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a b s t r a c t 

Recently, the quality of face generation and manipulation has reached impressive levels, making it diffi- 

cult even for humans to distinguish real and fake faces. At the same time, methods to distinguish fake 

faces from reals came out, such as Deepfake detection. However, the task of Deepfake detection remains 

challenging, especially the low-quality fake images circulating on the Internet and the diversity of face 

generation methods. In this work, we propose a new Deepfake detection network that could effectively 

distinguish both high-quality and low-quality faces generated by various generation methods. First, we 

design a two-stream framework that incorporates a regular spatial stream and a frequency stream to 

handle the low-quality problem since we find that the frequency domain artifacts of low-quality images 

will be preserved. Second, we introduce hierarchical supervisions in a coarse-to-fine manner, which con- 

sists of a coarse binary classification branch to classify reals and fakes and a five-category classification 

branch to classify reals and four different types of fakes. Extensive experiments have proved the effec- 

tiveness of our framework on several widely used datasets. 

© 2023 Published by Elsevier B.V. 
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. Introduction 

With the rapid development of deep learning, more and more 

ace forgery algorithms [1–5] have been proposed. It is now possi- 

le to generate fake videos and images that are difficult for hu- 

an eyes to distinguish. Unfortunately, sometimes technologies 

ay be misused maliciously, damaging an individual’s reputation 

nd causing political threats. In order to reduce this risk, it is par- 

icularly important to develop an effective Deepfake detection al- 

orithm. 

Early research of Deepfake detection try to use handcrafted fea- 

ures or to modify the existing neural network structure to detect 

ake images [6–8] . However, with the significant advancement of 

ace forgery technologies [9–11] , these methods are no longer reli- 

ble for Deepfake detection. Since then, the research method has 

radually shifted to introducing prior knowledge into the back- 

one network [12,13] . Though there are some detection methods 

hat have achieved better detection accuracy on public datasets, 

here are still some problems. First, low-quality images are difficult 
∗ Corresponding author. 

E-mail addresses: yufeiliang@zju.edu.cn (Y. Liang), mengmengwang@zju.edu.cn 

M. Wang), jyining@ualberta.ca (Y. Jin), pansw@zucc.edu.cn (S. Pan), 

ongliu@iipc.zju.edu.cn (Y. Liu) . 

d

s

W

t

f

ttps://doi.org/10.1016/j.patrec.2023.05.029 

167-8655/© 2023 Published by Elsevier B.V. 
o detect. Second, the diversity of forgery algorithms also causes 

roblems. 

At present, both human eyes and Deepfake detection methods 

ould not distinguish the compressed low-quality fake images well. 

t the same time, most fake images propagated on the Internet are 

ompressed images. In the spatial domain, since the artifacts of 

ake images have been compressed, no artifacts can be captured. 

owever, we find the artifacts in the frequency domain are pre- 

erved. Some examples of low-quality fake images are shown in 

ig. 1 . As shown in the figures, the low-quality fake images are 

ery similar to real images in the spatial domain. It is difficult for 

s to distinguish fake images like Fig. 1 (a), but by visualizing the 

orresponding spectrum of the images ( Fig. 1 (b)), we can clearly 

ee the artifacts in the spectrum of the fake images ( Fig. 1 (c)).

ome studies [14–16] have shown that, fake images and real im- 

ges have clear distinctions in the frequency domain. These meth- 

ds only use information in the frequency domain of the image to 

etect fake images. However, the spatial domain still contains a lot 

f appearance representations about the image that should not be 

iscarded. In this paper, we strive to use information both in the 

patial domain and in the frequency domain to detect fake images. 

e are the first attempt to use image frequency domain informa- 

ion and spatial domain information in a two-stream network form 

or the Deepfake detection task. 

https://doi.org/10.1016/j.patrec.2023.05.029
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Fig. 1. Examples of real images and fake images. (a) is the images, (b) is the spectrum corresponding to the images, (c) is the artifacts in the spectrum, (1), (2) and (3) are 

fake images, (4), (5) and (6) are real images. 
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Moreover, most approaches turn the task of Deepfake detec- 

ion into a binary classification problem. Considering that different 

ANs have different fingerprints, which means the feature distri- 

utions of fake faces generated by different operation methods are 

ifferent. Therefore, it is unreasonable to simply classify all fake 

aces into one category. Since the constraints of multiple classifi- 

ations are helpful to Deepfake detection tasks, in this paper, we 

se hierarchical classification in a coarse-to-fine way to implement 

he additional constraints of the multi-classification task after the 

inary classification task, which can further improve the perfor- 

ance. 

In this paper, we propose a H ierarchical supervised T wo-stream 

et work (HTNet) for Deepfake detection. Our main contributions 

an be summarized as follows: 

• We introduce a two-stream network for Deepfake detection, 

which combines a spatial stream to encode semantic represen- 

tations and a frequency stream to present frequency features. 
• We use hierarchical supervisions in a coarse-to-fine manner to 

achieve the reintegration of fine-grained labels and ordinary bi- 

nary labels. 
• Extensive experiments demonstrate that our method achieves 

favorable performance. 

. Related work 

Deepfake generation Forging faces is not just a modern prob- 

em. There is an image stitching technology [17] that can combine 

ultiple images into a composite image. The new generation of 

I-based image synthesis algorithms is based on the latest devel- 

pment of new deep learning models (especially Generative Ad- 

ersarial Networks (GAN) [18] ). Liu et al. [19] proposed an unsu- 

ervised image to image translation framework based on coupled 

ANs, which aims to learn the joint representation of images in 

ifferent domains. This algorithm is the basis for the Deepfakes 

lgorithm. Deepfakes [20] can replace the face of the target per- 

on with other faces in the video. Face2Face [3] is a real-time 

ace reenactment system that use only an RGB camera. Instead 
122 
f manipulating expressions only, the extended work [21] trans- 

ers the full 3D head position, rotation, expression, and eye blink- 

ng from a source actor to a portrait video of a target actor. The 

ost advanced high-resolution ( 1024 × 1024 ) GAN models-PGGAN 

22] and StyleGAN [9] can generate high-quality face images that 

an even fool humans. 

Deepfake detection With the continuous development of Deep- 

ake algorithms, the fake images generated by these algorithms 

re becoming more and more difficult to distinguish. Facial fakes 

ose a considerable threat to social security, so it is crucial to 

ormulate effective countermeasures. Many proposals have been 

roposed. Traditional forgery can be detected by methods such 

s [23,24] . Zhou et al. [23] proposed a two-stream CNN for face 

ampering detection. Some early works used the biological char- 

cteristics in the face, such as. Li et al. [25] observed that Deep- 

ake face lacks true blinking because the training images obtained 

rom the Internet usually do not include photos of subjects with 

heir eyes closed. The non-blinking phenomenon is detected by 

he CNN/RNN model, thereby exposing the Deepfake video. How- 

ver, this detection can be circumvented by deliberately combin- 

ng images with closed eyes during training. Yang et al. [6] used 

he inconsistency of head posture to detect fake videos. These 

ethods achieved good detection results at that time, but with 

he continuous development of Deepfake algorithms, these algo- 

ithms are no longer reliable. Therefore, with the development of 

eep learning, the mainstream of research has gradually turned 

o introduce different information and prior knowledge into the 

ackbone network to detect face forgery. Zhao et al. [26] insert 

he attention map into the backbone to help the network learn 

mportant features better. Qi et al. [13] used bioinformatics re- 

earch and found that due to the blood circulating in the face, 

he skin color will periodically show small changes. Face X-ray 

27] innovatively uses self-generated data to train the network to 

ocate the hybrid boundary, which greatly improves the general- 

zation ability. Two branch [28] uses a fixed filter bank to extract 

requency information, limiting the ability to extract recognition 

eatures. 
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Fig. 2. Overview of the HTNet. Given an image, (1) use the DCT to obtain the image spectrogram, and send them to two networks respectively, where the frequency domain 

features and spatial domain features will be fused. (2) use the shallow output and deep output of the network to achieve hierarchical supervisions. 
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. Method 

We turn to introduce our HTNet. The architecture of the pro- 

osed HTNet is shown in Fig. 2 . It consists of two streams, a spa-

ial stream and a frequency stream. We take the spatial stream as 

he mainstream and integrate the frequency domain features into 

he spatial domain features via lateral connections in several lay- 

rs. The spatial stream can focus on the spatial domain and seman- 

ics while the frequency stream can excavate imperceptible fake in- 

ormation due to the nature of frequency domain. By dealing raw 

nput with different domains, our method allows the two streams 

o have their own expertise on Deepfake detection. Moreover, we 

et coarse classification results in the shallow layer of mainstream 

nd get fine classification results in the deep layer to achieve hier- 

rchical supervisions. The loss of coarse classification and fine clas- 

ification is fused to get the final loss. 

.1. Two-stream framework 

Spatial stream Spatial stream takes RGB images as input and 

ncodes spatial features such as color features, texture features, 

tc. In Deepfake detection tasks, the spatial stream can capture 

orgery features such as facial position deviations, facial artifacts, 

nd color artifacts. However, for more realistic forged images and 

ompressed low-quality images, it is difficult to distinguish be- 

ween forged images and real images only by information in the 

patial domain. 

As shown in Fig. 3 (a), the feature maps of some forged faces 

xtracted by the spatial stream are obviously different from real 

aces. However, some realistic forged faces are difficult to distin- 

uish only by RGB image. For example, in Fig. 1 (b), the fake face’s

eature map is similar to the real face’s feature map. Thus, using 

nly spatial domain information can not distinguish the fake im- 

ge from the real image well. 

Frequency stream Taking inspiration from traditional image 

orensics [29] , we try to detect fake images with frequency do- 

ain information. Frank et al. [15] has shown that in the spatial 

omain, fake images look very similar to real images. However, in 

he frequency domain, multiple clearly visible artifacts can be eas- 

ly found in frequency transformation of fake images. Therefore, in 

ddition to the spatial domain information, the frequency domain 

nformation of the image can also assist Deepfake detection task. In 

rder to utilize the frequency domain information in the Deepfake 
123 
etection framework, we perform Discrete Cosine Transformation 

DCT) on the image to obtain the corresponding spectrum of the 

mage. 

We use type ii 2D-DCT, which is also used for JPEG compression 

29] . Thus, using DCT will be more compatible with the description 

f compression artifacts out of the forgery patterns. 

Mathematically, 2-dimensional DCT on an input I with dimen- 

ion N to the output D is defined as: 

 = C N · I · (C N ) T (1) 

here C N is the coefficient of the transform matrix defined by: 

 

N 
jk 

= 

√ 

α j 

N 
cos ( π(2 k +1) j 

2 N 
) (2) 

iven α j = 1 for j = 0 , and α j = 2 for j > 0 . 

Our HTNet directly uses the spectrogram obtained by DCT as 

he network’s input. Even though previous approache [30] has at- 

empted to introduce frequency domain information in the face 

wap detection task, our HTNet is the first attempt to directly ex- 

ract spectrogram features utilizing the network in the Deepfake 

etection task. 

Lateral connections 

We believe that information in the spatial domain and the fre- 

uency domain is different but complementary. Therefore, we pro- 

ose a spatial-frequency two-stream network to fuse information 

n the two domains of the image. Our HTNet is the first attempt 

f using image spatial domain information and frequency domain 

nformation in a two-stream network form for the Deepfake detec- 

ion task. 

In our HTNet, we take the spatial stream as the mainstream and 

ntegrate the frequency domain feature map with the spatial do- 

ain feature map in the network. There are many feature fusion 

ethods. Here we have tried three fusion methods, i.e., summa- 

ion, concatenate and channel shuffle. We have implemented these 

hree feature fusion methods in our HTNet. And Concat can get the 

est Deepfake detection accuracy after experiments. 

.2. Hierarchical supervisions 

Different GANs have different fingerprints. It is unreasonable to 

imply classify all fake faces into one category. Therefore, beyond 

inary classification, we use the supervision of different forgery 

ethods. Specifically, we realizes fine-grained label reintegration 
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Fig. 3. Samples of faces and their feature maps. (a) and (b) are fake, (c) and (d) are real. The bottom is the feature maps. 
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rst, then modifies the backbone network to have hierarchical out- 

uts matched with new labels. Finally, we supervise multiple out- 

uts respectively in a coarse-to-fine manner and fuse them in the 

verall loss function. The realization of hierarchical supervisions in 

he network is shown in Fig. 4 . 

.2.1. Label reintegration 

At first, we transform binary labels into multi-class labels ac- 

ording to fine-grained label information. One class for real images 

nd multi-classes for fake images, which takes different forgery 

ethods into consideration. Moreover, we can find that a hier- 

rchical structure exists in the aforementioned multi-class labels 

hen the whole dataset is divided into two classes, real and fake. 

eanwhile, diverse fakes belong to the overall fake class. Inspired 

y Zhu and Bain [35] , we reintegrate dataset label to its naturally 

ierarchical structure, where each sample has labels of both coarse 

evel and fine level. 

.2.2. Hierarchical loss 

Based on hierarchical labels, we modified the backbone network 

s shown in Fig. 4 . CNNs extract image features hierarchically, 
ig. 4. Hierarchical supervisions diagram. The shallow feature maps pass through the co

he fine branch to get the fine classification result. 

124 
hich is one of their natural attributes. We combine it with hier- 

rchical labels to further explore this property meanwhile improve 

he interpretability of features from various layers. Take HRNet 

36] as an example. The original HRNet [36] includes four stages, 

here the unique output comes from the fourth stage and is su- 

ervised by binary cross-entropy loss after processed by the clas- 

ification head. At this point, corresponding to hierarchical labels 

ith two levels, we choose outputs from the third and the fourth 

tage to compute classification loss with labels. Respectively, for 

oarse classification, we employ output from the third stage and 

he first level label (real or fake) to compute binary cross-entropy 

oss. For fine classification, we employ output from the fourth stage 

nd the second level label to compute multi-class cross-entropy 

oss. Both outputs are processed by classification head which is 

lobal average pooling to obtain feature vector from feature map. 

he following overall loss supervises the network training in a 

oarse-to-fine manner: 

 C = 

1 
N 

∑ N 
i =1 

∑ H 
h =1 αh CE (f h , y i ) 

= − 1 
N 

∑ N 
i =1 

∑ H 
h =1 αh log 

(
e 

f h y i 

∑ 

j e 
f h 
j 

)
(3) 
arse branch to get the coarse classification result, and the deep feature maps pass 
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Table 1 

Acc and AUC on FaceForensics++ dataset . 

Methods Param. GFLOPs Acc (LQ) AUC (LQ) Acc (HQ) AUC (HQ) Acc (RAW) AUC (RAW) 

Steg.Features [29] – – 55.98% – 70.97% – 97.63% –

LD-CNN [31] – – 58.69% – 78.45% – 98.57% –

MesoNet [7] 0.3 M – 70.47% – 83.10% – 95.23% –

Face X-ray [27] – – – 0.616 – 0.874 – –

Xception [32] 20.8 M 4.6 82.71% 0.893 95.04% 0.963 98.77% 0.992 

Xception-ELA [33] 20.8 M 4.7 73.69% 0.829 92.09% 0.948 97.13% 0.984 

Xception-PAFilters [34] 20.8 M 4.9 83.24% 0.902 – – – –

F 3 -Net [30] 57.3 M – 86.43% 0.914 96.63% 0.971 99.40% 0.996 

Two Branch [28] – – – 0.866 – 0.987 – –

Multi-attention [26] 49.5 M – 86.95% 0.873 96.37% 0.970 – –

HTNet (Xception) 41.6 M 9.3 86.42% 0.921 96.89% 0.973 99.53% 0.994 

HTNet (HRNet) 125.2 M 26.1 86.68% 0.929 97.00% 0.978 99.60% 0.996 

The best scores are marked in bold and the second best scores are underlined. 
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Table 2 

Cross-dataset evaluation on Celeb-DF and 

DFDC by training on FaceForensics++. 

Methods Celeb DF DFDC 

MesoNet [7] 54.80 60.35 

FWA [43] 56.90 67.30 

Xception [32] 65.30 64.50 

Multi-task [44] 54.30 –

Capsule [45] 57.50 53.30 

Face X-ray [27] 66.40 65.50 

Multi-attention [26] 67.44 69.87 

HTNet (Xception) 67.83 71.98 

HTNet (HRNet) 69.82 73.38 
here N is the total number of images, H is the total number of 

evels in the hierarchical classification, αh is the h th level classifi- 

ation weight, f h is the classification result of the h th lavel, y i is

he classification label of the h th lavel, and CE is the cross-entropy 

oss. 

. Experiment 

.1. Datasets 

As in Li et al. [27] , Masi et al. [28] , we mostly use FaceForen-

ics++ (FF++) [37] for our experiments due to its forgery diversity. 

t contains 10 0 0 original videos and 40 0 0 fake videos generated

sing DeepFakes [20] , Face2Face [3] , FaceSwap [38] , and NeuralTex- 

ures [39] . Each video in FF++ has three different qualities: RAW, 

igh Quality (HQ) and Low Quality (LQ), respectively. To evaluate 

he robustness of our HTNet, we also conduct experiments on the 

ecent proposed large-scale face manipulated dataset, i.e., Celeb-DF 

40] and Deepfake Detection Challenge (DFDC) [41] datasets. 

.2. Implementation details 

Our framework is implemented by PyTorch. We conduct experi- 

ents on two backbones, Xception [32] and HRNet [36] . For Xcep- 

ion, we use Xception [32] pre-trained on ImageNet [42] as the 

ackbone, during which the newly introduced layers and blocks 

re initialized randomly. For hierarchical supervisions, add coarse 

lassification head after block7 for coarse classification, and add 

ne classification head after block12 for fine classification. For two- 

tream framework, spatial domain and frequency domain feature 

usion is also performed on block7 and block12. We optimize the 

etwork through SGD. We set the benchmark learning rate to 0.05 

nd use the multistep learning rate scheduler to adjust the learn- 

ng rate. Momentum is set to 0.9. Weight decay is set to 0.0 0 01. For

RNet [36] , add coarse classification head after stage3 for coarse 

lassification, add fine classification head after stage4 for fine clas- 

ification, perform feature fusion on stage3 and stage4, and the re- 

aining settings are the same as Xception [32] . 

.3. Comparing with previous methods 

We compare our method with current state-of-the-art Deep- 

ake detection methods. We evaluate the performance on FF++ and 

urther evaluate the cross-dataset performance on Celeb-DF and 

FDC. 

.3.1. Evalustion on FaceForensics++ 

The results are shown in Table 1 . Our proposed HTNet performs 

etter than them in all quality settings (LQ, HQ, and RAW) us- 

ng Xception as the baseline. Especially for low quality (LQ) set- 
125 
ing, the proposed HTNet achieves 86.42% in Acc and 0.921 in 

UC with the baseline Xception. Compared to the second-best 

erforming method (Xception-PAFilters [34] ), the accuracy is im- 

roved by 3.18%, which is a significant improvement. These results 

how that our proposed method effectively solves the problem that 

ow-quality fake images are difficult to distinguish. We conduct 

xperiments on different backbones to verify that backbones do 

ot restrict our proposed framework. When we use HRNet [36] as 

he backbone, the performance of our HTNet is further improved, 

eaching 86.68% in Acc and 0.929 in AUC on low-quality data. 

.3.2. Cross-dataset evaluation 

Furthermore, we evaluate the cross-dataset performance of our 

TNet, that is trained on FaceForensics++ but tested on Celeb-DF 

40] and DFDC [41] datasets. The results are shown in Table 2 . Our

ethod shows better transferability than other existing methods. 

.4. Ablation study 

The HTNet we proposed consists of two parts: hierarchical su- 

ervisions and spatial-frequency two-stream network. In order to 

valuate the effectiveness of the proposed hierarchical supervisions 

nd spatial-frequency two-stream of HTNet, we quantitatively eval- 

ate HTNet and its variants in the following three ways: 1) base- 

ine (Xception), 2) HTNet without spatial-frequency two-stream, 3) 

TNet without hierarchical supervisions. We use Xception as the 

aseline for all ablation experiments and complete all experiments 

n low-quality data in Faceforensics++ dataset. 

The quantitative results are shown in Table 3 . By comparing 

odel 1 (baseline) and Model 2 (HTNet without spatial-frequency 

wo-stream), the proposed hierarchical supervisions can improve 

he Acc and AUC scores of Deepfake detection tasks. Adding 

patial-frequency two-stream based on Model 2, Acc and AUC 

cores are higher. These gradual improvements prove that the hier- 

rchical supervisions and spatial-frequency two-stream in the pro- 

osed HTNet are indeed helpful for Deepfake detection tasks. 
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Table 3 

Ablation study of the proposed HTNet on the low quality task(LQ). 

We compare HTNet and its variants by removing hierarchical su- 

pervisions and spatial-frequency two-stream network step by step 

. 

hierarchical supervisions Two-stream Acc AUC 

82.71% 0.893 √ 

85.659% 0.904 √ 

85.95% 0.910 √ √ 

86.42% 0.921 

Table 4 

Results of different type of classifier . 

Model Acc AUC 

Binary classifier after block7 82.93% 0.897 

Binary classifier after block12 82.71% 0.893 

Multi-classifier after block12 83.59% 0.899 

hierarchical supervisions 85.82% 0.915 

Table 5 

Results of different loss ratios of 

coarse classification and fine clas- 

sification in hierarchical supervi- 

sions . 

Loss Ratio Acc AUC 

0.01 82.93% 0.897 

0.1 85.18% 0.901 

1 85.66% 0.914 

5 85.82% 0.915 

10 85.37% 0.904 

4

s

fi

c

t

c

c

o

c

e

a  

t

Table 6 

Results of different fusion methods and 

baseline . 

Fusion Acc AUC 

image basline 82.71% 0.893 

dct baseline 80.76% 0.862 

Sum 85.82% 0.910 

Concatenate 85.95% 0.914 

Channel Shuffle 85.12% 0.897 
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.4.1. Hierarchical supervisions 

We separately prove the role of hierarchical supervisions in this 

ubsection. There are two different one-hot labels from coarse to 

ne. In order to verify the effect of hierarchical classification, we 

onduct experiment. And the results are shown in Table 4 . From 

he results, we can see that the results obtained by using hierar- 

hical classification are better than the ones using binary classifi- 

ation and multi-classification. Experiments verify the effectiveness 

f hierarchical supervisions in Deepfake detection tasks. 

Hierarchical classification involves coarse classification and fine 

lassification loss ratio in the loss function. Here we choose differ- 

nt loss ratios for experiments. The results are shown in Table 5 , 

nd the accuracy versus loss ratio is shown in Fig. 5 . From Table 5 ,

he accuracy is the highest when the loss ratio is 5:1. The reason 
Fig. 5. The variation trend of accuracy with the loss ratio. 
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s that the coarse classification and the fine classification can be 

sed in a balanced manner. The ratio of 5:1 can ensure that the 

wo-classification task is the leading task while using the multi- 

lassification supervision information. 

.4.2. Two-stream network 

We explore the influence of frequency domain information and 

usion modules of different structures on the performance of Deep- 

ake detection tasks. In order to prove that the two-stream net- 

ork that introduces frequency domain information (DCT) can im- 

rove the performance of the network in Deepfake detection tasks, 

e conduct experiments to compare the performance of 1) base- 

ine (Xception), using only spatial domain information. 2) base- 

ine(Xception), using only frequency domain information obtained 

y DCT. 3), 4), 5) two stream with three fusion methods. The re- 

ults are shown in Table 6 . 

From the results, only using the frequency domain information 

an not get a good detection accuracy. The reason is that although 

he frequency domain contains additional information compared 

ith the spatial domain, there is a lot of information in the spatial 

omain that the frequency domain is unable to express. In the HT- 

et, the spatial stream is the mainstream. The frequency domain 

nformation is integrated into the spatial information at specific 

ayers, bringing auxiliary information to the monitoring model, and 

he detection accuracy is improved. From the results, we can see 

hat simple concatenate and addition operations can achieve better 

erformance. This fully shows the effectiveness of our two-stream 

etwork that integrates frequency domain information and spatial 

omain information. 

. Conclusion 

In this article, we propose a new network for the Deepfake de- 

ection task—HTNet. HTNet is mainly composed of two-stream net- 

ork and hierarchical supervisions. The two-stream network in- 

roduces frequency domain information into the model to assist 

n the Deepfake detection task. Compared with only using spatial 

omain or frequency domain information, the fusion of two do- 

ains feature map in the network can obtain good result. And the 

ierarchical classification innovatively transforms Deepfake detec- 

ion task from a simple binary classification task to a coarse-to- 

ne multi-level classification task. It uses a more detailed classifi- 

ation task to assist the accuracy of the binary classification task. 

e also prove the effectiveness of our HTNet through extensive 

xperiments. 
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