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Abstract
Artistic style transfer aims to migrate the style pattern from a referenced style image to a given content image, which has 
achieved significant advances in recent years. However, producing temporally coherent and visually pleasing stylized frames 
is still challenging. Although existing works have made some effort, they rely on the inefficient optical flow or other cumber-
some operations to model spatiotemporal information. In this paper, we propose an arbitrary video style transfer network that 
can generate consistent results with reasonable style patterns and clear content structure. We adopt multi-channel correlation 
module to render the input images stably according to cross-domain feature correlation. Meanwhile, Earth Movers’ Distance 
is used to capture the main characteristics of style images. To maintain the semantic structure during the stylization, we also 
employ the AdaIN-based skip connections and self-similarity loss, which can further improve the temporal consistency. 
Qualitative and quantitative experiments have demonstrated the effectiveness of our framework.

Keywords  Video style transfer · Multi-channel correlation · Earth movers’ distance · content-enhanced

1  Introduction

Artistic style transfer is an attractive technique that aims 
to migrate the desired style pattern from an exemplar style 
image to an input content image, and has gained growing 
interest in the computer vision community. The seminal 
work by Gatys et al. [1] first showed that the Gram matrix 
of features extracted from a pre-trained image classification 
network [2] can represent the visual style of an image. Since 
then, numerous methods have been developed to address 
this interesting problem, from optimization-based single 

style models to feed-forward arbitrary style models which 
have greatly improve the efficiency, diversity, robustness and 
stylization quality.

However, the naive extension from image to video may 
produce severe flickering effects between adjacent frames. 
Such artifacts mainly come from the lack of spatiotemporal 
information during the training process, so the same seman-
tic area would be rendered into different appearances. Ruder 
et al. [3] added temporal consistency loss based on Gatys’ 
method by tracking pixels with pre-computed optical flow. 
Feed-forward models were later proposed to speed up the 
optimization process [4–6]. Chen et al. [7] designed two sub-
networks to do the warping in the feature space dynamically. 
Although these methods can generate smoothed results, they 
depend highly on the optical flow. If the estimated optical 
flow is not accurate enough, ghosting artifacts would appear 
at the motion boundaries of objects, and the heavy com-
putation costs largely limit the model’s practical applica-
tions. Besides, there is always a trade-off between stylization 
strength and temporal consistency [8], and sometimes the 
output image loses the richness of stylized details.

Therefore, the key to addressing the above problems 
is to design a more stable model instead of adding extra 
explicit or implicit constraints. Recently, Deng et al. [9] 
proposed the Multi-Channel Correlation (MCC) module, 
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which can stylize the input image with reasonable style 
patterns while keeping consistency among frames. 
Employing it as the basic transfer module, we propose 
a new video style transfer framework with better perfor-
mance in this paper. First, we adopt the Earth Movers’ 
Distance loss to measure distribution differences between 
features. Thus the model can migrate the main charac-
teristics of the style image and prevent the degradation 
effect in the trade-off mentioned above. Then, we add the 
AdaIN-based skip connections and self-similarity loss to 
ensure well-preserved content structure and clear layout 
after stylization. Besides, they can further improve the 
temporal consistency by removing the unstable texture. 
Generally speaking, our main contributions can be sum-
marized as follows: 

1.	 We combine the multi-channel correlation module with 
Earth Movers’ Distance loss to generate coherent styl-
ized results with reasonable distribution of style pat-
terns.

2.	 We combine the AdaIN-based skip connections and 
self-similarity loss to enhance the content structure and 
capture more stylized details, further improving the con-
sistency.

3.	 Qualitative and quantitative experiments demonstrate 
the effectiveness of our model, which has state-of-the-
arts temporal stability and excellent stylization quality 
(shown in Fig. 1).

The rest of the paper is organized as follows: Sect.2 
reviews related work in image and video style transfer. 
Section 3 introduces the proposed framework in detail. 
Experimental results and analysis are presented in Sect. 4. 
Finally, we conclude the paper in Sect. 5.

2 � Related work

2.1 � Image style transfer

With the rapid development of deep learning, signifi-
cant advances have been made in artistic style transfer 
in the past few years. Neural Style Transfer (NST) [1] 
first formulated style as the Gram matrix of the feature 
maps extracted from pre-trained image classification net-
works [2]. However, it takes several minutes to stylize an 
image due to the optimization process. Johnson et al. [10] 
achieved real-time style transfer by training feed-forward 
network with style loss and perceptual loss proposed by 
NST. But their model can only represent one style at a 
time. Chen et al. [11] shared encoder and decoder across 
multiple styles and stored the filters corresponding to each 
style in a bank layer. Dumoulin et al. [12] proposed con-
ditional instance normalization (CIN) layer, embedding 
styles into affine parameters. Inspired by CIN, Huang et al. 
[13] proposed the milestone arbitrary style transfer algo-
rithm AdaIN. AdaIN normalized the content feature and 
then aligns its mean and variance with the style feature. 
Li et al. [14] proposed multi-scale whitening and coloring 
transformation (WCT) to match the second-order statistics 
directly. LST [15] learned a linear transformation matrix 
by two light-weighted convolutional neural networks 
(CNNs) to replace WCT operation, which is much more 
efficient and flexible. However, these holistic transforma-
tions methods still lead to unsatisfactory local style pat-
terns. Therefore, SANet [16] and AAMS [17] integrated 
the local style patterns according to the semantic spatial 
distribution of the content image via self-attention mecha-
nism. Recently, Liu et al. [18] designed a novel module to 

Fig. 1   Our network can generate consistent stylized frames with vivid style patterns and clear content structure
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adaptively perform attentive normalization on per-point 
basis, and extend their model with slight modifications to 
achieve state-of-the-art video style transfer.

Although producing impressive results, most methods are 
still unsuitable for video sequence because they generate 
severe flickering artifacts. As stated in [4], since the image 
model processes video frame by frame, the slight variations 
between adjacent frames would be amplified into different 
stylized appearances, which inevitably created such artifacts.

2.2 � Video style transfer

Existing video style transfer methods can be roughly divided 
into two categories.

The first category is warping previous frame to the cur-
rent through optical flow to form temporal consistency loss 
[3]. Huang et al. [4] integrated the constraint into feed-for-
ward network to accelerate the inference. Gupta et al. [5] 
revealed that the trace of the Gram matrix is inversely related 
to the stability of the model and adopted the recurrent neu-
ral network (RNN). Lai et al. [19] and Gao et al. [20] both 
combined CNN with long short-term memory (LSTM) that 
is more expressive than RNN. Wang et al. [8] generated ran-
dom optical flow through Gaussian sampling and warped 
the single image to simulate its adjacent frames, thereby 
ingeniously obtain a “video dataset” for training.

The second category is adding extra sub-networks to 
estimate the optical flow and motion mask dynamically and 
then warping sequentially in the feature (or image) space 
[7]. Vid2vid [21] further used discriminator to improve the 
accuracy of the sub-networks. Zhou et al. [22] regarded the 
flickering artifacts as high-frequency noise, and designed 
a parallel branch to generate the temporal denoising mask. 
These methods explicitly perform alignment, producing 

much more consistent result than the first type methods. 
However, the optical flow is also needed during inference, 
resulting in poor efficiency.

Recently, Deng et  al. [9] revisited the self-attention 
mechanism, and proposed the MCCNet for temporal coher-
ent video style transfer that does not involve the calculation 
of optical flow. In this work, we adopt it as basic transfer 
module.

3 � Method

As shown in Fig. 2, our model takes a content image Ic and 
a style image Is as input and synthesize a stylized image Ics . 
It is based on the widely-used encoder-decoder paradigm, 
with the AdaIN-based skip connections between them and 
the multi-channel correlation module at the bottleneck. In 
this section, we will introduce all components of our model 
and loss functions used in training.

3.1 � Encoder and decoder

Following previous works, we employ the pre-trained VGG-
19 [2] network as the encoder.1 VGG-19 is a simple and 
intuitive architecture stacked by multiple small convolu-
tional blocks. Given the input RGB image pair Ic and Is , we 
first scale them into the same size, and use the encoder to 
extract their multi-resolutions feature maps, respectively. We 
denote the extracted feature of layer ReLUx_1 in VGG-19 

Fig. 2   Overall structure of our model. It is consists of the VGG-19 encoder and the ResBlock-styled decoder, with the AdaIN-based skip connec-
tions at multiple levels and the multi-channel correlation module at the bottleneck

1  The pre-trained VGG-19 weights can be downloaded at https://​
drive.​google.​com/​file/d/​1EpkB​A2K2e​YILDS​yPTt0​fztz5​9UjAI​pZU/​
view.

https://drive.google.com/file/d/1EpkBA2K2eYILDSyPTt0fztz59UjAIpZU/view
https://drive.google.com/file/d/1EpkBA2K2eYILDSyPTt0fztz59UjAIpZU/view
https://drive.google.com/file/d/1EpkBA2K2eYILDSyPTt0fztz59UjAIpZU/view
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as Fx_1
∗

 , where ∗ can be c or s here representing content and 
style features, respectively. Then we fed Fx_1

∗
(x = 1⋯ 3) into 

AdaIN module and F4_1
∗

 into multi-channel correlation mod-
ule, producing stylized features Fx_1

cs
(x = 1⋯ 4) . Finally, the 

decoder converts the stylized features into the output image 
Ics . A common choice for decoder is the symmetric structure 
of VGG-19 in style transfer. However, we employ residual 
blocks [23] to constitute the decoder to make it more expres-
sive and integrate the stylized features from skip connec-
tions. More implementation details of the network are pre-
sented in Appendix A.

3.2 � Style transfer component

3.2.1 � Multi‑channel correlation

Since its great success in natural language processing [24], 
self-attention mechanism has been introduced into artistic 
style transfer by Park et al. [16] and Yao et al. [17]. How-
ever, they ignored the inter-channel relationship of feature 
maps, attentively fused features via only one spatial mask. 
Recently, Deng et al. [9] revisited the self-attention mecha-
nism and proposed the Multi-Channel Correlation (MCC) 
module, as shown in Fig. 3. Since each channel of feature 
maps usually represents different semantics like colors, tex-
tures, shapes, and other abstract patterns, the channel-wise 
operation is more reasonable. We employ it as the basic 
transfer module, which is explained in the following.

MCC module takes extracted features F4_1
∗

∈ ℝ
C×H×W 

as input, where C, H, W are number of channels (namely 
dimensions), height and width of feature maps. For channel 
i, the content feature and style feature can be reshaped into 
row vector f i

c
∈ ℝ

1×N , f i
c
=
[
c1, c2,⋯ , cN

]
 and f i

s
∈ ℝ

1×N , 
f i
s
= 
[
s1, s2,⋯ , sN

]
 , where N = H ×W . Then the correlation 

matrix is calculated by their dot product:

COi ∈ ℝ
N×N measures the semantic similarity spatially. So 

we can rearrange the style feature, namely assigning differ-
ent weights to each element in f i

s
 according to COi . Then the 

(1)COi = f iT
c

⊗ f i
s

style feature f i
s
 can be integrated into the content feature f i

c
 

properly, which is formulated as:

where ��f is��
2

2
=
∑N

j=1
s2
j
 , f i

cs
∈ ℝ

1×N is the i-th channel stylized 
feature.

For better stylization quality, MCC module further calcu-
lates the correlation between each content channel and every 
style channel and then weighted them together as:

where wk is a real number representing the weights of the k-
th channel, which is learned by fully connected layers during 
training. Compared with most attention mechanisms, MCC 
module does not use Softmax, Sigmoid or other nonlinear 
functions to normalize the attention weights. The whole 
pipeline can be approximately regarded as performing a 
linear transformation on the input content feature F4_1

c
 to 

produce the stylized feature F4_1
cs

 . As stated in [15], linear 
transformation is capable of preserving the feature affin-
ity, which means the dense pair-wise relations of pixels are 
preserved well after stylization. We believe this enables the 
MCC module to be robust to tiny variations and avoid vio-
lent changes among frames. Thus, the coherence of input 
frames can be naturally migrated to output frames.

3.2.2 � Earth movers’ distance loss

Earth Movers’ Distance (EMD) measures the similarity 
between two probability distributions, also referred to 
as Wasserstein Distance. In 2017, Arjovsky et al. [25] 
proposed the famous Wasserstein generative adversarial 
networks (WGAN), significantly improving GAN’s train-
ing stability and avoiding mode collapse. Compared to JS 
divergence, EMD is much more continuous, and can still 
represent distances when the probability distributions do 
not overlap, thus providing meaningful gradients to the 
generator even in this case. Following the idea that the 

(2)f i
cs
= f i

c
+ f i

s
⊗ COiT =

(
1 +

‖‖‖f
i
s

‖‖‖
2

2

)
f i
c

(3)f i
cs
=

(
1 +

C∑

k=1

wk
‖‖‖f

k
s

‖‖‖
2

2

)
f i
c

Fig. 3   Multi-channel correlation 
module [9]
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essence of style transfer is to align feature distributions 
[26], we add EMD loss to improve the stylization quality 
further. However, the original EMD has a time complex-
ity in the order O(n3) to find the optimal transport matrix. 
To speed up the optimization, we use relaxed Earth Mover 
Distance (rEMD) as derived in [27], and the rEMD loss 
is formulated as:

where the cost of transport Cij is calculated by cosine 
distance:

3.3 � Content‑enhanced component

3.3.1 � AdaIN‑based skip connections

Skip connection is a simple but effective method widely 
used in image segmentation and image generation tasks. It 
introduces the shallow feature on the corresponding scale 
into the upsample process while skipping the intermediate 
module. Therefore, the decoder can acquire more low-
level information lost in downsample to generate refined 
results. Besides, it can make the structure of the output 
image much clearer. We believe that this will reduce the 
uncertainty during stylization, especially in areas near the 
semantic boundary. But in style transfer, the features in 
the decoder are already aligned with the style domain. If 
we directly merge them with the content domain features 
from the encoder, it will increase the difficulty of network 
training and produce unnatural artifacts. To address this 
problem, we add AdaIN [13] module on the skip connec-
tions, which aligns the mean and variance of the content 
feature with those of the style feature efficiently. Taking 
the content feature Fx_1

c
 and the style feature Fx_1

s
 as input, 

AdaIN can be formulated as:

where �(⋅) ∈ RC , �(⋅) ∈ RC are vectors representing the 
mean and standard variance of each channel, respectively. 
Through the multi-level AdaIN-based skip connections, the 
output image would contain rich stylized details, such as 
color, texture, brushstroke, etc.

(4)LrEMD = max

(
1

HW

HW∑

i=1

min
j

Cij,
1

HW

HW∑

j=1

min
i

Cij

)

(5)Cij = 1 −
F
x_1

s,i
⋅ F

x_1

cs,j

‖‖‖F
x_1

s,i

‖‖‖
‖‖‖F

x_1

cs,j

‖‖‖

(6)

AdaIN(Fx_1
c

,Fx_1
s

) = �(Fx_1
s

)

(
Fx_1
c

− �(Fx_1
c

)

�(Fx_1
c )

)
+ �(Fx_1

s
)

3.3.2 � Self similarity loss

Correlation matrix describes the statistical relationship 
between random variables, a primary metric in data analysis. 
For feature maps, it reflects the relative relationship of spatial 
elements, that is, how they are combined, representing the 
semantic structure of the image to some extent. Liu et al. [18] 
and Xu et al. [28] both designed the coherence loss by calcu-
lating the cross-frame similarity, but their methods need to 
finetune on the video dataset. We use self similarity loss [27] 
instead of cross-frame similarity loss, for it can prevent exces-
sive stylization from damaging the semantic structure of the 
image and is easy to implement. In addition, it can remove the 
dirty and unstable texture that existed in the original smooth 
area after stylization, further improving the temporal coher-
ence. The self similarity loss is formulated as:

where Dc and Dcs represent the correlation matrix of the 
content feature Fx_1

c
 and the stylized feature Fx_1

cs
 , respec-

tively, measuring the similarity between the feature vector 
of each spatial position. To compute D∗ , we first reshape 
F∗ ∈ ℝ

C×H×W into F∗ ∈ ℝ
C×HW , and perform the following 

matrix multiplication (we omit superscript for convenience):

3.4 � Training loss

3.4.1 � Style loss

In addition to rEMD loss, we employ the commonly used 
mean-variance matching loss because cosine distance in Eq. 5 
ignores features’ magnitude, leading to unpleasant artifacts.

3.4.2 � Content loss

Like previous work, perceptual loss is necessary for plausible 
results:

(7)Lself−sim =
1

(HW)2

�

i,j

�����

Dc
ij∑

i D
c
ij

−
Dcs

ij∑
i D

cs
ij

�����

(8)D∗ = FT
∗
⊗ F∗

(9)
sty =

4
∑

x=1

‖

‖

‖

�
(

Fx_1
cs

)

− �
(

Fx_1
s

)

‖

‖

‖2

+ ‖

‖

‖

�
(

Fx_1
cs

)

− �
(

Fx_1
s

)

‖

‖

‖2

(10)Lcont =

4∑

x=1

‖‖‖F
x_1
c

− Fx_1
cs

‖‖‖2
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3.4.3 � Illumination loss

The illumination may change slightly in adjacent frames 
because of camera motion, occlusion or other factors. 
These subtle variations in video frames could result in 
severe flicking artifacts. Following [9], we add random 
Gaussian noise to simulate these variations. The illumina-
tion loss is formulated as:

where F(⋅) represents the entire stylization process of our 
model, Δ ∼ N

(
0, �2I

)
 . With illumination loss, the network 

can be more robust to complex light conditions in input 
videos.

3.4.4 � Identity loss

We also employ the identity loss in [16] to maintain the 
content structure without losing the richness of the style 
patterns. The identity loss is formulated as:

where Icc ( Iss ) denotes the stylized image using a natu-
ral image(an artistic painting) as content image and style 
image. Fcc ( Fss ) is the feature extracted from the pre-trained 
VGG-19.

3.4.5 � Training loss

The overall training loss is formulated as:

where �∗ are weights to balance each term. Since we bulid 
our model on the MCCNet [9], the weights �sty , �cont , �ide1 , 
�ide2 , and �illum are set to 3, 10, 70, 1, and 3000 according 
to their implementation. And we set �emd , �self−sim to 10, 16 
following [27].

4 � Experiment

4.1 � Implementation details

We trained the network with MS-COCO [29] as the con-
tent images and WikiArt [30] as the style images. s Both 
datasets contain roughly 80,000 training images. To 

(11)Lillum =
‖‖‖F

(
Ic, Is

)
− F

(
Ic + Δ, Is

)‖‖‖2

(12)Lide1 =
‖‖Icc − Ic

‖‖2 + ‖‖Iss − Is
‖‖2

(13)Lide2 =
‖‖Fcc − Fc

‖‖2 + ‖‖Fss − Fs
‖‖2

(14)

L = �emdLemd + �styLsty + �self−simLself−sim

+ �contLcont + �ide1Lide1 + �ide2Lide2 + �illumLillum

perform training the images are first rescaled to 300 × 300 
sizes and then randomly cropped to 256 × 256 sizes for 
augmentation. At inference, our network can handle 
images of arbitrary size because it is fully convolutional. 
We used the Adam optimizer with a learning rate of 1e-4 
and a batch size of 8 images. The training process lasts for 
160K iterations on two Nvidia GTX 1080 Ti GPUs, where 
the encoder is fixed all time.

4.2 � Comparing with previous methods

To evaluate our method, we compare it with other state-
of-the-art arbitrary style transfer methods, including AdaIN 
[13], WCT [14], LST [15], SANet [16], MCCNet [9], and 
AdaAttN [18].

4.2.1 � Image style transfer

The qualitative comparison are shown in Fig. 4, notice that 
none of the test images were observed during the training.

AdaIN [13] simply adjusts the mean and variance of the 
content feature, resulting in less appealing stylized results 
(1st and 3rd rows). WCT [14] generates much more vivid 
stylized images by modeling the the second-order statistics. 
However, it tends to produce a excessive stylization render-
ing a whole picture chaotic and showing many extraneous 
textures. LST [15] learns a transformation matrix to simu-
late the whitening and colorization in WCT and achieves 
the best speed performance, but the contour of objects has 
been distorted (face in the 3rd row). SANet [16] adopts the 
self-attention mechanism to capture local style patterns, but 
the content structure suffers severe damage (1st, 3rd and 
4th rows). As mentioned above, it ignores the correlation 
between feature channels, so the model is not robust enough 
to tiny variations. AdaAttN [18] adaptively performs atten-
tive normalization on per-point basis for feature distribution 
alignment. Their results consist of rich details and appro-
priate local style patterns, which achieve the best balance 
between style transfer and content preservation among all 
methods (1st and 4th rows). However, the stylized image 
seems totally unreasonable in some cases (color tone in 3rd 
row). MCCNet [9] designs the multi-channel attention mod-
ule, producing relative clean results. Compared with it, our 
model has a better performance for introducing the rEMD 
loss and content-enhanced components (1st and 2nd rows).

4.2.2 � Video style transfer

Qualitative As shown in Fig. 5, we use heat maps of differ-
ence to visualize the coherence between adjacent frames. The 
the heat map generated by ACNet is the closest to the original 
input, indicating that it has the best temporal stability. AdaIN 
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[13], WCT [14] and SANet [16] introduce a lot of flicking 
noise, and the semantic structure of the image has been seri-
ously damaged. LST [15], MCCNet [9] and AdaAttN [18] are 
much stable, but there is still a gap with our method, proving 
the contributions of content-enhanced components to temporal 
stability.

Quantitative Following previous work, we conduct quan-
titative evaluation on the training set of MPI-Sintel [31] and 
DAVIS-2017 [32]. The MPI-Sintel dataset is initially for the 
evaluation of optical flow. It contains 35 long sequences, 
including motion blur, specular reflections, and other chal-
lenging cases. The DAVIS-2017 dataset is initially collected 
from the real world for video object segmentation. It contains 
90 sequences with various objects of different motion types. 
For each method, we generate stylized frames on five styles.

We adopt the widely used flow warping error (FWE) to 
evaluate the temporal consistency:

where Wt
t−1

 denotes the warping operation based on the 
backward optical flow between stylized output Ot and Ot−1 , 
M ∈ {0, 1} is the mask indicating areas where the optical 
flow is consistent and estimated with high confidence. We 
use the method in [3] to compute occlusion mask Mo and 
motion boundary mask Mm , and M can be obtained by:

(15)FWE
(
Ot,Ot−1

)
= M ⊙

‖‖‖Ot −W
t
t−1

(
Ot−1

)‖‖‖
2

2

where ∨ denotes logical operator OR.
Besides, as stated in [28], the temporal difference error 

(TDE) can indicate the ability of algorithms to preserve con-
tent affinity during stylization. Thus, we also employ it as 
an auxiliary metric:

We calculate the average metric on each sequence and then 
average all the sequences to get the final metric. The evalu-
ation results are shown in Tables 1 and 2. On the MPI-Sintel 
dataset, our method achieves the best FWE and TDE for 
all five styles. Compared with the previous state-of-the-art 
video style transfer method MCCNet, our method reduces 
39.8% average FWE and 13.6% average TDE, respec-
tively, greatly improves the stability. Similar results can be 
observed on the DAVIS-2017, where we can reduce 44.8% 
FWE and 13.8% TDE compared to MCCNet. These demon-
strate that our method can generate coherent stylized frames 
with the least flicking artifacts.

4.2.3 � Efficiency

We compare the efficiency of our method and other meth-
ods at three image resolutions: 256, 512 and 1024 pixels. 

(16)M = 1 − (Mo ∨ Mm)

(17)TDE
(
Ot,Ot−1

)
=
‖‖‖
(
Ot − Ot−1

)
−
(
It − It−1

)‖‖‖
2

2

Fig. 4   Qualitative comparison with state-of-the-art methods on image style transfer
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All experiments are conducted using a single GTX 1080Ti 
under the same conditions. The inference time per frame 
(in second) is presented in Table 3. LST [15] achieves the 

best run time performance due to its simple linear trans-
formation. Our method is just slightly behind LST [15], 

Fig. 5   Qualitative comparison on video style transfer. The first row shows the stylized frames. The second row shows the heat maps of the differ-
ence between adjacent frames

Table 1   Quantitative evaluation 
on the training set of MPI-Sintel 
( ×10−2)

The best result are marked in bold, and we ignore WCT [14] for its poor performance

Metric Method Style Average

Candy Asheville Sketch Udnie Wave

FWE↓ AdaIN [13] 0.710 1.370 0.305 0.261 0.602 0.674
LST [15] 0.408 1.155 0.258 0.172 0.411 0.481
SANet [16] 0.926 1.861 0.448 0.464 0.827 0.905
MCCNet [9] 0.316 0.859 0.195 0.125 0.348 0.369
AdaAttN [18] 0.618 1.023 0.396 0.320 0.608 0.593
Ours 0.234 0.475 0.125 0.098 0.177 0.222

TDE↓ AdaIN [13] 0.126 0.130 0.115 0.109 0.123 0.121
LST [15] 0.115 0.125 0.107 0.098 0.108 0.111
SANet [16] 0.140 0.139 0.128 0.128 0.132 0.133
MCCNet [9] 0.108 0.115 0.097 0.092 0.101 0.103
AdaAttN [18] 0.128 0.133 0.125 0.114 0.127 0.125
Ours 0.098 0.109 0.088 0.073 0.081 0.089
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but the stylization quality and temporal stability are much 
better.

4.3 � Ablation study

In this section, we conduct the ablation experiments to 
demonstrate the effectiveness of the introduced rEMD loss, 
AdaIN-based skip connections and self-similarity loss. Since 
we build our model based on the MCC module [9], MCCNet 
is employed as the baseline method.

Qualitative The qualitative results are shown in Fig. 6. 
The rEMD loss helps the model to focus on the main 
characteristics of style images, therefore the textures and 
strokes of output images are closer to the style input. 
Besides, it can remove the strange color blocks (face in 
the 1st row). The self-similarity loss maintains the relative 
relationship between semantic elements, and the images 
become much cleaner (3rd row). AdaIN-based skip con-
nections introduced rich stylized details, but may inter-
fere with aesthetics. When combining the two content-
enhanced components, the stylization strength would be 

further reduced. For example, in the 4th row, strokes of 
the sky region would not be similar to the style image. 
And the strange color blots appear again (1st row). By 
integrating these three ingredients, ACNet achieves the 
best stylization quality.

Quantitative As shown in Tables 4 and 5, all the three 
modules can improve the FWE and TDE metric, especially 
self-similarity loss and AdaIN-based skip connections. The 
self-similarity loss helps to maintain the relative relation-
ship between semantic elements in the image, so the stylized 
results of adjacent frames would not change violently to hurt 
such relationship. As for AdaIN-based skip connections, 
it brings more stylized details into the decoder. Because 
the MCC module is performed on feature maps extracted 
from a deep layer (ReLUx1), the decoder is responsible 
for restoring spatial details. If there is no additional infor-
mation, the uncertainty of the recovery process would be 
greater, resulting in unstable textures in the stylized image. 
Thus AdaIN-based skip connections can improve tempo-
ral consistency by reducing the uncertainty during styliza-
tion. Averaged over the two datasets, the self-similarity loss 
reduces 27.7% FWE and 10.2% TDE, and the AdaIN-based 
skip connections reduces 40.2% FWE and 9.6% TDE. Even 
though rEMD loss is designed for better stylization quality, 
it can also improve both metrics ( 5.8% FWE and 5.5% TDE) 
slightly due to capturing the main style pattern. However, the 
best performance is achieved by only employing content-
enhanced components (AdaIN-based skip connections and 
self-similarity loss). We argue that it is due to the trade-off 
between stylization strength and temporal consistency, two 
conflicting goals in essence. Exploring a suitable combina-
tion of the weight of each loss function to control this bal-
ance better is a significant part in our future work. These 
results demonstrate again that enhancing the content struc-
ture leads to better temporal consistency.

Table 2   Quantitative evaluation 
on the training set of DAVIS-
2017 ( ×10−2)

The best result are marked in bold, and we ignore WCT [14] for its poor performance

Metric Method Style Average

Candy Asheville Sketch Udnie Wave

FWE↓ AdaIN [13] 0.686 1.610 0.377 0.293 0.630 0.719
LST [15] 0.482 1.425 0.320 0.209 0.494 0.586
SANet [16] 0.984 2.162 0.510 0.526 0.931 1.023
MCCNet [9] 0.380 1.112 0.234 0.150 0.432 0.462
AdaAttN [18] 0.720 1.153 0.458 0.377 0.655 0.673
Ours 0.268 0.536 0.144 0.119 0.209 0.255

TDE↓ AdaIN [13] 0.130 0.137 0.124 0.117 0.126 0.127
LST [15] 0.121 0.131 0.114 0.105 0.113 0.117
SANet [16] 0.144 0.145 0.132 0.132 0.133 0.137
MCCNet [9] 0.116 0.122 0.104 0.098 0.105 0.109
AdaAttN [18] 0.130 0.135 0.127 0.118 0.127 0.127
Ours 0.103 0.115 0.089 0.080 0.085 0.094

Table 3   Efficiency comparison (in second) under multiple resolutions 
on a single GTX 1080Ti

Method Resolution

256 512 1024

AdaIN [13] 0.013 0.044 0.163
WCT [14] 0.986 1.237 4.052
LST [15] 0.008 0.031 0.114
SANet [16] 0.018 0.065 0.306
MCCNet [9] 0.009 0.032 0.116
AdaAttN [18] 0.023 0.088 0.486
Ours 0.009 0.033 0.133
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5 � Conclusion

In this paper, we propose a new video style transfer frame-
work without the dependency on the inefficient optical 
flow. In our model, we adopt multi-channel correlation 
module as basic style transfer module which considers 
the inter-channel relationship of features, and use Earth 

Movers’ Distance to further improve the stylization qual-
ity. We also combine AdaIN-based skip connections and 
self-similarity loss to maintain the semantic structure dur-
ing stylization. We demonstrate the effectiveness of model, 
which can produce consistent results with reasonable style 
patterns and clear content structure in real-time.

Fig. 6   Qualitative comparison of the ablation experiments on image style transfer

Table 4   Quantitative evaluation 
of ablation experiments on 
the training set of MPI-Sintel 
( ×10−2)

The bold results represents the best ones in each part

Metric Method Style Average

Candy Asheville Sketch Udnie Wave

FWE↓ Baseline 0.316 0.859 0.195 0.125 0.348 0.369
+LrEMD 0.237 0.611 0.159 0.101 0.257 0.273
+Lself−sim 0.230 0.597 0.135 0.103 0.271 0.267
+ AdaIN skip 0.247 0.492 0.131 0.099 0.179 0.230
+ content-enhanced 0.236 0.461 0.116 0.097 0.171 0.216
Full model 0.234 0.475 0.125 0.098 0.177 0.222

TDE↓ Baseline 0.108 0.115 0.097 0.092 0.101 0.103
+LrEMD 0.101 0.113 0.094 0.083 0.092 0.097
+Lself−sim 0.097 0.110 0.087 0.078 0.090 0.092
+ AdaIN skip 0.102 0.112 0.092 0.077 0.084 0.093
+ content-enhanced 0.096 0.107 0.083 0.070 0.077 0.087
Full model 0.098 0.109 0.088 0.073 0.081 0.089
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Appendix A Details of encoder and decoder

As stated in the main paper, we employ the pre-trained 
VGG-19 as the encoder and constitute the decoder with 
residual blocks. Both networks consists of small size 

convolutional blocks, and each convolutional layer is fol-
lowed by a ReLU layer (nonlinear activation function). 
Tables 6 and 7 provides full details of the encoder and 
decoder.

Table 5   Quantitative evaluation 
of ablation experiments on the 
training set of DAVIS-2017 
( ×10−2)

The bold results represents the best ones in each part

Metric Method Style Average

Candy Asheville Sketch Udnie Wave

FWE↓ Baseline 0.380 1.112 0.234 0.150 0.432 0.462
+LrEMD 0.294 0.779 0.204 0.133 0.341 0.350
+Lself−sim 0.279 0.746 0.172 0.134 0.337 0.334
+ AdaIN skip 0.282 0.559 0.149 0.122 0.212 0.265
+ content-enhanced 0.265 0.518 0.133 0.117 0.200 0.247
Full model 0.268 0.536 0.144 0.119 0.209 0.255

TDE↓ Baseline 0.116 0.122 0.104 0.098 0.105 0.109
+LrEMD 0.108 0.120 0.099 0.091 0.099 0.103
+Lself−sim 0.104 0.115 0.093 0.088 0.096 0.099
+ AdaIN skip 0.107 0.117 0.094 0.085 0.089 0.098
+ content-enhanced 0.099 0.112 0.084 0.077 0.080 0.090
Full model 0.103 0.115 0.089 0.080 0.085 0.094

Table 6   Details of the encoder

Input are RGB images
* indicates there exist skip connections in this layer

Layer Kernel Stride Output size
(Size, Numbers) ( Dimensions 

× Height × 
Weight)

Input – – 3 × H ×W

Conv_in 1 × 1, 3 1 3 × H ×W

Conv1_1* 3 × 3, 64 1 64 × H ×W

Conv1_2 3 × 3, 64 1 64 × H ×W

Maxpool 2 × 2 2 64 ×
H

2
×

W

2

Conv2_1* 3 × 3, 128 1 128 ×
H

2
×

W

2

Conv2_2 3 × 3, 128 1 128 ×
H

2
×

W

2

Maxpool 2 × 2 2 128 ×
H

4
×

W

4

Conv3_1* 3 × 3, 256 1 256 ×
H

4
×

W

4

Conv3_2 3 × 3, 256 1 256 ×
H

4
×

W

4

Conv3_3 3 × 3, 256 1 256 ×
H

4
×

W

4

Conv3_4 3 × 3, 256 1 256 ×
H

4
×

W

4

Maxpool 2 × 2 2 256 ×
H

8
×

W

8

Conv4_1 3 × 3, 512 1 512 ×
H

8
×

W

8

Table 7   Details of the decoder

Input are stylized features, and we adopt the bilinear upsample to 
recover the spatial size of feature maps
* indicates there exist skip connections in this layer

Layer Kernel Stride Output Size
(Size, Numbers) ( Dimensions 

× Height × 
Weight)

Input – – 512 ×
H

8
×

W

8

Resblock1
(
3 × 3, 512

3 × 3, 512

)
1 512 ×

H

8
×

W

8

1 512 ×
H

8
×

W

8

Conv1 3 × 3, 256 1 256 ×
H

8
×

W

8

Upsample – – 256 ×
H

4
×

W

4

Resblock2*
(
3 × 3, 256

3 × 3, 256

)
1 256 ×

H

4
×

W

4

1 256 ×
H

4
×

W

4

Conv2 3 × 3, 128 1 128 ×
H

4
×

W

4

Upsample – – 128 ×
H

2
×

W

2

Conv3_1* 3 × 3, 128 1 128 ×
H

2
×

W

2

Conv3_2 3 × 3, 128 1 64 ×
H

2
×

W

2

Upsample - – 64 × H ×W

Conv4_1* 3 × 3, 64 1 64 × H ×W

Conv4_2 3 × 3, 64 1 3 × H ×W
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