Learning Communication for Cooperation in Dynamic Agent-number Environment

Weiwei Liu, Shanqi Liu, Junjie Cao, Qi Wang, Xiaolei Lang, Yong Liu, Member, IEEE,

Abstract—The number of agents in many multi-agent systems in the real world changes all the time, such as storage robots and drone cluster systems. Still, most current multi-agent reinforcement learning algorithms are limited to fixed network dimensions, and prior knowledge is used to preset the number of agents in the training phase, which leads to a poor generalization of the algorithm. In addition, these algorithms use centralized training to solve the instability problem of multi-agent systems. However, the centralized learning of large-scale multi-agent reinforcement learning algorithms will lead to an explosion of network dimensions, which in turn leads to very limited scalability of centralized learning algorithms. To solve these two difficulties, we propose Group Centralized Training and Decentralized Execution-Unlimited Dynamic Agent-number Network (GCTDE-UDAN). Firstly, since we use the attention mechanism to select several leaders and establish a dynamic number of teams, and UDAN performs a non-linear combination of all agents' Q values when performing value decomposition, it is not affected by changes in the number of agents. Moreover, our algorithm can unite any agent to form a group and conduct centralized training within the group, avoiding network dimension explosion caused by global centralized training of large-scale agents. Finally, we verified on the simulation and experimental platform that the algorithm can learn and perform cooperative behaviors in many dynamic multi-agent environments.

Index Terms—multi-agent reinforcement learning, recurrent neural network, attention mechanism, multi-agent system.

I. INTRODUCTION

Although reinforcement learning (RL) has reached a human-level level of control in many complex single-agent tasks, such as Atari video games [1], Go games [2], and complex continuous control scenarios, both model-based [3] and model-free [4]. However, most of the real environments are multi-agent systems, agents change their strategies based on actions taken by other agents, so the multi-agent environment is complex and dynamic, which brings great difficulties to the learning process [5] [6] [7].

One of the difficulties is that in the current multi-agent reinforcement learning algorithm, only a fixed number of agents can be trained [8] [9] [10], which creates a serious contradiction with the reality of the ever-changing number of agents in the real world, especially in a cooperative environment. Agents need to change their strategies according to changes in the environment continually. Some scholars have proposed some solutions to this problem to a certain extent. Peng and Yuan et al. [8] proposed the BiCNet algorithm, which can handle different types of battles under different terrains, and both sides have different numbers of AI agents during the battle. However, due to the RNN network’s characteristics, the number of agents has a fixed upper limit. Jiang et al. [11] use graph convolutional neural network to deal with the problem of the uncertain number of neighbors of an agent. As the convolutional layer increases, the perceptual domain of each agent expands. However, the number of convolutional layers still needs to be set in advance. The number of agents that need to communicate cannot be dynamically changed according to environmental changes. Although different numbers of agents can use the above methods under a clear upper limit to complete the cooperation task, they did not solve learning cooperation with an unlimited number of agents.

Another difficulty of the multi-agent system is that most of the current multi-agent reinforcement learning algorithms are Centralized Training and Centralized Execution (CTCE)
or Decentralized Execution (CTDE), which makes each agent need the local information of all agents in the training phase to estimate the value function. As a result, these algorithms are complicated to extend to large-scale agent systems. For example, CommNet [12] needs to communicate between agents in the training and execution stages; that is, the network input is the local information of all agents, so this is a CTCE algorithm. MADDPG requires local observations and actions of all agents in the training stage. However, only each agent’s local information is needed in the execution phase, namely the CTDE algorithm.

In order to solve the above problems, we proposed the Unlimited Dynamic Agent-number Network (UDAN), which can Group Centralized Training and Decentralized Execution (GCTDE), we named this algorithm GCTDE-UDAN. Our method is not affected by the increase in the number of agents, and can still consider the information of agents inside and outside the group to make more cooperative actions. The contributions of this article are as follows:

1. We use the attention mechanism to build dynamic number groups and give the attention network training method. Unlimited Dynamic Agent-number Network, effectively trained in the dynamic number of agents, is proposed, enabling agents to learn the communication protocol within the group and non-linearly fit the Q value of each group in the number of dynamic agents to solve the problem of the agent’s credit assignment.

2. Unlimited Dynamic Agent-number Network is Group Centralized Training and Decentralized Execution. Since this algorithm only needs the agent information in the group for Group Centralized Training. Our method solves the problem that ordinary algorithms are difficult to expand as the number of agents grows.

3. We have carried out simulation and physical experiments in the Magent environment and the real-world environment, and compared our methods with various multi-agent reinforcement learning algorithms. The result shows that our method achieves excellent performance. All experimental demonstrations can be viewed from this link: https://youtu.be/xeFmfK9zgMU.

II. RELATED WORK

The research on cooperation and competition between multi-agents has a long history [13] [14]. They are called random games, and reinforcement learning has been a feasible method to promote cooperation between multi-agents for a long time. However, as the multi-agents environment’s complexity continues to increase, these traditional methods are not effective. With the development of artificial neural networks in recent years, scholars have begun to pursue an end-to-end solution to multi-agents problems, typically in Deep Reinforcement Learning (DRL) [15]. In addition, the increasing number of multi-agents and the complexity of the environment have brought about the necessity of communication [16] between agents.

IQL [17] is a strategy that treats each agent as an independent individual; each learns its policy independently and treats other agents as part of the environment. Although IQL avoids the scalability problem of centralized training and has good results in some scenarios, it has caused environmental fluctuations since other agents are regarded as part of the environment. There is no proof of convergence. Under the global reward condition, the algorithm effect is feeble.

In order to solve the instability problem of multi-agent reinforcement learning, some scholars believe that agents should learn to communicate. Foerster [18] is the first to introduce communication learning in deep multi-agent reinforcement learning, where each agent only has its partial observations. The article assumes that the communication channel is discrete; only discrete information can be transmitted between agents. Kim et al. [19] believe that the bandwidth of communication channels, in reality, is limited. If all agents send information to this narrow bandwidth channel, information loss or blockage will occur once the capacity is exceeded. Kim proposed SchedNet, which introduced the Medium Access Control (MAC) method in the communication field into multi-agent reinforcement learning to solve this problem. DDRQN [20] can solve the problem of communication and cooperation between multiple agents so that agents can reach a communication agreement from scratch.

Although the learning and communication between agents have achieved good results when each agent has an independent reward function, DDRQN and SchedNet only use global rewards for learning and cannot distinguish whether each agent is working hard. Sunehag et al. proposed that VDN [10] perform value decomposition of global rewards to solve the agent’s credit assignment problem. However, VDN only performs a simple summation for joint Q-value decomposition. The QMIX [9] algorithm believes that this approach will make the learned local Q function expression limited, and there is no way to capture the more complex interrelationships between agents. QMIX generalizes the joint Q function decomposition method to a larger family of monotonic functions. Also, QMIX believes that each agent only depends on local observations and may not estimate its local Q function accurately, so it introduces the global state as an auxiliary input. COMA [21] introduced a counterfactual baseline function. This method solves multi-agent credit allocation by comparing the global reward obtained by the agent following the current strategy for decision-making and the global reward obtained by following a certain default strategy.

In addition, due to restrictions on bandwidth, large-scale agent communication is challenging. Recently, scholars have started to use the attention mechanism to enable agents to communicate in small areas. G2ANet [22] uses a graph attention neural network to extract the relationship between agents. MAAC [23] learns a centralized critic with a soft-attention mechanism. The mechanism is able to dynamically select which agents to attend to at each time step. However, these works can only be used in environments that have a fixed number of agents.

To expand the applicability of the algorithm, a few works consider training in an arbitrary-sized setting. DGN [11] propose a graph structure to extract features from the scalable number of neighbors. Agarwal et al. [16] improve the scalability of the algorithm through course learning. However,
for example, DGN requires prior knowledge to set the number of communication layers of agents to expand the number of agents that can be communicated and inflexible in a dynamic number of multi-agent systems. Agarwal et al. is not an end-to-end solution to the problem of changes in the number of agents. Furthermore, these algorithms do not consider the plan of centralized training execution within the group. As a result, a large amount of bandwidth is required for communication during the training phase.

Since most multi-agent reinforcement learning algorithms are globally centralized training, all agents’ information is required in the training phase, making it difficult for these algorithms to be extended to large-scale agent scenarios. In addition, unlike the algorithm mentioned above applied to scenarios with a variable number of agents, UDAN is an end-to-end reinforcement learning algorithm that can be used to cooperate with unlimited dynamic agent-number.

III. BACKGROUND

Single-agent reinforcement learning is described by Markov decision process, while multi-agent reinforcement learning needs to be described by Markov game. Among them, Markov means that the state of the multi-agent system conforms to Markov, that is, the state of the next moment is only related to the current moment, and has no direct relationship with the previous moment. In this article, we focus on Partially Observable Stochastic Games (POSGs), that is, each agent can only obtain part of the information in the environment.

POSG can be described by a tuple \(\{n, S, A_1, ..., A_n, T, \gamma, R_1, ..., R_n, O_1, ..., O_n\}\), where \(n\) is the number of agents, and the number of \(n\) in this article is constantly changing. \(S\) is the system state, that is, the joint state of each agent. \(A_i\) is the set of actions available to agent \(i\) \((A = A_1 \times A_2 \times ... \times A_n\) is the joint action space), \(T\) is the state transition function, which refers to the probability distribution of the next state when the current state and joint behavior of the agent are given. Which is:

\[\begin{align*}
S & \times A_1 \times A_2 \times ... \times A_n \times S \rightarrow [0, 1]. \\
\end{align*}\]

Discount factor \(\gamma \in [0, 1]\). Its size indicates the importance of future returns in the value function. The larger the value, the more important the future returns. On the contrary, the agents pay more attention to the current returns. \(R_i\) is the reward function for agent \(i\), \(S \times A_1 \times ... \times A_n \rightarrow R\). The algorithm in this article only uses the overall reward, that is, the sum of all agent rewards. At last, \(O_1\) is the observation set of agent \(i\).

For agent \(i\), the corresponding policy is \(\pi_i : S \rightarrow \Omega (A_i)\), where \(\Omega (A_i)\) is the collection of probability distributions over \(A_i\). Each agent \(i\), according to the current state \(S\), chooses an action, or outputs an action distribution, the joint policy of all agents is \(\pi \triangleq \pi_1 \times ... \times \pi_n\). State value function of agent \(i\):

\[v_{\pi i}^s (s) = v_i (s; \pi) = \sum_{t=0}^{\infty} \gamma^t E_{\pi} \left[r_{t+1} | s_t = s, \pi \right]. \]

State-action value function \(Q_{\pi i}^s\) of agent \(i\):

\[Q_{\pi i}^s = r (s, a) + \gamma E_{s' \sim \pi} [v_{\pi i}^s (s')]. \]

IV. METHODS

GCTDE-UDAN judges each agent every timestep \(T\), whether it becomes a group leader, initiates communication with other agents, and selects which agents become group members to communicate. The communication group consists of a different number of agents according to different tasks, and the size of the communication group is also different. Although the communication group’s size is fixed in the same task, the number of communication groups is constantly changing. Each communication group changes dynamically throughout the episode and only exists when needed. Furthermore, when multiple group leaders select an agent simultaneously, it will continue to participate in the information coding of different groups, and the code will be updated by itself, cyclically. It will work in all communication groups at the same time. At this time, this agent acts as a communication link in different communication groups.

GCTDE-UDAN’s network structure is shown in Fig.2, which includes an evaluation network, a communication channel, an attention unit, and a mixing network. Firstly, the attention network takes the observation \(o_i\) of agent \(i\) as the input to determine whether agent \(i\) can become the group leader. Secondly, the group leader selects different group members to communicate in the communication channel, outputs communication information \(q_{\pi i}^k\); the agent obtains more comprehensive perception information, understands and infers other agents’ behavior, and cooperates with other agents in decision-making and mutual assistance.

A. Unlimited Dynamic Agent-number Network

This chapter proposes a novel Unlimited Dynamic Agent-number Network (UDAN) that can communicate with any number of agents (not preset). In reality, the number of agents should change with changes in tasks and environments, which is very intuitive. Therefore, our algorithm randomly changes the number of agents in each training episode to adapt to the task change.

In previous algorithms, the preset network dimensions need to be consistent with all agents’ splicing observation dimensions, the number of agents between training episodes is fixed. Also, some other algorithms set an upper limit on the number of agents. When the number of agents is lower than the upper limit, \(0\) will be used to fill the vector to ensure consistent dimensions. However, the upper limit of the agent’s number for this task needs to be known in advance, and prior knowledge is required. Also, this may lose advanced structural information between agents. Moreover, since in a large-scale agent environment, if the agent communicates globally, it will greatly reduce the communication efficiency and even cause the agent to move away from the task. The agent should focus on the surrounding agent’s information situation. And in the process of large-scale agent training, to avoid the dimensional explosion of neural networks, the algorithm should adopt Group Centralized Training. So inspired by the above three points, we proposed UDAN.

Attention Net: Like on a football field, players generally pay more attention to where the ball is located and the player in possession. Therefore, the multi-agent system agents should also focus on the agents that are closely related to themselves. We use the attention mechanism to select each group leader in
allowing information to flow in different groups. For example, agent i is a member of different groups, in the group P:

$$\left(o_{G_1}^i, ..., o_{G_t}^i \right) = C \left(o_t^i, ..., o_t^i \right), \quad (2)$$

in the group Q:

$$\left(o_{G_1}^i, ..., o_{G_k}^i \right) = C \left(o_t^i, ..., o_t^i \right), \quad (3)$$

In the above formula, C represents the communication network. Formula (2) and (3) are equivalent to the agent i information is updated once in the P group. Then it participates in the Q communication group, updates its own encoding again. The last updated encoding also affects the rest of the agent’s encoding update in the Q group. The communication network here uses a Bi-directional LSTM [28] unit. Unlike CommNet and BiCNet, which share information through arithmetic average and weighted average integration agents, the Bi-directional LSTM unit can selectively output information that promotes cooperation, helping the agent make decisions based on understanding and predicting the actions of other agents.

Mixing Network: In a multi-agent system, all agents share a global reward function. Once an agent learns some useful strategies earlier, the rest will choose lazier strategies, making the overall reward decline. To solve credit assignment among agents caused by all agents sharing a reward function, we introduce a mixing network from QMIX. The mixing network input is the local Q function of each agent, and the output is the global Q_{tot}. Since each agent only depends on local observations and may not accurately estimate its local Q function, QMIX needs to take the global state at each moment as an additional input to the mixing network. Unlike QMIX, GCTDE-UDAN has integrated the relevant information of other agents at the bottom. It can accurately estimate the local Q function, so here we omit the global state.

the agents and build the group with the few agents closest to the group leader. We train the attention network by changing whether the communication team helps with the task.

Similar to [26], we use the self-attention mechanism. After the observation value of agent i is processed by Long Short Term Memory (LSTM) [27], that is, $l_i = L(o_i)$, Order: $Q(\text{Query}) = K(\text{Key}) = V(\text{Value}) = l_i$. Calculate the dot product between Q and K, use the softmax operation to normalize the result to a probability distribution, and then multiply it by the matrix V to get the weight sum:

$$\text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V, \quad (1)$$

Among them, the scale of $\sqrt{d_k}$ prevents the result of the above formula from being too large, and d_k is the dimension of a query and key vector. Finally, a fully connected layer is used to determine whether the agent i becomes the group leader and establish a group.

The group established here does not require prior knowledge, it does not need to be pre-set. Therefore, in each episode, each agent may become the group leader and establish a communication group. The communication groups change dynamically in an episode. However, cooperation requires a certain time step to be effective, so we set the group creation interval T. Limited and communication bandwidth and communication distance, etc., communication in the real world is also dynamically changing, so this is consistent with the real world.

Communication Network: When agent i becomes the group leader, he will select group members from the surrounding agents and establish a communication group. When multiple groups select agent j simultaneously, this agent will become a bridge between different communication groups, allowing information to flow in different groups. For example, agent i is a member of different groups, in the group P:

$$\left(o_{G_t}^i, ..., o_{G_t}^i \right) = C \left(o_t^i, ..., o_t^i \right), \quad (2)$$

in the group Q:

$$\left(o_{G_t}^i, ..., o_{G_t}^i \right) = C \left(o_t^i, ..., o_t^i \right), \quad (3)$$

In the above formula, C represents the communication network. Formula (2) and (3) are equivalent to the agent i information is updated once in the P group. Then it participates in the Q communication group, updates its own encoding again. The last updated encoding also affects the rest of the agent’s encoding update in the Q group. The communication network here uses a Bi-directional LSTM [28] unit. Unlike CommNet and BiCNet, which share information through arithmetic average and weighted average integration agents, the Bi-directional LSTM unit can selectively output information that promotes cooperation, helping the agent make decisions based on understanding and predicting the actions of other agents.

Mixing Network: In a multi-agent system, all agents share a global reward function. Once an agent learns some useful strategies earlier, the rest will choose lazier strategies, making the overall reward decline. To solve credit assignment among agents caused by all agents sharing a reward function, we introduce a mixing network from QMIX. The mixing network input is the local Q function of each agent, and the output is the global Q_{tot}. Since each agent only depends on local observations and may not accurately estimate its local Q function, QMIX needs to take the global state at each moment as an additional input to the mixing network. Unlike QMIX, GCTDE-UDAN has integrated the relevant information of other agents at the bottom. It can accurately estimate the local Q function, so here we omit the global state.
B. Group Centralized Training and Decentralized Execution

Although the joint action-value function can naturally deal with cooperation problems and avoid the non-stationarity in multi-agent reinforcement learning, as the number of agents grows, centralized training methods cannot adapt to large-scale agent systems. Therefore, Group Centralized Training and Decentralized Execution is proposed, which divides the agents into groups, performs Group Centralized Training within the group, and performs Decentralized Execution globally. Firstly, in groups with high agent relevance, centralized training can solve the non-stationarity problem in multi-agent reinforcement learning and promote cooperation between agents; secondly, only a limited number of groups are centralized trained can avoid scalability problems caused by centralized training in a large-scale agent system.

LCTDE-UDAN is a reinforcement learning method based on value iteration. It initializes a cooperative task and has N agents, where N is random between each episode. The experience buffer \(R \) contains the tuples \((O_t, A_t, R_t, O_{t+1}, G_t)\), which represents the observations, actions and rewards of all agents at time \(t\) and \(t+1\). Among them, \(O_t = (o^1_t, \ldots, o^N_t)\), \(A_t = (a^1_t, \ldots, a^N_t)\), \(R_t, O_{t+1} = (o^{t+1^1}_i, \ldots, o^{t+1^N}_i)\) and \(C\) is a \(N \times N\) matrix that records the communication groups. Where \(o^i_t\) and \(o^{i+1}_t\) represents the observation of agent \(i\) at moment \(t\) and \(t+1\), \(a^i_t\) represents the action of agent \(i\) at time \(t\), \(R_t\) represents global reward at time \(t\).

The attention network is trained as a binary classifier to select the leader of each group. Use the communication information in the group as the auxiliary input of the local value network. At this time, the input of the local value network is the communication information \(o^C\) and the agent’s own observation \(o\), namely: \(Q_c = Q(o_j, o^C, \theta^Q)\). Only the observation of the agent itself is used as the input of the local value network, namely: \(Q_s = Q(o_j, \theta^Q)\). Calculate all groups’ average local value of the difference \(\Delta Q_i\) between \(Q_c\) and \(Q_s\):

\[
\Delta Q_i = \frac{1}{|G_i|} \left(\sum_{j \in G_i} Q(o_j, o^C, \theta^Q) - \sum_{j \in G_i} Q(o_j, \theta^Q) \right),
\]

among them, \(j\) is the \(j\)-th agent and \(i\) is the \(i\)-th group. \(\theta^Q\) is the parameter of the local value network.

The two-classifier network will finally go through a Sigmoid function and output a probability value. This probability value reflects the possibility of predicting the agent as the leader-the greater the possibility value, the greater the possibility of becoming the leader. Define the output of the Sigmoid function to represent the probability that the current agent is the leader of the group:

\[
P(o_i | \theta^p) = P(y = 1 \mid x),
\]

conversely, the probability of not being the group leader is:

\[
1 - P(o_i | \theta^p) = P(y = 0 \mid x),
\]

from the maximum likelihood estimate, it can be derived:

\[
P(y \mid x) = p^y (o_i | \theta^p) \cdot (1 - p(o_i | \theta^p))^{1-y},
\]

introducing the log function, there are:

\[
\log P(y|x) = \log \left(p^y (o_i | \theta^p) \cdot (1 - p(o_i | \theta^p))^{1-y} \right) = y \log p (o_i | \theta^p) + (1 - y) \log (1 - p(o_i | \theta^p))
\]

make: \(y = \Delta \hat{Q}_i\), introduce loss function of two classifier network uses a binary category cross-entropy error function:

\[
\mathcal{L} (\theta^p) = -\Delta \hat{Q}_i \log (p(o_i | \theta^p)) - (1 - \Delta \hat{Q}_i) \log (1 - p(o_i | \theta^p)),
\]

where \(\Delta \hat{Q}_i\) is the min-max normalized \(\Delta Q_i\), \(\Delta \hat{Q}_i \in [0, 1]\). \(\theta^p\) is the parameters of the attention network.

The interaction between the agent and the environment can be modeled as a Markov decision process, the current state of the agent is:

\[
s_t = f(o_1, r_1, a_1, \ldots, o_{t-1}, o_t, r_t),
\]

estimate the next state\(s_{t+1}\):

\[
P(s_{t+1} | s_t) = P(s_{t+1} | s_1, \ldots, s_t).
\]

The agent can be rewarded every time it interacts with the environment. The long-term return of the agent is:

\[
G_t = r_{t+1} + \lambda r_{t+2} + \cdots = \sum_{k=0}^{\infty} \lambda^k r_{t+k+1},
\]

\(\lambda\) is discount factor, use this long-term return to measure the pros and cons of the agent’s strategy.

According to the current state of the agent, use the state value function to estimate this future return:

\[
V(s) = \mathbb{E}[G_t | S_t = s]
\]

Similarly, state-action Value function:

\[
Q_\pi(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]
\]

Derivation of Bellman equation, get the state value function:

\[
V(s) = \mathbb{E}[G_t | S_t = s]
\]

\[
= \mathbb{E}[r_{t+1} + \lambda r_{t+2} + \lambda^2 r_{t+3} + \cdots | S_t = s]
\]

\[
= \mathbb{E}[r_{t+1} + \lambda (r_{t+2} + \lambda r_{t+3} + \cdots) | S_t = s]
\]

\[
= \mathbb{E}[r_{t+1} + \lambda G_{t+1} | S_t = s]
\]

\[
= \mathbb{E}[r_{t+1} + \lambda V(s_{t+1}) | S_t = s].
\]

Similarly, state-action Value function:

\[
Q_\pi(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]
\]

\[
= \mathbb{E}[r_{t+1} + \lambda Q(s_{t+1}, a_{t+1}) | S_t = s, A_t = a].
\]

When \(\pi(a|s)\) is deterministic policy:

\[
V(s) = \max_{a \in \mathcal{A}} Q_\pi(s, a).
\]

The value function is an evaluation of the strategy \(\pi\):

\[
\forall s, \pi^* = \arg \max_{\pi} V^\pi(s).
\]

LCTDE-UDAN is trained as follows:

\[
\mathcal{L}(\theta) = \sum_{i=1}^{b} \left[(y_i^{\text{tot}} - Q_{\text{tot}}(o, a | \theta))^2 \right],
\]
Where \(b \) is the batch size of transitions sampled from the replay buffer. The target value function is:

\[
y^{\text{tot}} = r + \gamma \max_{a'} Q_{\text{tot}}(\tau', a'; \theta^-),
\]

(20)

Where \(\theta^- \) is the parameter of the target value network. According to QMIX, \(Q_{\text{tot}}(o, a) \) is:

\[
\arg\max_{\tau} Q_{\text{tot}}(o, a) = \left(\arg\max_{a_1} Q_1(o_1, a_1) \right) \quad \cdots \quad \left(\arg\max_{a_n} Q_n(o_n, a_n) \right).
\]

(21)

Where \(Q_1(o_1, a_1) = Q^1_c = Q(o_1^c, o_1^G), Q \) is local value network, \((o_1^c, ..., o_n^c), Q \) is local value network.

V. SIMULATIONS AND EXPERIMENTS

To verify the algorithm’s effect in the multi-agent cooperative environment, we design both simulation and physical experiments. The simulation experiment is based on Magent [29] to enable multiple agents to round up, maintain a line, and contact prey together, as shown in Fig.3. The physical experiment uses multiple vehicles to round up or Look for water over obstacles. The specific situation is shown in Fig.6. In the same scenario, all agents share a reward function. Since the number of agents needs to be constantly changing during the test phase of the following experiment, and all agents share a global reward, which requires credit assignment, only the algorithm that is both CTDE and value decomposition can be used as a benchmark here. The experimental baselines are QMIX, VDN [10], DQN [30], COMA [31].

A. Magent

Magent is a huge grid world. Agents are controlled by groups. In each step, each agent can choose to move to the surrounding grid or attack the enemy. Each agent has local information around its cell, including ID embedding, last action, last reward, and normalized position.

Cooperative Pursuit: In this scenario, wolves round up sheep. Each wolf will get 1 point after attacking the sheep once, and the sheep will lose 1 point. However, wolves move slower than sheep, so wolves need to learn to surround a sheep so that it can’t move to keep scoring. Regardless of whether the wolf attacks the sheep, as long as the wolf attacks, the wolf will lose -0.2 points. This is to reduce the number of useless attacks by wolves and to surround the sheep as soon as possible. Each episode is 300 steps. mapsize = 100. The specific settings are shown in Table I. In this scene, the number of each wolf and sheep changes simultaneously, which aligns with nature’s laws. Although the algorithm can be used for unlimited agent training, it is limited to computing speed and memory size. Here, the number of wolves and sheep is set to vary between 8-20. Since the baseline algorithms cannot adapt to the change in the number of agents during training, the number of agents during the training period is set to 10. Four wolves can catch a sheep, therefore, each team leader can form a four-person team.

In Fig.5(a), the average reward is each agent’s reward in each episode. Both the COMA and DQN algorithms have achieved large rewards in the initial stage, and the rate of rewards has increased rapidly. This is because these two algorithms suppress the attack of the agent and obtain rewards. Still, as the training progresses, this algorithm makes the wolves lose the ability to attack. Therefore, even when the wolves encounter sheep, they will not attack, and its rewards are stable at around 0. As shown in Fig.4 (a)-left, the agent suppresses attacks and has not learned to cooperate. However, other algorithms rarely suppress attacks, and a large part of their reward boost comes from attacks on sheep. Since the wolves did not learn how to track and round up sheep at the beginning of training, their rewards increase very slowly. As the training progresses, the cooperation ability between the wolves strengthens, which can trap the sheep, continuously attack and score, and the rewards will also increase quickly. As shown in Fig.4 (a)-right, the agents learn to track, round up, and use terrain. Comparing these benchmark algorithms, because GCTDE-UDAN has unlimited changes in the number of agents in the training phase, its performance is not affected by changes in the number of agents during testing. That is, it has a good generalization ability to get greater rewards. Moreover, due to the added communication function, it considers related agents’ information when constructing each agent’s Q value, making the agents more inclined to cooperate.

Nums in Table II represents the number of agents in the training phase, but in the testing phase, the number of agents in each episode is randomly generated between 8-20. Rewards represent the average return of five experiments. As can be seen from the table, as the number of agents in the training phase increases, the COMA, and DQN algorithm rewards will not change much. It is because such algorithms suppress the attacks of wolves and make them unable to score. However, unlike intuition, the reward of the QMIX algorithm first rises and then falls. This is because 15 agents take into account the situation encountered between 8-20 agents. Since the number of agents in GCTDE-UDAN is dynamic in the training phase, its generalization ability is more robust than these baselines. Its average reward for each agent reaches 71.

Cooperative Queue: In this scenario, the agents need to be arranged in a line, as shown in Fig.3(b). The agent has a field of view of 5 and a speed of 1. To complete the task as soon as possible, arrange in a team, the agent will lose -0.2

<table>
<thead>
<tr>
<th>view range</th>
<th>attack range</th>
<th>speed</th>
<th>attack penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>wolf</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>sheep</td>
<td>4</td>
<td>0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

| TABLE II: Average reward during training phase with different number of agents |
|-------------------------------|-----------------|-----------------|-----------------|-----------------|
| | Nums | Rewards | GCTDE-UDAN | 8-20 |
| | 10 | DQN | COMA | VDN |
| | 15 | 7.91 | -0.68 | 14.32 |
| | 20 | 6.26 | 3.03 | 34.35 |

Authorized licensed use limited to: Zhejiang University. Downloaded on July 08,2021 at 08:33:37 UTC from IEEE Xplore. Restrictions apply.
Fig. 3: Simulation scenarios: cooperative pursuit(left), cooperative queue(mid), cooperative tiger(right).

Fig. 4: Illustration of multi-agents learning to cooperate in three scenarios.

Fig. 5: The average reward’s comparison diagram of GCTDE-UDAN and baseline algorithms in three scenarios.

TABLE III: Cooperative Tiger scenario setting parameters

<table>
<thead>
<tr>
<th></th>
<th>view range</th>
<th>attack range</th>
<th>speed</th>
<th>step recover</th>
<th>hp</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiger</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>deer</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.2</td>
<td>5</td>
</tr>
</tbody>
</table>

points every step. All agents line up in a line and get reward 1. `mapsize = 30`. Each episode is 300 steps.

As shown in Fig.5(b), the algorithm fluctuates significantly in the Cooperative Queue scenario. The reason is that compared with the Cooperative Pursuit task, this task is challenging to transfer knowledge between different numbers of agents. For example, the strategy in the three-agent scenario is challenging to use in the five-agent scenario. Also, under this task, the COMA algorithm has achieved good results. On the contrary, DQN and other benchmark algorithms perform poorly. This is because this task is entirely dependent on the cooperation between all agents. No agent can be lazy and not work; otherwise, all agents will lose their rewards. The COMA algorithm mainly solves the multi-agent credit assignment problem in partially observable Markov decision. This is consistent with the Cooperative Queue task.

Compared with the benchmark algorithms, GCTDE-UDAN still achieves state-of-the-art. The reason is that, on the one hand, we have achieved intra-group communication, which is essential for fully cooperative tasks. On the other hand, similar to the Cooperative Pursuit of tasks, we learn to cooperate in a dynamic number of agents during the training process. When the number of agents in the training phase is different, the
TABLE IV: Camera and router parameter table.

<table>
<thead>
<tr>
<th>Camera Model</th>
<th>Effective Pixels</th>
<th>Image Resolution</th>
<th>Frame Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MindVision MV-GE231GM-T</td>
<td>2300000</td>
<td>1920X1200</td>
<td>40FPS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Router Model</th>
<th>Frequency Range</th>
<th>Transmission Rate</th>
<th>Ransmission Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huawei WS7200</td>
<td>2.4GHz&5GHz</td>
<td>2.4GHz: 574Mbps, 5GHz: 2402Mbps</td>
<td>802.3, 802.3u, 802.3ab</td>
</tr>
</tbody>
</table>

Fig. 6: Illustration of multi-agents learn cooperative in two real-world scenarios.

knowledge transfer speed will be faster.

Cooperative Tiger: As shown in Fig.3(c), if two tigers attack a deer at the same time, both tigers get 1 point. Otherwise, no points are scored. Each episode is 200 steps. mpsize = 50. Tiger’s attack damage is 1. Other parameters are shown in Table III.

In this scenario, because a single tiger attacks the deer, no points are scored, but the deer will lose blood, and the overall score will drop. Therefore, the UDAN algorithm learned that even a single tiger would not attack even if it is near the deer. He will follow the deer and call another tiger to cooperate with the attack to get rewards. At every step the deer recovers its blood, the tiger even learns to stock the deer. For example, after attacking for a while, stop the attack to restore the deer’s blood to a healthy level, and then attack again. As shown in Fig.5(c), the number of interactions is as high as 5000 episodes. This is because, at the beginning of the training, the tiger can easily wipe out all the deer without learning to cooperate, so there is no return. Also, DQN is challenging to decompose all rewards and cannot solve the problem of credit distribution. agents need to cooperate in pairs, this does not match COMA’s view of agents as cooperation between all agents to decompose rewards. Finally, the intra-group communication of the UDAN algorithm and the powerful generalization ability in multiple scenarios make it far better than QMIX and VDN.

B. Physical experiments

In this physics experiment, the camera and router parameters are shown in Table IV. We use the Mecanum wheel car as an agent for experimentation to ensure that the car can move in four directions. The experimental platform’s data flow process is as follows: The high-altitude camera determines the coordinates of the car and obstacles and sends them to the local computer. The UDAN and baseline algorithms calculate agents’ next action (up, down, left, right, and waiting) according to the coordinate information and finally sends the next instruction to the car through the router. After obtaining the specified message through ESP8266-WIFI on the car, it is sent to the serial port module to determine the car’s direction and the angle of the body. The network delay time is within 10ms, communication and other functions are realized by the ROS platform, and the underlying control algorithm of the car is written in C++. It should be noted that although the camera obtains the global map information, in the local computer, through the masking algorithm, each vehicle has only a part of the field of view. GCTDE-UDAN only makes decisions based on the part of the field of view around each car, that is, the Partially Observable Markov Decision Process.

In the following experiment, the number of obstacles varies between 0-10 to test the cooperative ability of the agent in different terrains. Because the GCTDE-UDAN algorithm can adapt to different numbers of agents participating in the training. Therefore, the following experimental results under the same task can be obtained from one training session.
TABLE V: The score of the agent and the target under the surrounded task.

<table>
<thead>
<tr>
<th>Wall nums</th>
<th>Agent nums</th>
<th>Average agent score</th>
<th>Goal score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>29.329</td>
<td>28.277</td>
<td>26.937</td>
</tr>
<tr>
<td>1</td>
<td>30.077</td>
<td>29.502</td>
<td>27.844</td>
</tr>
<tr>
<td>2</td>
<td>30.279</td>
<td>29.620</td>
<td>28.025</td>
</tr>
<tr>
<td>3</td>
<td>30.101</td>
<td>29.434</td>
<td>27.841</td>
</tr>
<tr>
<td>4</td>
<td>29.634</td>
<td>29.128</td>
<td>27.756</td>
</tr>
<tr>
<td>5</td>
<td>29.305</td>
<td>29.004</td>
<td>27.288</td>
</tr>
<tr>
<td>6</td>
<td>29.095</td>
<td>28.069</td>
<td>27.207</td>
</tr>
<tr>
<td>7</td>
<td>28.585</td>
<td>27.770</td>
<td>26.798</td>
</tr>
<tr>
<td>8</td>
<td>27.691</td>
<td>27.377</td>
<td>26.207</td>
</tr>
<tr>
<td>9</td>
<td>28.194</td>
<td>27.530</td>
<td>26.238</td>
</tr>
</tbody>
</table>

Surrounded: Like the Cooperative Pursuit task, the agents surround the goal to get the team’s maximum score. Each agent appears in the adjacent grid of the goal to get a score. However, the agents will cooperate to surround the target and lose its mobility to obtain the maximum return because the target will move. As shown in Fig.6(a), the agent moves in the grid map and needs to avoid obstacles, keep approaching the target, track the target, and even use obstacles to surround the target for maximum return. The moving speed of the agent and the target is 1, and the field of view is 3 and 1. Each episode is 50 steps.

Table V shows the average score of each agent under different numbers of agents and obstacles. As shown in Table V, when the number of obstacles remains the same, as the number of agents increases, the agents’ average score will decrease. This is because the speed of the agent and the target are the same, even if it cannot form an effective envelope of the target, the agent can still track the target score. When the number of agents does not change, the number of obstacles increases, the agents’ average score first increases and then decreases. Because the number of obstacles is small, the agent can use obstacles to track and surround the target. However, too many obstacles will affect the agent’s action space, making it difficult to track the target. Secondly, when the number of obstacles is small, there are only two or three, the score of 4 agents is higher than when the number is 3. Because in the absence of terrain advantages, the four agents can surround the target. However, when the number of obstacles is large, for example, seven or eight, the agent learns to use the terrain. At this time, four agents are not needed to surround the target, and the extra agent may have nothing to do, resulting in a decrease in the average score. The lower part of Table V shows the average loss score of each agent.

The experimental results are shown in Fig.7(top). Compared with other baseline algorithms, UDAN scores higher returns, and the difference in returns between different numbers of agents is also more negligible. This is because UDAN has acquired cooperative knowledge of different numbers of agents during the training phase. In other baseline algorithms, the number of agents in the training phase is set to 3. That is, only three agents’ knowledge of hunting is learned. However, when the number of agents is also set to 3 during the test, UDAN’s score is still significantly higher. This shows that UDAN performance is higher than the baseline algorithm even without considering the generalization ability of UDAN. Fig.7(below) shows the average loss score of each agent. Because when the agent is not in the adjacent grid of the target, it will lose 1 point every four steps. This is to punish the agent for not taking effective measures to complete the task as soon as possible. Therefore, the target loss situation more intuitively reflects the pros and cons of the agent’s behavior.

Find-water: As shown in Fig.6(b), in the task of finding the water source, the map is divided into three parts according to the y-axis, which are the agent’s starting area, the obstacle area, and the water source area. The agent needs to avoid obstacles, and reach the water source area from any position in the departure area. The number of water sources is the same as the number of agents. Due to the limited number of water sources, agents need to cooperate and keep in formation to make each agent drink water and get the maximum return for the team. In this task, each agent has a field of view of 3.
TABLE VI: The score of the agent under the find-water task.

<table>
<thead>
<tr>
<th>Agent nums</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall nums</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>42.0</td>
<td>41.5</td>
<td>41.954</td>
<td>42.220</td>
<td>41.749</td>
</tr>
<tr>
<td>1</td>
<td>42.0</td>
<td>41.413</td>
<td>41.850</td>
<td>41.990</td>
<td>41.548</td>
</tr>
<tr>
<td>2</td>
<td>41.904</td>
<td>41.404</td>
<td>41.760</td>
<td>41.828</td>
<td>41.569</td>
</tr>
<tr>
<td>3</td>
<td>41.922</td>
<td>41.47</td>
<td>41.532</td>
<td>41.539</td>
<td>41.532</td>
</tr>
<tr>
<td>4</td>
<td>41.647</td>
<td>41.25</td>
<td>41.365</td>
<td>41.45</td>
<td>41.132</td>
</tr>
<tr>
<td>5</td>
<td>41.68</td>
<td>41.30</td>
<td>41.085</td>
<td>41.137</td>
<td>40.710</td>
</tr>
<tr>
<td>6</td>
<td>41.137</td>
<td>40.962</td>
<td>40.872</td>
<td>40.466</td>
<td>40.426</td>
</tr>
<tr>
<td>7</td>
<td>41.68</td>
<td>38.627</td>
<td>40.908</td>
<td>40.43</td>
<td>39.875</td>
</tr>
<tr>
<td>8</td>
<td>40.865</td>
<td>39.71</td>
<td>40.071</td>
<td>39.03</td>
<td>39.708</td>
</tr>
<tr>
<td>9</td>
<td>40.0</td>
<td>40.127</td>
<td>38.960</td>
<td>39.038</td>
<td>38.364</td>
</tr>
<tr>
<td>10</td>
<td>40.490</td>
<td>39.343</td>
<td>39.933</td>
<td>36.53</td>
<td>38.145</td>
</tr>
<tr>
<td>11</td>
<td>37.865</td>
<td>38.0</td>
<td>35.648</td>
<td>36.615</td>
<td>37.180</td>
</tr>
<tr>
<td>12</td>
<td>38.491</td>
<td>37.27</td>
<td>35.660</td>
<td>35.135</td>
<td>36.345</td>
</tr>
<tr>
<td>13</td>
<td>37.314</td>
<td>35.598</td>
<td>37.679</td>
<td>34.647</td>
<td>35.944</td>
</tr>
<tr>
<td>14</td>
<td>32.588</td>
<td>32.63</td>
<td>32.549</td>
<td>30.656</td>
<td>32.992</td>
</tr>
</tbody>
</table>

As shown in Fig. 8, unlike the surround task, the increase in the number of agents has no consistent effect on the experimental results. First of all, from the whole picture, because the baseline algorithm only learns the cooperative knowledge of three agents, the algorithm’s generalization ability is feeble, and its score fluctuates wildly. On the contrary, UDAN has all the cooperative knowledge, the algorithm generalization ability is powerful, and its score has almost no fluctuation. Secondly, only in terms of the three agents’ cooperation, UDAN’s score is almost the same as the best-performing QMIX algorithm. UDAN has the best performance while maintaining the stability of cooperation between different numbers of agents.

VI. CONCLUSIONS

This article addresses the problem that CTCE and CTDE algorithms cannot be extended to large-scale agent scenarios. An algorithm for centralized training within the group and global decentralized execution is proposed, which greatly reduces the cost of centralized training in large-scale agent scenarios. Secondly, since the number of agents in a multi-agent system is continually changing in reality, the algorithm we proposed can dynamically adapt to changes in the number of agents. Finally, this paper verifies GCTDE-UDAN and other benchmark algorithms in three simulation tasks and two physical experiments. GCTDE-UDAN algorithm performs exceptionally well in all environments.

Although the GCTDE-UDAN algorithm we proposed can adapt to the task of changing the number of global agents, the number of agents communicating in the group needs to be pre-set with prior knowledge. Therefore, in future work, we hope that each agent can establish groups with different numbers of members to communicate according to its state.

REFERENCES

...