep Reinforcement Learning (DRL) [15]. In addition, the
increasing number of multi-agents and the complexity of the
environment have brought about the necessity of communica-
tion [16] between agents.

IQL [17] is a strategy that treats each agent as an inde-
pendent individual; each learns its policy independently and
treats other agents as part of the environment. Although IQL

avoids the scalability problem of centralized training and has
good results in some scenarios, it has caused environmental
�uctuations since other agents are regarded as part of the
environment. There is no proof of convergence. Under the
global reward condition, the algorithm effect is feeble.

In order to solve the instability problem of multi-agent rein-
forcement learning, some scholars believe that agents should
learn to communicate. Foerster [18] is the �rst to introduce
communication learning in deep multi-agent reinforcement
learning, where each agent only has its partial observations.
The article assumes that the communication channel is dis-
crete; only discrete information can be transmitted between
agents. Kim et al. [19] believe that the bandwidth of com-
munication channels, in reality, is limited. If all agents send
information to this narrow bandwidth channel, information
loss or blockage will occur once the capacity is exceeded. Kim
proposed SchedNet, which introduced the Medium Access
Control (MAC) method in the communication �eld into multi-
agent reinforcement learning to solve this problem. DDRQN
[20] can solve the problem of communication and cooperation
between multiple agents so that agents can reach a communi-
cation agreement from scratch.

Although the learning and communication between agents
have achieved good results when each agent has an inde-
pendent reward function, DDRQN and SchedNet only use
global rewards for learning and cannot distinguish whether
each agent is working hard. Sunehag et al. proposed that VDN
[10] perform value decomposition of global rewards to solve
the agent’s credit assignment problem. However, VDN only
performs a simple summation for joint Q-value decomposition.
The QMIX [9] algorithm believes that this approach will make
the learned local Q function expression limited, and there is no
way to capture the more complex interrelationships between
agents. QMIX generalizes the joint Q function decomposition
method to a larger family of monotonic functions. Also, QMIX
believes that each agent only depends on local observations
and may not estimate its local Q function accurately, so it
introduces the global state as an auxiliary input. COMA [21]
introduced a counterfactual baseline function. This method
solves multi-agent credit allocation by comparing the global
reward obtained by the agent following the current strategy for
decision-making and the global reward obtained by following
a certain default strategy.

In addition, due to restrictions on bandwidth, large-scale
agent communication is challenging. Recently, scholars have
started to use the attention mechanism to enable agents to
communicate in small areas. G2ANet [22] uses a graph
attention neural network to extract the relationship between
agents. MAAC [23] learns a centralized critic with a soft-
attention mechanism. The mechanism is able to dynamically
select which agents to attend to at each time step. However,
these works can only be used in environments that have a �xed
number of agents.

To expand the applicability of the algorithm, a few works
consider training in an arbitrary-sized setting. DGN [11]
propose a graph structure to extract features from the scal-
able number of neighbors. Agarwal et al. [16] improve the
scalability of the algorithm through course learning. However,

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 3

for example, DGN requires prior knowledge to set the number
of communication layers of agents to expand the number of
agents that can be communicated and in�exible in a dynamic
number of multi-agent systems. Agarwal et al. is not an end-
to-end solution to the problem of changes in the number of
agents. Furthermore, these algorithms do not consider the plan
of centralized training execution within the group, As a result,
a large amount of bandwidth is required for communication
during the training phase.

Since most multi-agent reinforcement learning algorithms
are globally centralized training, all agents’ information is
required in the training phase, making it dif�cult for these
algorithms to be extended to large-scale agent scenarios. In
addition, unlike the algorithm mentioned above applied to
scenarios with a variable number of agents, UDAN is an end-
to-end reinforcement learning algorithm that can be used to
cooperate with unlimited dynamic agent-number.

III. BACKGROUND
Single-agent reinforcement learning is described by Markov

decision process, while multi-agent reinforcement learning
needs to be described by Markov game [24]. Among them,
Markov means that the state of the multi-agent system con-
forms to Markov, that is, the state of the next moment is only
related to the current moment, and has no direct relationship
with the previous moment. In this article, we focus on Partially
Observable Stochastic Games (POSGs) [25], that is, each agent
can only obtain part of the information in the environment.

POSG can be described by a tuple
fn; S; A 1; :::; An ; T;
; R 1; :::; Rn ; O1; :::; On g, where n
is the number of agents, and the number ofn in this article
is constantly changing.S is the system state, that is, the
joint state of each agent.A i is the set of actions available
to agent i (A = A1 � A2 � ::: � An is the joint action
space),T is the state transition function, which refers to the
probability distribution of the next state when the current
state and joint behavior of the agent are given. which is:
S � A1 � A2 � ::: � An � S ! [0;1]. Discount factor

 2 [0;1). Its size indicates the importance of future returns
in the value function. The larger the value, the more important
the future returns. On the contrary, the agents pay more
attention to the current returns.Ri is the reward function for
agenti , S � A1 � ::: � An ! R. The algorithm in this article
only uses the overall reward, that is, the sum of all agent
rewards. At last,Oi is the observation set of agenti.

For agent i, the corresponding policy is� i : S !
 (A i).
there
 (A i) is the collection of probability distributions over
A i , Each agenti , according to the current stateS, chooses
an action, or outputs an action distribution. the joint policy
of all agents is� 4= [� 1; :::� n]. State value function of agent
i: vi

� (s) = vi (s; �) =
1
�

t=0
r t E �;p [r t

i js0 = s; �]. State-action
value functionQi

� of agenti : S � A1 � ::: � An ! R. Qi
� =

r (s; a) +
E s0�p vi
�

�
s

0
�

. therea = [a1; :::; an].

IV. M ETHODS

GCTDE-UDAN judges each agent every timestepT ,
whether it becomes a group leader, initiates communication

with other agents, and selects which agents become group
members to communicate. The communication group consists
of a different number of agents according to different tasks,
and the size of the communication group is also different.
Although the communication group’s size is �xed in the
same task, the number of communication groups is constantly
changing. Each communication group changes dynamically
throughout the episode and only exists when needed. Further-
more, when multiple group leaders select an agent simultane-
ously, it will continue to participate in the information coding
of different groups, and the code will be updated by itself,
cyclically. It will work in all communication groups at the
same time. At this time, this agent acts as a communication
link in different communication groups.

GCTDE-UDAN’s network structure is shown in Fig.2,
which includes an evaluation network, a communication chan-
nel, an attention unit [26], and a mixing network. Firstly,
the attention network takes the observationoi of agent i
as the input to determine whether agenti can become the
group leader. Secondly, the group leader selects different group
members to communicate in the communication channel,
outputs communication informationgk

t , the agent obtains more
comprehensive perception information, understands and infers
other agents’ behavior, and cooperates with other agents in
decision-making and mutual assistance.

A. Unlimited Dynamic Agent-number Network

This chapter proposes a novel Unlimited Dynamic Agent-
number Network (UDAN) that can communicate with any
number of agents (not preset). In reality, the number of agents
should change with changes in tasks and environments, which
is very intuitive. Therefore, our algorithm randomly changes
the number of agents in each training episode to adapt to the
task change.

In previous algorithms, the preset network dimensions need
to be consistent with all agents’ splicing observation dimen-
sions, the number of agents between training episodes is
�xed. Also, some other algorithms set an upper limit on the
number of agents. When the number of agents is lower than
the upper limit, 0 will be used to �ll the vector to ensure
consistent dimensions. However, the upper limit of the agent’s
number for this task needs to be known in advance, and prior
knowledge is required. Also, this may lose advanced structural
information between agents. Moreover, since in a large-scale
agent environment, if the agent communicates globally, it will
greatly reduce the communication ef�ciency and even cause
the agent to move away from the task. The agent should focus
on the surrounding agent’s information situation. And in the
process of large-scale agent training, to avoid the dimensional
explosion of neural networks, the algorithm should adopt
Group Centralized Training. So inspired by the above three
points, we proposed UDAN.

Attention Net: Like on a football �eld, players generally
pay more attention to where the ball is located and the player
in possession. Therefore, the multi-agent system agents should
also focus on the agents that are closely related to themselves.
We use the attention mechanism to select each group leader in

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 4

�0�L�[�L�Q�J
�1�H�W�Z�R�U�N

�*�5�8���0�/�3�$�W�W�H�Q�W�L�R�Q
�1�H�W

�&�R�P�P�X�Q�L�F�D
���W�L�R�Q���Q�H�W�Z�R�U�N

�&�U�H�D�W�H���D
�J�U�R�X�S

�O�H�D�G�H�U

�P�H�P�E�H�U

�O�H�D�G�H�U
�/�6�7�0

�0�D�W�0�X�O�6�F�D�O�H�0�D�V�N �V�R�I�W�P�D�V�N
�0�D�W�0�X�O

�4�X�H�U�\

�.�H�\

�9�D�O�X�H

�$�W�W�H�Q

Fig. 2: GCTDE-UDAN architecture. The block diagram in the lower left corner is the attention mechanism. This article uses a
self-attention network. The block diagram in the lower right corner is a Bi-directional recurrent neural network. Among them,
obsle andobsme represent the group leader and group members’ observation values.s ands0 are hidden status.

the agents and build the group with the few agents closest to
the group leader. We train the attention network by changing
whether the communication team helps with the task.

Similar to [26], we use the self-attention mechanism. After
the observation value of agenti is processed by Long Short
Term Memory (LSTM) [27], that is,l i = L(o i), Order:
Q(Query) = K(Key) = V(Value) = l i . Calculate the dot
product betweenQ and K , use the softmax operation to
normalize the result to a probability distribution, and then
multiply it by the matrixV to get the weight sum:

Attention(Q; K; V) = softmax(
QKT
p

dk
)V ; (1)

Among them, the scale of
p

dk prevents the result of the above
formula from being too large, anddk is the dimension of a
query and key vector. Finally, a fully connected layer is used
to determine whether the agenti becomes the group leader
and establish a group.

The group established here does not require prior knowl-
edge, it does not need to be pre-set. Therefore, in each
episode, each agent may become the group leader and establish
a communication group. The communication groups change
dynamically in an episode. However, cooperation requires
a certain time step to be effective, so we set the group
creation intervalT . Limited and communication bandwidth
and communication distance, etc., communication in the real
world is also dynamically changing, so this is consistent with
the real world.

Communication Network: When agenti becomes the
group leader, he will select group members from the sur-
rounding agents and establish a communication group. When
multiple groups select agentj simultaneously, this agent will
become a bridge between different communication groups,

allowing information to �ow in different groups. For example,
agenti is a member of different groups, in the groupP :

�
oi

G t
; :::; oj

G t

�
= C

�
oi

t ; :::; oj
t

�
; (2)

in the groupQ:
�

oi
G t

; :::; ok
G t

�
= C

�
oi

G t
; :::; ok

t

�
; (3)

In the above formula,C represents the communication net-
work. Formula (2) and (3) are equivalent to the agenti
information is updated once in theP group. Then it par-
ticipates in theQ communication group, updates its own
encoding again. The last updated encoding also affects the
rest of the agent’s encoding update in theQ group. The
communication network here uses a Bi-directional LSTM [28]
unit. Unlike CommNet and BiCNet, which share information
through arithmetic average and weighted average integration
agents, the Bi-directional LSTM unit can selectively output
information that promotes cooperation, helping the agent make
decisions based on understanding and predicting the actions of
other agents.

Mixing Network: In a multi-agent system, all agents share
a global reward function. Once an agent learns some useful
strategies earlier, the rest will choose lazier strategies, making
the overall reward decline. To solve credit assignment among
agents caused by all agents sharing a reward function, we
introduce a mixing network from QMIX. The mixing network
input is the localQ function of each agent, and the output
is the globalQtot . Since each agent only depends on local
observations and may not accurately estimate its local Q
function, QMIX needs to take the global state at each moment
as an additional input to the mixing network. Unlike QMIX,
GCTDE-UDAN has integrated the relevant information of
other agents at the bottom. It can accurately estimate the local
Q function, so here we omit the global state.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 5

B. Group Centralized Training and Decentralized Execution

Although the joint action-value function can naturally deal
with cooperation problems and avoid the non-stationarity in
multi-agent reinforcement learning, as the number of agents
grows, centralized training methods cannot adapt to large-scale
agent systems. Therefore, Group Centralized Training and
Decentralized Execution is proposed, which divides the agents
into groups, performs Group Centralized Training within the
group, and performs Decentralized Execution globally. Firstly,
in groups with high agent relevance, centralized training
can solve the non-stationarity problem in multi-agent rein-
forcement learning and promote cooperation between agents;
secondly, only a limited number of groups are centralized
trained can avoid scalability problems caused by centralized
training in a large-scale agent system.

LCTDE-UDAN is a reinforcement learning method based
on value iteration. It initializes a cooperative task and
has N agents, where N is random between each episode.
The experience bufferR contains contains the tuples
(Ot ; A t ; Rt ; Ot +1 ; Ct), which represents the observations, ac-
tions and rewards of all agents at timet and t + 1. Among
them, Ot = (o t

1; : : : ; ot
N), A t = (at

1; : : : ; at
N), Rt , Ot +1 =

(ot+1
1 ; : : : ; ot+1

N) and C is a N � N matrix that records the
communication groups. Whereot

i and ot+1
i represents the

observation of agenti at momentt and t + 1 , at
i represents

the action of agenti at time t, Rt represents global reward at
time t.

The attention network is trained as a binary classi�er to
select the leader of each group. Use the communication
information in the group as the auxiliary input of the local
value network. At this time, the input of the local value
network is the communication informationoG and the agent’s
own observationo, namely:Qc = Q

�
oj ; oG i j� Q �

. Only the
observation of the agent itself is used as the input of the local
value network, namely:Qs = Q

�
oj j� Q �

. Calculate all groups’
average local value of the difference�Q i betweenQc andQs:

�Q i =
1

jG i j
(
X

j 2g i

Q
�
oj ; oG i j�

Q �
�

X

j 2G i

Q
�
oj j� Q �

); (4)

among them,j is the j -th agent andi is the i -th group.� Q is
the parameter of the local value network.

The two-classi�er network will �nally go through a Sigmoid
function and output a probability value. This probability value
re�ects the possibility of predicting the agent as the leader-
the greater the probability value, the greater the possibility of
becoming the leader. De�ne the output of the Sigmoid function
to represent the probability that the current agent is the leader
of the group:

p (oi j� p) = P (y = 1 j x) ; (5)

conversely, the probability of not being the group leader is:

1 � p (oi j� p) = P (y = 0 j x) ; (6)

from the maximum likelihood estimate, it can be derived:

P (y j x) = py (oi j� p) � (1 � p (oi j� p))1�y ; (7)

introducing the log function, there are:

logP (y jx) = log
�

py (oi j� p) � (1 � p (oi j� p))1�y
�

= ylogp(oi j� p) + (1 � y) log (1 � p (oi j� p))
(8)

make: y = � Q̂i , introduce loss function of two classi�er
network uses a binary category cross-entropy error function:

L(� p) = �� Q̂i log(p (oi j� p)) � (1 � � Q̂i) log (1 � p (oi j� p)) ;
(9)

where � Q̂i is the min-max normalized�Q i , � Q̂i 2 [0;1].
� p is the parameters of the attention network.

The interaction between the agent and the environment can
be modeled as a Markov decision process, the current state of
the agent is:

st = f (o1; r 1; a1; : : : ; at �1 ; ot ; r t); (10)

estimate the next state(st +1):

P (st +1 jst) = P (st +1 js1; : : : ; st): (11)

The agent can be rewarded every time it interacts with the
environment. The long-term return of the agent is:

Gt = r t +1 + r t +2 + � � � =
1X

k=0

� k r t +k +1 ; (12)

� is discount factor, use this long-term return to measure the
pros and cons of the agent’s strategy.

According to the current state of the agent, use the state
value function to estimate this future return.

V (s) = E[Gt jSt = s] (13)

Similarly, state-action Value function:

Q� (s; a) = E[Gt jSt = s; At = a] (14)

Derivation of Bellman equation, get the state value function:

V (s) = E[Gt jSt = s]
= E[r t +1 + �r t+2 + � 2r t+3 + : : : jSt = s]
= E[r t +1 + �(r t +2 + �r t+3 + : : :)jSt = s]
= E[r t +1 + �G t +1 jSt = s]
= E[r t +1 + �V (st+1)jSt = s]:

(15)

Similarly, state-action Value function:

Q(s; a) = E[Gt jSt = s; At = a]
= E[r t+1 + �Q(s t +1 ; at +1)jSt = s; At = a]:

(16)

When � (ajs) is deterministic policy:

V (s) = max
a2A

Q� (s; a): (17)

The value function is an evaluation of the strategy� :

8s; � � = argmax
�

V � (s): (18)

LCTDE-UDAN is trained as follows:

L(�) =
bX

i=1

h�
ytot

i � Qtot (o; a; �)
� 2

i
; (19)

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 6

Where b is the batch size of transitons sampled from the replay
buffer. The target value function is:

ytot = r +
 max
a0

Qtot (� 0; a0; � �); (20)

Where � � is the parameter of the target value network.
According to QMIX, Qtot (o; a) is:

argmax
�

Qtot (o; a) =

0

B@

argmaxa1 Q1(o1; a1)
...

argmaxan Qn (on ; an):

1

CA (21)

Where Qi (o1; a1) = Qi
c = Q(oi

t ; oi
G t

), Q is local value
network,(oi

G t
; :::; oj

G t
) = C(oi

t ; :::; oj
t).

V. SIMULATIONS AND EXPERIMENTS

To verify the algorithm’s effect in the multi-agent coop-
erative environment, we design both simulation and physical
experiments. The simulation experiment is based on Magent
[29] to enable multiple agents to round up, maintain a line,
and contact prey together, as shown in Fig.3. The physical
experiment uses multiple vehicles to round up or Look for
water over obstacles. The speci�c situation is shown in Fig.6.
In the same scenario, all agents share a reward function. Since
the number of agents needs to be constantly changing during
the test phase of the following experiment, and all agents share
a global reward, which requires credit assignment, only the
algorithm that is both CTDE and value decomposition can
be used as a benchmark here. The experimental baselines are
QMIX, VDN [10], DQN [30], COMA [31].

A. Magent
Magent is a huge grid world. Agents are controlled by

groups. In each step, each agent can choose to move to
the surrounding grid or attack the enemy. Each agent has
local information around its cell, including ID embedding, last
action, last reward, and normalized position.

Cooperative Pursuit: In this scenario, wolves round up
sheep. Each wolf will get 1 point after attacking the sheep
once, and the sheep will lose 1 point. However, wolves move
slower than sheep, so wolves need to learn to surround a sheep
so that it can’t move to keep scoring. Regardless of whether
the wolf attacks the sheep, as long as the wolf attacks, the
wolf will lose -0.2 points. This is to reduce the number of
useless attacks by wolves and to surround the sheep as soon
as possible. Each episode is 300 steps.mapsize = 100. The
speci�c settings are shown in Table I. In this scene, the number
of each wolf and sheep changes simultaneously, which aligns
with nature’s laws. Although the algorithm can be used for
unlimited agent training, it is limited to computing speed and
memory size. Here, the number of wolves and sheep is set
to vary between 8-20. Since the baseline algorithms cannot
adapt to the change in the number of agents during training,
the number of agents during the training period is set to 10.
Four wolves can catch a sheep, therefore, each team leader
can form a four-person team.

TABLE I: Cooperative Pursuit scenario setting parameters

view range attack range speed attack penalty
wolf 5 2 1 -0.2
sheep 4 0 1.5 0

TABLE II: Average reward during training phase with different
number of agents

Nums 8-20
Rewards GCTDE-UDAN 71

Nums 10 15 20

Rewards

DQN 8.5 7.91 6.26
COMA -0.71 -0.68 -0.73
VDN 7.5 14.32 3.03
QMIX 43.98 46.18 34.35

In Fig.5(a), the average reward is each agent’s reward in
each episode. Both the COMA and DQN algorithms have
achieved large rewards in the initial stage, and the rate of
rewards has increased rapidly. This is because these two
algorithms suppress the attack of the agent and obtain rewards.
Still, as the training progresses, this algorithm makes the
wolves lose the ability to attack. Therefore, even when the
wolves encounter sheep, they will not attack, and its rewards
are stable at around 0. As shown in Fig.4 (a)-left, the agent
suppresses attacks and has not learned to cooperate. However,
other algorithms rarely suppress attacks, and a large part of
their reward boost comes from attacks on sheep. Since the
wolves did not learn how to track and round up sheep at the
beginning of training, their rewards increase very slowly. As
the training progresses, the cooperation ability between the
wolves strengthens, which can trap the sheep, continuously
attack and score, and the rewards will also increase quickly.
As shown in Fig.4 (a)-right, the agents learn to track, round
up, and use terrain. Comparing these benchmark algorithms,
because GCTDE-UDAN has unlimited changes in the number
of agents in the training phase, its performance is not affected
by changes in the number of agents during testing. That is, it
has a good generalization ability to get greater rewards. More-
over, due to the added communication function, it considers
related agents’ information when constructing each agent’s Q
value, making the agents more inclined to cooperate.

Nums in Table II represents the number of agents in the
training phase, but in the testing phase, the number of agents
in each episode is randomly generated between 8-20. Rewards
represent the average return of �ve experiments. As can be
seen from the table, as the number of agents in the training
phase increases, the COMA, and DQN algorithm rewards will
not change much. It is because such algorithms suppress the
attacks of wolves and make them unable to score. However,
unlike intuition, the reward of the QMIX algorithm �rst rises
and then falls. This is because 15 agents take into account the
situation encountered between 8-20 agents. Since the number
of agents in GCTDE-UDAN is dynamic in the training phase,
its generalization ability is more robust than these baselines.
Its average reward for each agent reaches 71.

Cooperative Queue:In this scenario, the agents need to
be arranged in a line, as shown in Fig.3(b). The agent has a
�eld of view of 5 and a speed of 1. To complete the task as
soon as possible, arrange in a team, the agent will lose -0.2

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 7

�Z�R�O�I
�D�J�H�Q�W

�V�K�H�H�S

�W�L�J�H�U

�G�H�H�U

�T�X�H�X�H

Fig. 3: Simulation scenarios: cooperative pursuit(left), cooperative queue(mid), cooperative tiger(right).

�5�R�X�Q�G���X�S

�+�X�Q�W���G�R�Z�Q

�8�V�H���W�H�U�U�D�L�Q

���E�����&�R�R�S�H�U�D�W�L�Y�H���4�X�H�X�H���D�����&�R�R�S�H�U�D�W�L�Y�H���3�X�U�V�X�L�W

�/�L�Q�H���X�S
�*�D�W�K�H�U

�3�D�U�W�L�D�O
�T�X�H�X�H

�'�L�V�S�H�U�V�L�R�Q

�6�X�S�S�U�H�V�V���D�W�W�D�F�N�V

�$�W�W�D�F�N
�V�F�R�U�H

�+�X�Q�W���G�R�Z�Q

�$�W�W�D�F�N
�Q�R�W���V�F�R�U�H

���F�����&�R�R�S�H�U�D�W�L�Y�H���7�L�J�H�U

Fig. 4: Illustration of multi-agents learning to cooperate in three scenarios.

(a) Cooperative Pursuit (b) Cooperative Queue (c) Cooperative Tiger

Fig. 5: The average reward’s comparison diagram of GCTDE-UDAN and baseline algorithms in three scenarios.

points every step. All agents line up in a line and get reward
1. mapsize = 30. Each episode is 300 steps.

As shown in Fig.5(b), the algorithm �uctuates signi�cantly
in the Cooperative Queuescenario. The reason is that com-
pared with theCooperative Pursuittask, this task is chal-
lenging to transfer knowledge between different numbers of
agents. For example, the strategy in the three-agent scenario
is challenging to use in the �ve-agent scenario. Also, under
this task, the COMA algorithm has achieved good results. On
the contrary, DQN and other benchmark algorithms perform
poorly. This is because this task is entirely dependent on
the cooperation between all agents. No agent can be lazy
and not work; otherwise, all agents will lose their rewards.
The COMA algorithm mainly solves the multi-agent credit

TABLE III: Cooperative Tiger scenario setting parameters

view range attack range speed step recover hp
tiger 4 1 1 0 8
deer 1 0 1 0.2 5

assignment problem in partially observable Markov decision.
This is consistent with theCooperative Queuetask.

Compared with the benchmark algorithms, GCTDE-UDAN
still achieves state-of-the-art. The reason is that, on the one
hand, we have achieved intra-group communication, which is
essential for fully cooperative tasks. On the other hand, similar
to theCooperative Pursuitof tasks, we learn to cooperate in a
dynamic number of agents during the training process. When
the number of agents in the training phase is different, the

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 8

TABLE IV: Camera and router parameter table.

Camera Model Effective Pixels Image Resolution Frame Rate
MindVision MV-GE231GM-T 2300000 1920X1200 40FPS

Router Model Frequency Range Transmission Rate Ransmission Protocol
Huawei WS7200 2.4GHz&5GHz 2.4GHz: 574Mbps, 5GHz: 2402Mbps 802.3, 802.3u, 802.3ab

���D�����6�X�U�U�R�X�Q�G�H�G

���E�����)�L�Q�G���Z�D�W�H�U

�&�D�O�L�E�U�D�W�L�R�Q���P�D�U�N�H�U
�Z�D�O�O�D�J�H�Q�W �I�R�R�G

�&�D�O�L�E�U�D�W�L�R�Q���P�D�U�N�H�U
�Z�D�O�O�Z�D�W�H�U�D�J�H�Q�W

�7

Fig. 6: Illustration of multi-agents learn cooperative in two real-world scenarios.

knowledge transfer speed will be faster.

Cooperative Tiger:As shown in Fig.3(c), if two tigers attack
a deer at the same time, both tigers get 1 point. Otherwise, no
points are scored. Each episode is 200 steps.mapsize = 50.
Tiger’s attack damage is 1. Other parameters are shown in
Table III.

In this scenario, because a single tiger attacks the deer, no
points are scored, but the deer will lose blood, and the overall
score will drop. Therefore, the UDAN algorithm learned that
even a single tiger would not attack even if it is near the deer.
He will follow the deer and call another tiger to cooperate
with the attack to get rewards. At every step the deer recovers
its blood, the tiger even learns to stock the deer. For example,
after attacking for a while, stop the attack to restore the deer’s
blood to a healthy level, and then attack again. As shown
in Fig.5(c), the number of interactions is as high as 5000
episodes. This is because, at the beginning of the training,
the tiger can easily wipe out all the deer without learning to
cooperate, so there is no return. Also, DQN is challenging
to decompose all rewards and cannot solve the problem of
credit distribution. agents need to cooperate in pairs, this does
not match COMA’s view of agents as cooperation between
all agents to decompose rewards. Finally, the intra-group
communication of the UDAN algorithm and the powerful
generalization ability in multiple scenarios make it far better
than QMIX and VDN.

B. Physical experiments

In this physics experiment, the camera and router parameters
are shown in Table IV. We use the Mecanum wheel car
as an agent for experimentation to ensure that the car can
move in four directions. The experimental platform’s data �ow
process is as follows: The high-altitude camera determines
the coordinates of the car and obstacles and sends them
to the local computer. The UDAN and baseline algorithms
calculate agents’ next action (up, down, left, right, and waiting)
according to the coordinate information and �nally sends the
next instruction to the car through the router. After obtaining
the speci�ed message through ESP8266-WIFI on the car, it is
sent to the serial port module to determine the car’s direction
and the angle of the body. The network delay time is within
10ms, communication and other functions are realized by the
ROS platform, and the underlying control algorithm of the car
is written in C++. It should be noted that although the camera
obtains the global map information, in the local computer,
through the masking algorithm, each vehicle has only a part
of the �eld of view. GCTDE-UDAN only makes decisions
based on the part of the �eld of view around each car, that is,
the Partially Observable Markov Decision Process.

In the following experiment, the number of obstacles varies
between 0-10 to test the cooperative ability of the agent
in different terrains. Because the GCTDE-UDAN algorithm
can adapt to different numbers of agents participating in the
training. Therefore, the following experimental results under
the same task can be obtained from one training session.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 9

TABLE V: The score of the agent and the target under the
surrounded task.

Wall nums
Agent nums 1 2 3 4

Average agent score
0 29.329 28.277 26.937 28.677
1 30.077 29.502 27.844 29.727
2 30.279 29.620 28.025 28.959
3 30.101 29.434 27.841 28.182
4 29.634 29.128 27.756 26.640
5 29.305 29.004 27.288 26.164
6 29.095 28.069 27.207 25.370
7 28.585 27.770 26.798 25.147
8 27.691 27.377 26.565 24.527
9 28.194 27.530 26.238 25.080

Goal score
0 -36.838 -35.369 -34.354 -34.289
1 -36.873 -36.045 -34.806 -34.907
2 -38.788 -37.626 -35.659 -36.771
3 -37.999 -37.547 -36.698 -36.281
4 -38.390 -37.578 -35.942 -34.514
5 -37.238 -36.996 -35.842 -33.820
6 -37.364 -36.697 -34.796 -32.854
7 -36.974 -35.799 -34.545 -32.430
8 -35.447 -35.290 -34.319 -32.231
9 -37.737 -35.367 -34.150 -32.514

Surrounded:Like the Cooperative Pursuittask, the agents
surround the goal to get the team’s maximum score. Each
agent appears in the adjacent grid of the goal to get a score.
However, the agents will cooperate to surround the target and
lose its mobility to obtain the maximum return because the
target will move. As shown in Fig.6(a), the agent moves in
the grid map and needs to avoid obstacles, keep approaching
the target, track the target, and even use obstacles to surround
the target for maximum return. The moving speed of the agent
and the target is 1, and the �eld of view is 3 and 1. Each
episode is 50 steps.

Table V shows the average score of each agent under
different numbers of agents and obstacles. As shown in Table
V, when the number of obstacles remains the same, as the
number of agents increases, the agents’ average score will
decrease. This is because the speed of the agent and the target
are the same, even if it cannot form an effective envelope of
the target, the agent can still track the target score. When the
number of agents does not change, the number of obstacles
increases, the agents’ average score �rst increases and then
decreases. Because the number of obstacles is small, the agent
can use obstacles to track and surround the target. However,
too many obstacles will affect the agent’s action space, making
it dif�cult to track the target. Secondly, when the number of
obstacles is small, there are only two or three, the score of 4
agents is higher than when the number is 3. Because in the
absence of terrain advantages, the four agents can surround
the target. However, when the number of obstacles is large,
for example, seven or eight, the agent learns to use the terrain.
At this time, four agents are not needed to surround the target,
and the extra agent may have nothing to do, resulting in a
decrease in the average score. The lower part of Table V shows
the average loss score of each agent.

The experimental results are shown in Fig.7(top). Compared
with other baseline algorithms, UDAN scores higher returns,

Fig. 7: The score of the agent and the target under the
surrounded task.

and the difference in returns between different numbers of
agents is also more negligible. This is because UDAN has
acquired cooperative knowledge of different numbers of agents
during the training phase. In other baseline algorithms, the
number of agents in the training phase is set to 3. That is, only
three agents’ knowledge of hunting is learned. However, when
the number of agents is also set to 3 during the test, UDAN’s
score is still signi�cantly highest. This shows that UDAN
performance is higher than the baseline algorithm even without
considering the generalization ability of UDAN. Fig.7(below)
shows the average loss score of each agent. Because when the
agent is not in the adjacent grid of the target, it will lose 1
point every four steps. This is to punish the agent for not taking
effective measures to complete the task as soon as possible.
Therefore, the target loss situation more intuitively re�ects the
pros and cons of the agent’s behavior.

Find-water: As shown in Fig.6(b), in the task of �nding the
water source, the map is divided into three parts according to
the y-axis, which are the agent’s starting area, the obstacle
area, and the water source area. The agent needs to avoid
obstacles, and reach the water source area from any position
in the departure area. The number of water sources is the same
as the number of agents. Due to the limited number of water
sources, agents need to cooperate and keep in formation to
make each agent drink water and get the maximum return for
the team. In this task, each agent has a �eld of view of 3.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 10

TABLE VI: The score of the agent under the �nd-water task.

Wall nums
Agent nums 1 2 3 4 5

Average agent score
0 42.0 41.5 41.954 42.220 41.749
1 42.0 41.413 41.850 41.990 41.548
2 41.904 41.404 41.760 41.828 41.569
3 41.922 41.47 41.532 41.539 41.532
4 41.647 41.25 41.365 41.45 41.132
5 41.68 41.30 41.085 41.137 40.710
6 41.137 40.962 40.872 40.466 40.426
7 41.68 38.627 40.908 40.43 39.875
8 40.865 39.71 40.071 39.03 39.708
9 40.0 40.127 38.960 39.038 38.364
10 40.490 39.343 39.933 36.53 38.145
11 37.865 38.0 35.648 36.615 37.180
12 38.491 37.27 35.660 35.135 36.345
13 37.314 35.598 37.679 34.647 35.944
14 32.588 32.63 32.549 30.656 32.992

1 2 3 4

Agent nums

0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 a
ge

nt
 s

co
re

UDAN

VDN

QMIX

DQN

Fig. 8: The score of the agent under the �nd-water task.
In each episode, the number of obstacles, agents, and water
sources are randomly generated. If the agent is in the grid
adjacent to the water source, it is deemed to have obtained
the water source and will be rewarded 1. Each episode is 50
steps.

As shown in Table VI, similar to the Surrounded task, when
the number of agents remains the same, as the number of
obstacles grows, the average reward of the agents continues
to decrease. However, when the number of obstacles changes
within a small range, it has little effect on the agent’s average
reward. Because when the number of obstacles is small, there
are still many roads from the departure area to the obstacle
area. However, when the number of obstacles is too large,
the agent’s average reward will drop rapidly. Due to the
limited area of the map and many obstacles, the road will
be blocked, and only a few agents or even no agents can pass,
which signi�cantly hinders the agent from passing through the
obstacle area. As shown in Fig.6(b), both ends and the back
of the water source in the water source area are surrounded,
and only the vacant seats with the same number of front and
agent can drink water. In order to let all agents drink water,
agents need to line up tightly. Therefore, with the increase in
the number of agents, it is more dif�cult for agents to form
up, and team returns have decreased. Finally, in general, the
UDAN algorithm obtained the highest return of 42 in the task
scenario with the maximum average reward of 50, indicating
that the algorithm performed exceptionally well.

As shown in Fig.8, unlike the surround task, the increase
in the number of agents has no consistent effect on the exper-
imental results. First of all, from the whole picture, because
the baseline algorithm only learns the cooperative knowledge
of three agents, the algorithm’s generalization ability is feeble,
and its score �uctuates wildly. On the contrary, UDAN has all
the cooperative knowledge, the algorithm generalization ability
is powerful, and its score has almost no �uctuation. Secondly,
only in terms of the three agents’ cooperation, UDAN’s score
is almost the same as the best-performing QMIX algorithm.
UDAN has the best performance while maintaining the stabil-
ity of cooperation between different numbers of agents.

VI. CONCLUSIONS

This article addresses the problem that CTCE and CTDE
algorithms cannot be extended to large-scale agent scenarios.
An algorithm for centralized training within the group and
global decentralized execution is proposed, which greatly
reduces the cost of centralized training in large-scale agent
scenarios. Secondly, since the number of agents in a multi-
agent system is continually changing in reality, the algorithm
we proposed can dynamically adapt to changes in the number
of agents. Finally, this paper veri�es GCTDE-UDAN and
other benchmark algorithms in three simulation tasks and
two physical experiments. GCTDE-UDAN algorithm performs
exceptionally well in all environments.

Although the GCTDE-UDAN algorithm we proposed can
adapt to the task of changing the number of global agents,
the number of agents communicating in the group needs to
be pre-set with prior knowledge. Therefore, in future work,
we hope that each agent can establish groups with different
numbers of members to communicate according to its state.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., �Human-level control through deep reinforcement learning,�
nature, vol. 518, no. 7540, pp. 529�533, 2015.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot,et al., �Mastering the game of go with deep neural networks
and tree search,�nature, vol. 529, no. 7587, pp. 484�489, 2016.

[3] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, �Continuous deep q-
learning with model-based acceleration,� inInternational Conference
on Machine Learning, pp. 2829�2838, 2016.

[4] S. Bansal, R. Calandra, K. Chua, S. Levine, and C. Tomlin, �Mbmf:
Model-based priors for model-free reinforcement learning,�arXiv
preprint arXiv:1709.03153, 2017.

[5] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls,et al.,
�Value-decomposition networks for cooperative multi-agent learning
based on team reward.,� inAAMAS, pp. 2085�2087, 2018.

[6] L. Busoniu, R. Babuska, and B. De Schutter, �Multi-agent reinforcement
learning: A survey,� in2006 9th International Conference on Control,
Automation, Robotics and Vision, pp. 1�6, IEEE, 2006.

[7] G. Papoudakis, F. Christianos, A. Rahman, and S. V. Albrecht, �Dealing
with non-stationarity in multi-agent deep reinforcement learning,�arXiv
preprint arXiv:1906.04737, 2019.

[8] P. Peng, Q. Yuan, Y. Wen, Y. Yang, Z. Tang, H. Long, and J. Wang,
�Multiagent bidirectionally-coordinated nets for learning to play starcraft
combat games,�arXiv preprint arXiv:1703.10069, vol. 2, p. 2, 2017.

[9] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and
S. Whiteson, �Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,�arXiv preprint arXiv:1803.11485,
2018.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3076080, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 11

[10] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls,et al.,
�Value-decomposition networks for cooperative multi-agent learning,�
arXiv preprint arXiv:1706.05296, 2017.

[11] J. Jiang, C. Dun, T. Huang, and Z. Lu, �Graph convolutional reinforce-
ment learning,�arXiv preprint arXiv:1810.09202, 2018.

[12] S. Sukhbaatar, R. Fergus,et al., �Learning multiagent communication
with backpropagation,� inAdvances in neural information processing
systems, pp. 2244�2252, 2016.

[13] M. L. Littman, �Markov games as a framework for multi-agent rein-
forcement learning,�Machine Learning Proceedings, 1994.

[14] J. Schmidhuber, �A general method for multi-agent reinforcement
learning in unrestricted environments,� inAdaptation, Coevolution and
Learning in Multiagent Systems: Papers from the 1996 AAAI Spring
Symposium, pp. 84�87, 1996.

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, �Continuous control with deep reinforcement
learning,� arXiv preprint arXiv:1509.02971, 2015.

[16] A. Agarwal, S. Kumar, and K. Sycara, �Learning transferable cooper-
ative behavior in multi-agent teams,�arXiv preprint arXiv:1906.01202,
2019.

[17] T. Ardi, M. Tambet, K. Dorian, K. Ilya, K. Kristjan, A. Juhan, A. Jaan,
V. Raul, and X. Cheng-Yi, �Multiagent cooperation and competition with
deep reinforcement learning,�Plos One, vol. 12, no. 4, p. e0172395,
2017.

[18] J. N. Foerster, Y. M. Assael, N. De Freitas, and S. Whiteson, �Learning
to communicate with deep multi-agent reinforcement learning,�arXiv
preprint arXiv:1605.06676, 2016.

[19] D. Kim, S. Moon, D. Hostallero, W. J. Kang, T. Lee, K. Son, and Y. Yi,
�Learning to schedule communication in multi-agent reinforcement
learning,� arXiv preprint arXiv:1902.01554, 2019.

[20] J. N. Foerster2, Y. M. Assael, N. de Freitas, and S. Whiteson, �Learning
to communicate to solve riddles with deep distributed recurrent q-
networks,� arXiv preprint arXiv:1602.02672, 2016.

[21] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
�Counterfactual multi-agent policy gradients,� inProceedings of the
AAAI Conference on Arti�cial Intelligence, vol. 32, 2018.

[22] Y. Liu, W. Wang, Y. Hu, J. Hao, X. Chen, and Y. Gao, �Multi-agent
game abstraction via graph attention neural network,� inProceedings of
the AAAI Conference on Arti�cial Intelligence, vol. 34, pp. 7211�7218,
2020.

[23] S. Iqbal and F. Sha, �Actor-attention-critic for multi-agent reinforcement
learning,� in International Conference on Machine Learning, pp. 2961�
2970, PMLR, 2019.

[24] M. L. Littman, �Markov games as a framework for multi-agent rein-
forcement learning,� inMachine learning proceedings 1994, pp. 157�
163, Elsevier, 1994.

[25] E. A. Hansen, D. S. Bernstein, and S. Zilberstein, �Dynamic pro-
gramming for partially observable stochastic games,� inAAAI, vol. 4,
pp. 709�715, 2004.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
�. Kaiser, and I. Polosukhin, �Attention is all you need,� inAdvances
in neural information processing systems, pp. 5998�6008, 2017.

[27] S. Yan, �Understanding lstm networks,�Online). Accessed on August,
vol. 11, 2015.

[28] P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and B. Xu, �Attention-
based bidirectional long short-term memory networks for relation classi-
�cation,� in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pp. 207�212,
2016.

[29] L. Zheng, J. Yang, H. Cai, M. Zhou, W. Zhang, J. Wang, and Y. Yu,
�Magent: A many-agent reinforcement learning platform for arti�cial
collective intelligence,� inThirty-Second AAAI Conference on Arti�cial
Intelligence, 2018.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, �Playing atari with deep reinforcement learn-
ing,� arXiv preprint arXiv:1312.5602, 2013.

[31] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. White-
son, �Counterfactual multi-agent policy gradients,�arXiv preprint
arXiv:1705.08926, 2017.

Weiwei Liu was born in Hefei city. In 2019, he
entered the Institute of Cyber-Systems and Con-
trol, College of Control Science and Engineering,
Zhejiang University, to pursue the Ph.D. degree in
electronics and information.

At present, his main research directions are arti-
�cial intelligence, decision-making and control.

Shanqi Liu received his B.S. degree in control
science and engineering from Zhejiang University
in 2019. He is currently a Ph.D. Candidate of the
institute of Cyber Systems and Control, Department
of Control Science and Engineering, Zhejiang Uni-
versity.

His research area is reinforcement learning and
robotics.

Junjie Cao received the B.S. degree in Mechanical Engineering and Automa-
tion from Nanjing Tech University, Nanjing, China, in 2014 and the M.S.
degree in Mechanical Engineering (Mechatronics) from Zhejiang University,
Zhejiang, China, in 2017.

He is currently working toward the Ph.D. degree at the College of Control
Science and Engineering, Zhejiang University. His current research interests
include machine learning, sequential decision making and robotics.

Qi Wang received the BS degrees in Hangzhou
Dianzi University Information Engineering School
, Hangzhou, China, in 2016 and 2020,

His main job is to work as a research assistant in
Zhejiang University.

XiaoLei Lang received the B.S. degree in electrical
engineering from Zhejiang University of Technol-
ogy, Hangzhou, China, in 2020. He is currently a
postgraduate student studying in Zhejiang Univer-
sity.

Yong Liu received the B.S. degree in computer sci-
ence and engineering and the Ph.D. degree in com-
puter science from Zhejiang University, Hangzhou,
China, in 2001 and 2007, respectively. He is cur-
rently a Professor with the Department of Control
Science and Engineering, Institute of Cyber Systems
and Control, Zhejiang University.

He has published more than 30 research papers
in machine learning, computer vision, information
fusion, and robotics. His latest research interests in-
clude machine learning, robotics vision, information

processing, and granular computing.

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.

