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AbstractThe number of agents in many multi-agent sys-
tems in the real world changes all the time, such as storage
robots and drone cluster systems. Still, most current multi-
agent reinforcement learning algorithms are limited to xed
network dimensions, and prior knowledge is used to preset the — =N
number of agents in the training phase, which leads to a poor —_-
generalization of the algorithm. In addition, these algorithms 1 1 - ==
use centralized training to solve the instability problem of multi- 1 1
agent systems. However, the centralized learning of large-scale
multi-agent reinforcement learning algorithms will lead to an — =S
explosion of network dimensions, which in turn leads to very
limited scalability of centralized learning algorithms. To solve - = - I 1
these two dif culties, we propose Group Centralized Training - -
and Decentralized Execution-Unlimited Dynamic Agent-number
Network (GCTDE-UDAN). Firstly, since we use the attention
mechanism to select several leaders and establish a dynamic o
number of teams, and UDAN performs a non-linear combination /& DU
of all agents’ Q values when performing value decomposition, it
is not affected by changes in the number of agents. Moreover,
our algorithm can unite any agent to form a group and conduct
centralized training within the group, avoiding network dimen-
sion explosion caused by global centralized training of large-scale
agents. Finally, we veri ed on the simulation and experimental
platform that the algorithm can learn and perform cooperative
behaviors in many dynamic multi-agent environments.

Index Terms multi-agent reinforcement learning, recurrent Fig. 1: Map of the experimental site and equipment, the map
neural network, attention mechanism, multi-agent system. size is 2.8 * 2.8m. rasterized to 9 * 9. Use the calibra-

tion marker to establish a coordinate system. The car uses
I. INTRODUCTION mecanum wheels to enable it to move in any direction.

= & DU

LTHOUGH reinforcement learning (RL) has reached a

human-level level of control in many complex single-
agent tasks, such as Atari video gamiés [1], Go gafries [2], dR¢hanges in the environment continually. Some scholars have
complex continuous control scenarios, both model-based EPPosed some solutions to this problem to a certain extent.
and model-free[[4]. However, most of the real environment&eng and Yuan et a|.|[8] proposed the BiCNet algorithm, which
are mum_agent systemS, agents Change their Strategies b&ssy handle different types of battles under different terrains,

on actions taken by other agents, so the multi-agent envirgid both sides have different numbers of Al agents during the
ment is Comp|ex and dynamici which brings great dif Cu|tie§att|e. However, due to the RNN network’s characteristics, the

to the learning process|[S]|[6] [7]. number of agents has a xed upper limit. Jiang al.|[11] use

One of the dif culties is that in the current multi-agentdraph convolutional neural network to deal with the problem
reinforcement learning algorithm, only a xed number off the uncertain number of neighbors of an agent. As the
agents can be trained|[8]][9] [L0], which creates a seriogg@nvolutional layer increases, the perceptual dom_aln of each
contradiction with the reality of the ever-changing numbetgent expands. However, the number of convolutional layers
of agents in the real world, especially in a cooperative eflill needs to be setin advance. The number of agents that need
vironment. Agents need to change their strategies accordfigcommunicate cannot be dynamically changed according to
environmental changes. Although different numbers of agents
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or Decentralized Execution (CTDE), which makes each agemtoids the scalability problem of centralized training and has
need the local information of all agents in the training phase ¢gmod results in some scenarios, it has caused environmental
estimate the value function. As a result, these algorithms auetuations since other agents are regarded as part of the
complicated to extend to large-scale agent systems. For examvironment. There is no proof of convergence. Under the
ple, CommNet[[1R2] needs to communicate between agentsgilobal reward condition, the algorithm effect is feeble.
the training and execution stages; that is, the network inputin order to solve the instability problem of multi-agent rein-
is the local information of all agents, so this is a CTCHorcement learning, some scholars believe that agents should
algorithm. MADDPG requires local observations and actioearn to communicate. Foerstér [18] is the rst to introduce
of all agents in the training stage. However, only each agentemmunication learning in deep multi-agent reinforcement
local information is needed in the execution phase, namely tlearning, where each agent only has its partial observations.
CTDE algorithm. The article assumes that the communication channel is dis-
In order to solve the above problems, we proposed tleete; only discrete information can be transmitted between
Unlimited Dynamic Agent-number Network (UDAN), whichagents. Kim et al.[[19] believe that the bandwidth of com-
can Group Centralized Training and Decentralized Executionunication channels, in reality, is limited. If all agents send
(GCTDE), we named this algorithm GCTDE-UDAN. Ourinformation to this narrow bandwidth channel, information
method is not affected by the increase in the number Muiss or blockage will occur once the capacity is exceeded. Kim
agents, and can still consider the information of agents insigeoposed SchedNet, which introduced the Medium Access
and outside the group to make more cooperative actions. Tentrol (MAC) method in the communication eld into multi-
contributions of this article are as follows: agent reinforcement learning to solve this problem. DDRQN
1. We use the attention mechanism to build dynamic numb20] can solve the problem of communication and cooperation
groups and give the attention network training method. Unlinpetween multiple agents so that agents can reach a communi-
ited Dynamic Agent-number Network, effectively trained ircation agreement from scratch.
the dynamic number of agents, is proposed, enabling agentélthough the learning and communication between agents
to learn the communication protocol within the group and notvave achieved good results when each agent has an inde-
linearly tthe Q value of each group in the number of dynamipendent reward function, DDRQN and SchedNet only use
agents to solve the problem of the agent’s credit assignmegtobal rewards for learning and cannot distinguish whether
2. Unlimited Dynamic Agent-number Network is Groupeach agent is working hard. Sunehag et al. proposed that VDN
Centralized Training and Decentralized Execution. Since tHiEO] perform value decomposition of global rewards to solve
algorithm only needs the agent information in the group fdhe agent’s credit assignment problem. However, VDN only
Group Centralized Training. Our method solves the problep@rforms a simple summation for joint Q-value decomposition.
that ordinary algorithms are dif cult to expand as the numberhe QMIX [9] algorithm believes that this approach will make
of agents grows. the learned local Q function expression limited, and there is no
3. We have carried out simulation and physical expenvay to capture the more complex interrelationships between
ments in the Magent environment and the real-world eBgents. QMIX generalizes the joint Q function decomposition
vironment, and compared our methods with various multihethod to a larger family of monotonic functions. Also, QMIX
agent reinforcement learning algorithms. The result sholelieves that each agent only depends on local observations
that our method achieves excellent performance. All e_Rnd may not estimate its local Q function accurately, so it
perimental demonstrations can be viewed from this linkatroduces the global state as an auxiliary input. COMA [21]
https://youtu.be/xeFmfK9zgMU. introduced a counterfactual baseline function. This method
solves multi-agent credit allocation by comparing the global
reward obtained by the agent following the current strategy for
decision-making and the global reward obtained by following
The research on cooperation and competition betwearcertain default strategy.
multi-agents has a long history [13] [14]. They are called In addition, due to restrictions on bandwidth, large-scale
random games, and reinforcement learning has been a fagent communication is challenging. Recently, scholars have
sible method to promote cooperation between multi-agerdtarted to use the attention mechanism to enable agents to
for a long time. However, as the multi-agents environment®mmunicate in small areas. G2ANet [22] uses a graph
complexity continues to increase, these traditional methodtention neural network to extract the relationship between
are not effective. With the development of arti cial neurabgents. MAAC [[23] learns a centralized critic with a soft-
networks in recent years, scholars have begun to pursueattention mechanism. The mechanism is able to dynamically
end-to-end solution to multi-agents problems, typically iselect which agents to attend to at each time step. However,
Deep Reinforcement Learning (DRL) [15]. In addition, thehese works can only be used in environments that have a xed
increasing number of multi-agents and the complexity of theumber of agents.
environment have brought about the necessity of communica-To expand the applicability of the algorithm, a few works
tion [16] between agents. consider training in an arbitrary-sized setting. DGN |[11]
IQL [17] is a strategy that treats each agent as an inderopose a graph structure to extract features from the scal-
pendent individual; each learns its policy independently amdble number of neighbors. Agarwal et é&l. [16] improve the
treats other agents as part of the environment. Although 1Q@kalability of the algorithm through course learning. However,

Il. RELATED WORK
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for example, DGN requires prior knowledge to set the numbwith other agents, and selects which agents become group
of communication layers of agents to expand the number members to communicate. The communication group consists
agents that can be communicated and in exible in a dynami¢ a different number of agents according to different tasks,
number of multi-agent systems. Agarwal et al. is not an endnd the size of the communication group is also different.
to-end solution to the problem of changes in the number afthough the communication group’s size is xed in the
agents. Furthermore, these algorithms do not consider the ptame task, the number of communication groups is constantly
of centralized training execution within the group, As a resulthanging. Each communication group changes dynamically
a large amount of bandwidth is required for communicatiathroughout the episode and only exists when needed. Further-
during the training phase. more, when multiple group leaders select an agent simultane-
Since most multi-agent reinforcement learning algorithmmusly, it will continue to participate in the information coding
are globally centralized training, all agents’ information isf different groups, and the code will be updated by itself,
required in the training phase, making it dif cult for thesecyclically. It will work in all communication groups at the
algorithms to be extended to large-scale agent scenarioss#tme time. At this time, this agent acts as a communication
addition, unlike the algorithm mentioned above applied tink in different communication groups.
scenarios with a variable number of agents, UDAN is an end-GCTDE-UDAN’s network structure is shown in Fig.2,
to-end reinforcement learning algorithm that can be used wdich includes an evaluation network, a communication chan-

cooperate with unlimited dynamic agent-number. nel, an attention unit/ [26], and a mixing network. Firstly,
the attention network takes the observation of agenti
I1l. BACKGROUND as the input to determine whether agéntan become the

Single-agent reinforcement learning is described by Markgroup leader. Secondly, the group leader selects different group
decision process, while multi-agent reinforcement learningembers to communicate in the communication channel,
needs to be described by Markov garhe|[24]. Among themutputs communication informatiagf, the agent obtains more
Markov means that the state of the multi-agent system caremprehensive perception information, understands and infers
forms to Markov, that is, the state of the next moment is onbther agents’ behavior, and cooperates with other agents in
related to the current moment, and has no direct relationshipcision-making and mutual assistance.
with the previous moment. In this article, we focus on Partially
Observable Stochastic Games (POSGS) [25], that is, each agent . . . .
can only obtain part of the info(rmation )ir[1 th]e environment.%' [Jnllm|ted Dynamic Agent-number Network

POSG can be described by a tuple This chapter proposes a novel Unlimited Dynamic Agent-
fn;S;A 1,5 AN T, ;R 1R, Og;:;0rg,  where n number Network (UDAN) that can communicate with any
is the number of agents, and the numbemoih this article number of agents (not preset). In reality, the number of agents
is constantly changingS is the system state, that is, theshould change with changes in tasks and environments, which
joint state of each agenf\; is the set of actions availableis very intuitive. Therefore, our algorithm randomly changes
to agenti (A = A; A, i A, is the joint action the number of agents in each training episode to adapt to the
space),T is the state transition function, which refers to théask change.
probability distribution of the next state when the current In previous algorithms, the preset network dimensions need
state and joint behavior of the agent are given. which & be consistent with all agents’ splicing observation dimen-
S A; A, @i A, S ! [0;1]. Discount factor sions, the number of agents between training episodes is

2 [0;1). Its size indicates the importance of future returnged. Also, some other algorithms set an upper limit on the
in the value function. The larger the value, the more importanumber of agents. When the number of agents is lower than
the future returns. On the contrary, the agents pay mdie upper limit, O will be used to Il the vector to ensure
attention to the current returnR; is the reward function for consistent dimensions. However, the upper limit of the agent’s
agenti, S A; :: Ap! R.The algorithm in this article number for this task needs to be known in advance, and prior
only uses the overall reward, that is, the sum of all agekihowledge is required. Also, this may lose advanced structural
rewards. At lastO; is the observation set of ageint information between agents. Moreover, since in a large-scale

For agent i, the corresponding policy i$ : S'! (Ai). agent environment, if the agent communicates globally, it will
there (A;) is the collection of probability distributions overgreatly reduce the communication ef ciency and even cause
A, Each agent, according to the current stat®, chooses the agent to move away from the task. The agent should focus
an action, or outputs an action distribution. the joint policgn the surrounding agent’s information situation. And in the
of all agents is 2 [ 1;:1 o] State value function of agentpProcess of large-scale agent training, to avoid the dimensional
explosion of neural networks, the algorithm should adopt

iV = vi(s; )= r'E, [rljsg = s; ]. State-action . o S
() N (S.’ ) =0 P [rijso = s; ] State a.c ° Group Centralized Training. So inspired by the above three
value functionQ' of agenti:S A; @ Ap! R.Q' = points, we proposed UDAN
. 0 1 "
r(ssa)+ Eg, v s .therea=[a;:;aq]. Attention Net: Like on a football eld, players generally
pay more attention to where the ball is located and the player
IV. METHODS in possession. Therefore, the multi-agent system agents should

GCTDE-UDAN judges each agent every timestdp also focus on the agents that are closely related to themselves.
whether it becomes a group leader, initiates communicatite use the attention mechanism to select each group leader in
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Fig. 2: GCTDE-UDAN architecture. The block diagram in the lower left corner is the attention mechanism. This article uses a
self-attention network. The block diagram in the lower right corner is a Bi-directional recurrent neural network. Among them,
obse andobsy represent the group leader and group members’ observation valaes.s® are hidden status.

the agents and build the group with the few agents closestaitowing information to ow in different groups. For example,
the group leader. We train the attention network by changimagenti is a member of different groups, in the groBp
whether the communication team helps with the task.

I ... —_ (. .
Similar to [26], we use the self-attention mechanism. After 06, + - OIGt =C o;ug @
the observation value of agentis processed by Long Shortin the groupQ:
Term Memory (LSTM) [[27], that is,; = L(o;), Order: _ ,
Q(Query) = K(Key) = V(Value) = ;. Calculate the dot Og, ;05 =C og sl ©)

product betweenQ and K, use the softmax operation to
normalize the result to a probability distribution, and the
multiply it by the matrixV to get the weight sum:

H'n the above formulaC represents the communication net-
work. Formula (2) and (3) are equivalent to the agent
information is updated once in the group. Then it par-
KT ticipat_es in th_eQ communication group, _updates its own
Attention(Q; K; V) = softmax( L)V; (1) encoding again. The last updated encoding also affects the
di rest of the agent’s encoding update in tQe group. The
p__ communication network here uses a Bi-directional LSTM [28]
Among them, the scale ofdi prevents the result of the aboveypt. Unlike CommNet and BiCNet, which share information
formula from being too large, andk is the dimension of & hough arithmetic average and weighted average integration
query and key vector. Finally, a fully connected layer is Useghents, the Bi-directional LSTM unit can selectively output
to determine whether the agentbecomes the group leadernformation that promotes cooperation, helping the agent make
and establish a group. decisions based on understanding and predicting the actions of
The group established here does not require prior knovdther agents.
edge, it does not need to be pre-set. Therefore, in eactMixing Network: In a multi-agent system, all agents share
episode, each agent may become the group leader and establigfiobal reward function. Once an agent learns some useful
a communication group. The communication groups changgategies earlier, the rest will choose lazier strategies, making
dynamically in an episode. However, cooperation requirgise overall reward decline. To solve credit assignment among
a certain time step to be effective, so we set the groggents caused by all agents sharing a reward function, we
creation intervalT. Limited and communication bandwidthintroduce a mixing network from QMIX. The mixing network
and communication distance, etc., communication in the reaput is the localQ function of each agent, and the output
world is also dynamically changing, so this is consistent witlg the globalQ. Since each agent only depends on local
the real world. observations and may not accurately estimate its local Q
Communication Network: When agenti becomes the function, QMIX needs to take the global state at each moment
group leader, he will select group members from the suas an additional input to the mixing network. Unlike QMIX,
rounding agents and establish a communication group. Whe&TDE-UDAN has integrated the relevant information of
multiple groups select ageptsimultaneously, this agent will other agents at the bottom. It can accurately estimate the local
become a bridge between different communication group3,function, so here we omit the global state.
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B. Group Centralized Training and Decentralized Executionntroducing the log function, there are:

.Although thg joint action-value functlon can naturally qe"’}llogP (yix)= log PP @] ") (1 p(oij p))ly
with cooperation problems and avoid the non-stationarity in _ _ (8)
multi-agent reinforcement learning, as the number of agents = ylogp(oij P)+(1 y)log(1 p(oij 7))
grows, centralized training methods cannot a_tdapt to Igrge-sc%leke:y = @, introduce loss function of two classi er
agent systems. Therefore, Group Centralized Training an

. T . - network uses a binary category cross-entropy error function:
Decentralized Execution is proposed, which divides the agents y gory Py

into groups, performs Group Centralized Training within the( P) = Qilog(p(aij ®)) @  Qi)log(l p(aij P));
group, and performs Decentralized Execution globally. Firstly, 9)
in groups with high agent relevance, centralized training

can solve the non-stationarity problem in multi-agent reivhere Qi is the min-max normalizedQ ;, Q; 2 [0;1].

forcement learning and promote cooperation between agenfsiS the parameters of the attention network.

trained can avoid scalability problems caused by centralizB§ modeled as a Markov decision process, the current state of
training in a large-scale agent system. the agent is:

LCTDE-UDAN is a reinforcement learning method based
on value iteration. It initializes a cooperative task and
has N agents, where N is random between each episo@gtimate the next state(s ):

The experience bufferR contains contains the tuples ; . }
(O Ag; Ezt; Or+1 ; Ct), Which represents the observationsp, ac- P(Stais) = P(Stajsy s (11)
tions and rewards of all agents at timeandt + 1. Among The agent can be rewarded every time it interacts with the

st = f(01;r1;a1;: a1 ;0 Mt); (10)

them,O; = (0%;:::;04), Ar = (a};:::;ay), Ry, Os1 =  environment. The long-term return of the agent is:

(0 ;:::;0%t ) andC is aN N matrix that records the M

communication groups. Where and o** represents the Gt = Figg + Fap + = KoY k41 (12)
observation of agent at momentt andt + 1, a' represents k=0

the action of agent at timet, R; represents global reward at

is discount factor, use this long-term return to measure the
pros and cons of the agent’s strategy.

The attention network is trained as a binary classier 10 a¢qording to the current state of the agent, use the state
select the leader of each group. Use the commumcatl?glue function to estimate this future return
information in the group as the auxiliary input of the local '

value network. At this time, the input of the local value V(s) = E[G¢]S; = S] (13)
network is the communication informatiaig and the agent’s
own observatioro, namely:Q; = Q 0;;05,j 2 . Only the
observation of the agent itself is used as the input of the local Q (s;a) = E[GyjS; = s;A; = a] (14)
value network, namelyQs = Q g;j Q | Calculate all groups’ o ) ]
average local value of the differend@ ; betweerQ. andQs: Derivation of Bellman equation, get the state value function:

X X V(s) = E[GjSt = s]
2" Qg0 ° Q 9j ) ) |
iGij 201 b (26, ! NG Elfts1 + w2 + 2rus +:::jS; = 8]
Efrter + (r 12 + rus +::2)jSt =] (15)

Elrt+r + G 41]St = 9]

the parameter of the local value network. Elr + V S, = ol

The two-classi er network will nally go through a Sigmoid [ (Sts1 )iSt = sf
function and output a probability value. This probability valu&imilarly, state-action Value function:
re ects the possibility of predicting the agent as the leader- s'a) = E[GiS = s'A, = a
the greater the probability value, the greater the possibility on( @) 3 [GuiS: ' _ ] I ¢ L))
becoming the leader. De ne the output of the Sigmoid function = Efrea + Q(S 14158041 )iSt = SAC = @]
to represent the probability that the current agent is the leadghen (ajs) is deterministic policy:
of the group:

time t.

Similarly, state-action Value function:

Q=

among themj is thej -th agent and is thei-th group. 9 is

_ _ V(s) = rggi( Q (s;a): (17)
poij H=Py=1jx; (®) . .
The value function is an evaluation of the strategy
conversely, the probability of not being the group leader is: 8s; =argmaxV (s): (18)
1 pj")=Py=0jx); (6)

LCTDE-UDAN is trained as follows:

% h |
PYin=p@©i" @ peiMY: O L= Q) (9)

i=1

from the maximum likelihood estimate, it can be derived:
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Where b is the batch size of transitons sampled from the replajABLE I: Cooperative Pursuit scenario setting parameters

buffer. The target value function is: view range  attack range  speed  attack penalty
ot o 0 wolf 5 2 1 0.2
yol =1+ nl%XQ“’t( as ), (20) sheep 4 0 15 0
Where is the parameter of the target value networKTABLE II: Average reward during training phase with different
According to QMIX, Qi (0; @) is: number of agents
1
argma 01; & Nums 8-20
gmaxs, Q1(01; 1) Rewards | GCTDE-UDAN 71
argmaxQq (0; @) = : (21) Nums 10 15 20
R DQN 85 791 626
argmaxa, Qn (0n; an): COMA 071 -068 -0.73
Rewards VDN 75 1432 3.03
Where Q;(01;a1) = QL = Q(ol;0 ), Q is local value ' ' '
01, &1 c t) O, ) QMIX 4398 46.18 34.35

network,(oiGt;:::;dét) = C(o}; 15 d).

V. SIMULATIONS AND EXPERIMENTS In Fig._5(a), the average reward is each agent’_s reward in
. o . . each episode. Both the COMA and DQN algorithms have
To verify the algorithm’s effect in the multi-agent c00p+chieved large rewards in the initial stage, and the rate of

erative environment, we design both simulation and physiGalyards has increased rapidly. This is because these two

experiments. The simulation experiment is based on Magejyrithms suppress the attack of the agent and obtain rewards.
[29] to enable multiple agents to rounq up, maintain a I"?%till, as the training progresses, this algorithm makes the
and contact prey together, as shown in Fig.3. The physicalyes |ose the ability to attack. Therefore, even when the
experiment uses multiple vehicles to round up or Look fQf, 1 es encounter sheep, they will not attack, and its rewards
water over obstaclqs. The speci c situation is shown in F|g..gre stable at around 0. As shown in Fig.4 (a)-left, the agent
In the same scenario, all agents share a reward function. Sigg8, esses attacks and has not learned to cooperate. However,
the number of agents ”ee‘?'s to be gonstantly changing durifa, algorithms rarely suppress attacks, and a large part of
the test phase of the following experiment, and all agents Shﬁ‘i‘éir reward boost comes from attacks on sheep. Since the
a global reward, which requires credit assignment, only the,es did not learn how to track and round up sheep at the
algorithm that is both CTDE and value Qecomp05|t|or) CaISIaginning of training, their rewards increase very slowly. As
be used as a benchmark here. The experimental baselinesygie aining progresses, the cooperation ability between the
QMIX, VDN [10], DQN [B0], COMA [B1]. wolves strengthens, which can trap the sheep, continuously
attack and score, and the rewards will also increase quickly.
A. Magent As shown in Fig.4 (a)-right, the agents learn to track, round

Magent is a huge grid world. Agents are controlled b p, and use terrain. Comparing these benchmark algorithms,

groups. In each step, each agent can choose to move ggause GCTDE-UDAN has unlimited changes in the number

the surrounding grid or attack the enemy. Each agent ryagents in the training phase, its performance is not affected

local information around its cell, including ID embedding, Iasj?y changes in the r_1um_ber Of_ ggents during testing. That is, it
action, last reward, and normalized position. has a good generalization ability to get greater rewards. More-

Cooperative Pursuit:In this scenario, wolves round upover, due to the added communication function, it considers

sheep. Each wolf will get 1 point after attacking the sheerﬁlated agents’ information when constructing each agent’'s Q

once, and the sheep will lose 1 point. However, wolves mo\yglue, making the agents more inclined to cooperate.

slower than sheep, so wolves need to learn to surround ashee'\Iums in Table Il represents the number of agents in the

so that it can’t move to keep scoring. Regardless of whetht(re?%mg ph_ase, b.Ut in the testing phase, the number of agents
N each episode is randomly generated between 8-20. Rewards
the wolf attacks the sheep, as long as the wolf attacks, e

wolf will lose -0.2 points. This is to reduce the number O;epresent the average return of ve experiments. As can be
' ' seen from the table, as the number of agents in the training

useless attacks by wolves and to surround the sheep as sgon_ . : .

as possible. Each episode is 300 stepapsize = 100 The phase increases, the COMA, and DQN algorithm rewards will

speci ¢ settings are shown in Table I. In this scene, the numbrécrJt change much. It is because such algorithms suppress the

. . . attacks of wolves and make them unable to score. However,
of each wolf and sheep changes simultaneously, which ahq?

with nature’s laws. Although the algorithm can be used forr%Ike intuition, the reward of the QMIX algorithm rst rises

unlimited agent training, it is limited to computing speed anand then falls. This is because 15 agents take into account the

memory size. Here, the number of wolves and sheep is gltyatlon encountered between 8-20 agents. Since the number

to vary between 8-20. Since the baseline algorithms cannootagemS in GCTDE-UDAN is dynamic in the training phase,

adapt to the change in the number of agents during traini itS generalization ability is more robust than these baselines.

) - L average reward for each agent reaches 71.
the number of agents during the training period is set to 10. . . :
Cooperative Queuein this scenario, the agents need to
Four wolves can catch a sheep, therefore, each team legder ) . -
can form a four-nerson team e arranged in a line, as shown in Fig.3(b). The agent has a
P ' eld of view of 5 and a speed of 1. To complete the task as

soon as possible, arrange in a team, the agent will lose -0.2
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Fig. 3: Simulation scenarios: cooperative pursuit(left), cooperative queue(mid), cooperative tiger(right).
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Fig. 4: lllustration of multi-agents learning to cooperate in three scenarios.

— DON 200{ — DQN
1001 — QMIX — QMIX
—— GCTDE-UDAN —— GCTDE-UDAN —— GCTDE-UDAN
—— VDN — VDN — VDN

1 — coma —— COMA 30 — coMA

— DON
| — amix

1501

254

1001

204

504
154

Average reward

104

0
401
6 2!‘)0 460 660 560 1obo 12b0 14‘00 0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500 3000 3500
Episodes Episodes Episodes
(a) Cooperative Pursuit (b) Cooperative Queue (c) Cooperative Tiger

Fig. 5: The average reward’s comparison diagram of GCTDE-UDAN and baseline algorithms in three scenarios.

points every step. All agents line up in a line and get rewardABLE Ill: Cooperative Tiger scenario setting parameters

1. mapsize = 30 Each episode is 300 steps. view range  attack range  speed  step recover  hp
tiger 4 1 1 0 8
As shown in Fig.5(b), the algorithm uctuates signi cantly deer 1 0 1 0.2 5

in the Cooperative Queuscenario. The reason is that com-

pared with theCooperative Pursuittask, this task is chal-

lenging to transfer knowledge between different numbers 8$signment problem in partially observable Markov decision.
agents. For example, the strategy in the three-agent scendfiés is consistent with th€ooperative Queuéask.

is challenging to use in the ve-agent scenario. Also, under Compared with the benchmark algorithms, GCTDE-UDAN
this task, the COMA algorithm has achieved good results. Gtill achieves state-of-the-art. The reason is that, on the one
the contrary, DQN and other benchmark algorithms perforhrand, we have achieved intra-group communication, which is
poorly. This is because this task is entirely dependent essential for fully cooperative tasks. On the other hand, similar
the cooperation between all agents. No agent can be lamythe Cooperative Pursuibf tasks, we learn to cooperate in a
and not work; otherwise, all agents will lose their rewardslynamic number of agents during the training process. When
The COMA algorithm mainly solves the multi-agent credithe number of agents in the training phase is different, the
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TABLE IV: Camera and router parameter table.

Camera Model Effective Pixels Image Resolution Frame Rate
MindVision MV-GE231GM-T 2300000 1920X1200 40FPS
Router Model Frequency Range Transmission Rate Ransmission Protocol
Huawei WS7200 2.4GHz&5GHz 2.4GHz: 574Mbps, 5GHz: 2402Mbps  802.3, 802.3u, 802.3ab

» /
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Fig. 6: lllustration of multi-agents learn cooperative in two real-world scenarios.

knowledge transfer speed will be faster. B. Physical experiments

In this physics experiment, the camera and router parameters
Cooperative TigerAs shown in Fig.3(c), if two tigers attack gre shown in Table IV. We use the Mecanum wheel car
a deer at the same time, both tigers get 1 point. Otherwise, 19 an agent for experimentation to ensure that the car can
points are scored. Each episode is 200 stempsize = 50 moye in four directions. The experimental platform’s data ow
Tiger's attack damage is 1. Other parameters are shownpihcess is as follows: The high-altitude camera determines
Table 1II. the coordinates of the car and obstacles and sends them
to the local computer. The UDAN and baseline algorithms
In this scenario, because a single tiger attacks the deer,a@culate agents’ next action (up, down, left, right, and waiting)
points are scored, but the deer will lose blood, and the overaficording to the coordinate information and nally sends the
score will drop. Therefore, the UDAN algorithm learned thatext instruction to the car through the router. After obtaining
even a single tiger would not attack even if it is near the dedéhe speci ed message through ESP8266-WIFI on the car, it is
He will follow the deer and call another tiger to cooperatgent to the serial port module to determine the car’s direction
with the attack to get rewards. At every step the deer recovérd the angle of the body. The network delay time is within
its blood, the tiger even learns to stock the deer. For exampléms, communication and other functions are realized by the
after attacking for a while, stop the attack to restore the deeROS platform, and the underlying control algorithm of the car
blood to a healthy level, and then attack again. As showswritten in C++. It should be noted that although the camera
in Fig.5(c), the number of interactions is as high as 500@tains the global map information, in the local computer,
episodes. This is because, at the beginning of the trainitigrough the masking algorithm, each vehicle has only a part
the tiger can easily wipe out all the deer without learning tof the eld of view. GCTDE-UDAN only makes decisions
cooperate, so there is no return. Also, DQN is challengififised on the part of the eld of view around each car, that is,
to decompose all rewards and cannot solve the problemtbe Partially Observable Markov Decision Process.
credit distribution. agents need to cooperate in pairs, this doedn the following experiment, the number of obstacles varies
not match COMA's view of agents as cooperation betwedretween 0-10 to test the cooperative ability of the agent
all agents to decompose rewards. Finally, the intra-group different terrains. Because the GCTDE-UDAN algorithm
communication of the UDAN algorithm and the powerfuban adapt to different numbers of agents participating in the
generalization ability in multiple scenarios make it far bettaraining. Therefore, the following experimental results under
than QMIX and VDN. the same task can be obtained from one training session.
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TABLE V: The score of the agent and the target under the 30

surrounded task. -
. QMIX
ent nums 25 == DON
Wall nums 1 2 8 4 °
Average agent score o
0 29329 28.277 26.937 28.677 % %%
1 30.077 29.502 27.844  29.727 €
2 30.279  29.620  28.025  28.959 o5
3 30.101 29.434 27.841  28.182 Py
4 29.634  29.128 27.756  26.640 g
5 29.305 29.004 27.288  26.164 % 107
6 29.095 28.069 27.207  25.370 <
7 28585 27.770  26.798  25.147
8 27.691  27.377 26.565  24.527 51
9 28.194 27530 26.238  25.080
Goal score ol
0 36.838 -35.369 -34.354 -34.289 1 2 3 4
1 -36.873 -36.045 -34.806 -34.907 Agent nums
2 -38.788 -37.626 -35.659 -36.771 07
3 -37.999 -37.547 -36.698 -36.281
4 -38.390 -37.578 -35.942 -34.514 51
5 -37.238  -36.996 -35.842 -33.820
6 -37.364 -36.697 -34.796 -32.854 -101
7 -36.974 -35.799 -34.545 -32.430
8 -35.447 -35.290 -34.319 -32.231 o -15
9 -37.737 -35.367 -34.150 -32.514 g
% -20
o
(G]
Surrounded: Like the Cooperative Pursuitask, the agents ]
surround the goal to get the team’s maximum score. Each  _,]
agent appears in the adjacent grid of the goal to get a score.
However, the agents will cooperate to surround the target and 331
lose its mobility to obtain the maximum return because the

target will move. As shown in Fig.6(a), the agent moves in ! ’ ’ !
the grid map and needs to avoid obstacles, keep approactfigy 7: The score of the agent and the target under the
the target, track the target, and even use obstacles to surrosiadounded task.

the target for maximum return. The moving speed of the agent

a”P' the .target is 1, and the eld of view is 3 and 1. EacQnd the difference in returns between different numbers of
episode is 50 steps. agents is also more negligible. This is because UDAN has
Table V shows the average score of each agent und@gguired cooperative knowledge of different numbers of agents
different numbers of agents and obstacles. As shown in Tabléring the training phase. In other baseline algorithms, the
V, when the number of obstacles remains the same, as fgnber of agents in the training phase is set to 3. That is, only
number of agents increases, the agents’ average score thilee agents’ knowledge of hunting is learned. However, when
decrease. This is because the speed of the agent and the tdlgeaumber of agents is also set to 3 during the test, UDAN'’s
are the same, even if it cannot form an effective envelope $gore is still signi cantly highest. This shows that UDAN
the target, the agent can still track the target score. When #fformance is higher than the baseline algorithm even without
number of agents does not change, the number of obstaglegsidering the generalization ability of UDAN. Fig.7(below)
increases, the agents’ average score rst increases and theaws the average loss score of each agent. Because when the
decreases. Because the number of obstacles is small, the age@nt is not in the adjacent grid of the target, it will lose 1
can use obstacles to track and surround the target. Howewsint every four steps. This is to punish the agent for not taking
too many obstacles will affect the agent’s action space, makifjective measures to complete the task as soon as possible.
it dif cult to track the target. Secondly, when the number off herefore, the target loss situation more intuitively re ects the
obstacles is small, there are only two or three, the score oP#s and cons of the agent's behavior.
agents is higher than when the number is 3. Because in theind-water: As shown in Fig.6(b), in the task of nding the
absence of terrain advantages, the four agents can surrowader source, the map is divided into three parts according to
the target. However, when the number of obstacles is largke y-axis, which are the agent’s starting area, the obstacle
for example, seven or eight, the agent learns to use the terrairea, and the water source area. The agent needs to avoid
At this time, four agents are not needed to surround the targelbstacles, and reach the water source area from any position
and the extra agent may have nothing to do, resulting inimthe departure area. The number of water sources is the same
decrease in the average score. The lower part of Table V shaygsthe number of agents. Due to the limited number of water
the average loss score of each agent. sources, agents need to cooperate and keep in formation to
The experimental results are shown in Fig.7(top). Compareathke each agent drink water and get the maximum return for
with other baseline algorithms, UDAN scores higher returnthe team. In this task, each agent has a eld of view of 3.
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TABLE VI: The score of the agent under the nd-water task. ag shown in Fig.8, unlike the surround task, the increase

entnums 5 3 4 s in the number of agents has no consistent effect on the exper-

Wall nums imental results. First of all, from the whole picture, because
Average agent score the baseline algorithm only learns the cooperative knowledge

0 420 415 41954 42220 41.749 9 1y coop L 9

1 420 41413 41850 41.990 41548 Of three agents, the algorithm’s generalization ability is feeble,

% ﬁ-ggg “ﬂ‘% ﬁ-;gg ﬂ-ggg ﬂ-ggg and its score uctuates wildly. On the contrary, UDAN has alll

2 41647 4125 41365 4145 41132 Fhe cooperative kpowledge, the algorithm generghzaﬂon ability

5 4168 4130 41.085 41.137 40.710 Iis powerful, and its score has almost no uctuation. Secondly,

? ‘Lll-ls?g gg-gg; jg-ggg ‘2%42636 gg-ggg only in terms of the three agents’ cooperation, UDAN’s score

8 40865 13971 40071 39.03 3970g IS almost the same as the best—performln_g QMIX algorlthm.

9 40.0 40127 38960 39.038 38.364 UDAN has the best performance while maintaining the stabil-

10 40.490 39.343 39.933 36.53 38.145 jty of cooperation between different numbers of agents.

11 37.865 38.0 35.648 36.615 37.180

12 38.491 37.27 35660 35.135 36.345

13 37.314 35598 37.679 34.647 35.944 VI. CONCLUSIONS

14 32.588 32.63 32549 30.656 32.992

This article addresses the problem that CTCE and CTDE
algorithms cannot be extended to large-scale agent scenarios.
An algorithm for centralized training within the group and
global decentralized execution is proposed, which greatly
reduces the cost of centralized training in large-scale agent
scenarios. Secondly, since the number of agents in a multi-
agent system is continually changing in reality, the algorithm
we proposed can dynamically adapt to changes in the number
of agents. Finally, this paper veries GCTDE-UDAN and
other benchmark algorithms in three simulation tasks and
two physical experiments. GCTDE-UDAN algorithm performs
exceptionally well in all environments.

Although the GCTDE-UDAN algorithm we proposed can
1 2 3 a adapt to the task of changing the number of global agents,

Agent nums the number of agents communicating in the group needs to
Fig. 8: The score of the agent under the nd-water task. be pre-set with prior knowledge. Therefore, in future work,

In each episode, the number of obstacles, agents, and w¥{grnope that each agent can establish groups with different
sources are randomly generated. If the agent is in the g|:|Hmbers of members to communicate according to its state.
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