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Geo-Localization With Transformer-Based 2D-3D
Match Network

Laijian Li"’, Yukai Ma'¥, Kai Tang
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Abstract—This letter presents a novel method for geographical
localization by registering satellite maps with LiDAR point clouds.
This method includes a Transformer-based 2D-3D matching net-
work called D-GLSNet that directly matches the LiDAR point
clouds and satellite images through end-to-end learning. Without
the need for feature point detection, D-GLSNet provides accurate
pixel-to-point association between the LiDAR point clouds and
satellite images. And then, we can easily calculate the horizontal
offset (Ax, Ay) and angular deviation A0,,,, between them,
thereby achieving accurate registration. To demonstrate our net-
work’s localization potential, we have designed a Geo-localization
Node (GLN) that implements geographical localization and is plug-
and-play in the SLAM system. Compared to GPS, GLN is less
susceptible to external interference, such as building occlusion. In
urban scenarios, our proposed D-GLSNet can output high-quality
matching, enabling GLN to function stably and deliver more ac-
curate localization results. Extensive experiments on the KITTI
dataset show that our D-GLSNet method achieves a mean Relative
Translation Error (RTE) of 1.43 m. Furthermore, our method
outperforms state-of-the-art LIDAR-based geospatial localization
methods when combined with odometry.

Index Terms—Geo-localization, 2D-3D match, SLAM.

1. INTRODUCTION

EOPLE’S pursuit of accurate positioning has not dimin-
P ished with the advent of GPS, but rather, they have more
expectations for stable and accurate positioning over a long
time. Accurate positioning over long periods is also the key
to autonomous driving technology. While LiDAR odometry [1],
[2] can provide highly accurate relative motion pose estimation,
it is subject to inevitable cumulative drift. Vehicle localization
technologies primarily rely on Global Navigation Satellite Sys-
tems (GNSS) and ground-based maps (e.g., using LiDAR point
clouds) [3], [4] for estimating absolute, geo-referenced poses.
However, in urban environments with tall buildings, known
as “urban canyons,” commercial GPS signals often become
unavailable [5]. Therefore, prior maps have become a viable

Manuscript received 10 April 2023; accepted 13 June 2023. Date of pub-
lication 29 June 2023; date of current version 5 July 2023. This letter was
recommended for publication by Associate Editor B. Duncan and Editor P.
Pounds upon evaluation of the reviewers’ comments. This work was supported by
the National Natural Science Foundation of China under Grant NSFC 62088101.
(Laijian Li and Yukai Ma contributed equally to this work.) (Laijian Li and Yukai
Ma are co-first authors.) (Corresponding author: Yong Liu.)

The authors are with the Institute of Cyber-Systems and Control, Zhejiang
University, Hangzhou 310012, China (e-mail: lilaijian @zju.edu.cn; 12132060 @
zju.edu.cn; kaitang@zju.edu.cn; xiangruizhao@zju.edu.cn; chenchaol924@
zju.edu.cn; 22032097 @zju.edu.cn; jianbiaomei@zju.edu.cn; yongliu@iipc.
zju.edu.cn).

Digital Object Identifier 10.1109/LRA.2023.3290526

, Xiangrui Zhao
, and Yong Liu

, Chao Chen, Jianxin Huang,

solution for the localization problem. They can compensate for
the limitations of GPS signals and provide higher-precision 6-
DoF pose estimation. Nevertheless, most prior map methods re-
quire pre-mapping the environment and performing localization
relative to a geo-referenced point cloud database. Furthermore,
the coverage of existing prior maps is sometimes more exten-
sive, limiting their use in unknown environments. Thus, some
studies [6], [7], [8], [9] have proposed using publicly available
maps, such as GIS and satellite imagery, for robot localization,
which have already covered most parts of the world. However,
the biggest challenge lies in associating data of different types
and perspectives.

The current localized feature associations include image fea-
ture matching, 3D point cloud matching, and matching be-
tween point clouds and images. Local feature matching be-
tween images without detectors [11], [12] have aroused general
interest. Detector-free methods are robust against texture dif-
ferences, lighting, and viewpoint changes. At the same time,
direct registration methods [13], [14], [15] for point clouds
have replaced traditional correspondence-based methods [16],
[17], [18]. They use neural networks to estimate transformations
in a Transformer-like manner. Previous geo-localization meth-
ods [6], [7], [8], [9] obtain a series of ground images or point
clouds as input and output the vehicle’s pose estimation relative
to the geographic reference satellite image. [6], [7] rely on the
semantic information of satellite maps for data association. [8],
[9] directly aligns ground with aerial images via learned visual
features. However, they all fail to achieve satisfactory levels of
accuracy.

Inspired by the current Transformer-based detector-free local
feature matching method [19], [20], we propose an end-to-end
geometric structure-based LiDAR (3D) and satellite image (2D)
registration method. Furthermore, we design an independent
node GLN, relying only on satellite imagery, that can replace the
role of GPS and correct the cumulative offset of all current Li-
DAR odometry. We will verify this through specific and detailed
experiments about different SLAM systems coupled with GLN
or GPS, respectively. Among these LiDAR methods, we choose
A-LOAM! and LIO-SAM [2] for the subsequent experiments.

To summarize, the main contributions of this letter are as
follows:

® We propose a novel point-level matching model for LIDAR

(3D) and satellite images (2D), which can be directly used
for registration to obtain their horizontal offset (Ax, Ay)
and angular offset (Af,4.).

e Based on the proposed D-GLSNet network, we develop

a plug-and-play Geo-localization Node (GLN) with any
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LiDAR SLAM system. This GLN offers several advantages
over the GPS, particularly regarding reduced susceptibility
to external interferences like building occlusion.

® We conduct extensive experiments on the KITTI dataset

and use different odometry combined with GLN. Results
show that our method outperforms the state-of-the-art
LiDAR-based geo-localization methods and demonstrates
the feasibility of replacing GPS with GLN.

® The code for the D-GLSNet and the dataset of satellite

images aligned to KITTI can be downloaded from https:
//github.com/yzdad/D-GLSNet.git.

The rest of this article is organized as follows: Section II
summarizes the related works in recent years. Our system is
introduced in Section III. Section IV includes details about
experimental settings and results on several datasets. Ultimately,
we conclude a brief overview of our system and a future outlook
in Section V.

II. RELATED WORK

A. 2D-3D Matching

Matching between 2D images and 3D point clouds presents a
unique challenge compared to matching within a single domain.
The substantial differences in data types between the two make it
a heterogeneous data-matching problem. Currently, there needs
to be more research focused on addressing this issue. Some
approaches employ a fusion of conventional hand-crafted tech-
niques and machine learning. Li et al. [21] use hand-crafted
3D object-level embeddings as learning targets and learn corre-
sponding image embeddings through CNN networks to com-
plete the learning of object-level cross-domain descriptions.
Similarly, 3DTNet [22] uses 2D and 3D local patches as input,
and feature extraction of the 3D local pudding is assisted by
features of 2D picture blocks, which improves the discriminable
effort of 3D features. However, it can only be used for 3D
matching.

Other methods use a pure learning approach, LCD [23]
proposes a novel approach to learn cross-domain descriptors
for 2D and 3D local patch matching, which employs a dual
self-encoder neural network that maps 2D and 3D inputs to
a shared latent space representation, respectively. Similar to
LCD, 2D-3DMatchNet [24] proposes a 3D point cloud to 2D
image feature extraction network, which uses traditional corner
point extraction to get pixel-to-point pair matching, but is still
essentially 2D and 3D local pudding pair matching. P2-Net [25]
extracts each point descriptor, detects key point locations in a
single forward pass, and then generates 2D point to 3D point
matches from the extracted descriptions. Similarly, our work
also generates pixel-to-point matches.

B. Cross-View Localization

Cameras and LiDAR are commonly used for ego-motion
estimating, which has led to the development of two cross-view
localization methods in remote sensing. One such method is
image-based geo-localization, which involves querying ground
images from an aerial image database [26]. To overcome
the significant viewpoint differences between the two types
of images, Kim et al. [8] used a dual-branch network to
extract potential vectors of ground images and aerial image
databases, using feature distance to measure the similarity
between them. Again, [27], [28] adopted a dual-branch network
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Fig. 1. Results of geo-localization and mapping using A-LOAM + GLN on
the KITTI 00 dataset [10]. Our proposed geo-localization method accurately
calculates the transformation of point clouds in 3-Dof of freedom on a satellite
map. We have modularized the localization method so that any LiDAR-based
odometry can use it. The right-hand side of this image shows some details.

structure and employed different methods to minimize the
differences between the image domains. Other image-based
geo-localization methods that utilize semantic information [7],
[29] typically involve semantic segmentation of ground and
satellite images, followed by comparison based on projection
relationships. However, the accuracy of this approach depends
on the labels used and the precision of the network.

Cross-view matching using LiDAR presents several chal-
lenges, including differences in point cloud density, distribution,
and occlusions. However, the absolute scale provided by Li-
DAR and satellite images enables higher accuracy in cross-view
matching. Data association in LiDAR can be complex due to
differences in data modality, and some methods rely on manual
or semantic techniques to perform data association. For exam-
ple, Yan et al. [30] constructed a match-ready descriptor for
top-down view maps from OpenStreetMap [cite] that enables ef-
ficient 3D LiDAR-based localization. Miller et al. [6] segmented
LiDAR and Google Maps separately, computed Truncated Dis-
tance Fields (TDFs) for aerial semantic maps, and compared
them with LiDAR data class-wise. AGCV-LOAM [31] uses a
neural network to process LIDAR grid maps and satellite image
patches, outputting attitude correction values that are added to
the factor map for pose optimization.

Further, hybrid methods input images and LiDAR, such as
those proposed by [9], [32], using LIDAR and image continuous
data streams to improve perception and tracking. Nevertheless,
they use LiDAR as an aid to provide depth or additional infor-
mation. In contrast to previous work, our method directly learns
the correspondence between LiDAR points and satellite images
end-to-end using only LiDAR data. This method makes full use
of the information of the LiDAR point cloud rather than just
using semantics or depth.

III. METHODOLOGY

Inspired by LoFTR [19], we propose a two-stage match-
ing model D-GLSNet for generating relatively dense corre-
spondences between an image I € R”*W and a point cloud
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Fig. 2.

Overview of the D-GLSNet. There are four components: 1. Feature Extraction extracts coarse features F/ | F” and fine features F'I F;D from images

f?

and point clouds(Section III-A). 2. Coarse-Level Transformer transforms coarse features FEI s FCP into more unique features Ftlc, FP (Section III-B). 3. Point

Matching Module uses coarse features Ft o F

to generate coarse matching predictions M. = {(i., jc)} (Section III-C). 4. Fine-Level Matching Module further

refines each selected coarse prediction (i, ]C) to obtain a finer match (i, j¢) (Section III-D).

Odometry

¥
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Fig. 3.

Overview of the Geo-localization Node (Section III-F). We use the proposed network and pose graph optimization model to correct the cumulative error

of the odometry. GLN is independent and can be combined with different odometry.

P € RNV>*3_ without relying on a separate detector. Our method
employs a network architecture depicted in Fig. 2. Based on the
proposed network model, we design a Geo-localization Node
(shown in Fig. 3) that can be used for localization combined
with a LiDAR SLAM system.

A. Feature Extraction

Image features are extracted using the Feature Pyramid Net-
work (FPN) [33]. For each input image /, we extract a coarse
feature 1 with a spatial resolution of 1/16 of the input image
and a fine feature FJ{ with a spatial resolution of 1/4 of the

input image. For point cloud feature extraction, we use the
KPConv-FPN [34] backbone to extract multi-level features. We
perform four down-sampling of the input point cloud P and
obtain four point clouds P* € RV:*3 k = 1,2, 3, 4 with differ-
ent resolutions. Then the point cloud features can be extracted
by five encoder layers and one decoder layer. Here, [P*; FF']
denotes the coarse matching feature and [P3; Ff ] represents
the fine matching feature.

Matching on feature maps that have been down-sampled in-
stead of the original image and point clouds, because registration
can be fixed by a coarser correspondence between match subsets.
The features of the original resolution are often too dense, and
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applying them is inefficient and time-consuming. Matching on
low-resolution features leads to a noteworthy reduction in the
input to the Transformer module, thereby substantially enhanc-
ing the matching efficiency while simultaneously preserving
accuracy.

B. Coarse-Level Transformer

After obtaining the coarse features, F! and [P*; F.F’] are
passed through the Transformer to extract position and context-
dependent coarse features F.. and Ff. At the same time, we
explicitly encode the geometry and match or estimate the relative
geometric relationship between 2D and 3D using global and
explicit cues. In this way, the learned features are geometri-
cally discriminative and can effectively resolve the problem of
matching ambiguity, thereby reducing the number of outlier
matches. The Transformer models typically consist of a series
of sequentially connected attention layers. The attention layer
typically receives the query @, key K, and value V as input,
completing the work like information retrieval. The attention
determines the weight by calculating the similarity between
the query @ and the key K and then converts the similarity
value V' into a set of weights through a softmax layer. Finally,
the attention value is obtained by weighting and summing the
values according to the product of this set of weights and the
corresponding value.

Attention(Q, K, V) = softmax(QK ")V.

The attention can be broadly interpreted as a vector of impor-
tance weights. To predict an element, the attention vector is used
to estimate how it is related to other elements, and the weighted
sum of these values is used as an approximation of the target.
When the input query () and value V' are both image or point
cloud features (F! or FI'), this attention mechanism is called
self-attention. When the input query @ and value V' are image
and point cloud features respectively (F/ and FP), it is called
cross-attention.

To integrate position information into features, the sim-
plest and most effective method is to add or concatenate po-
sition embedding vectors directly to features, which is very
effective in some Transformer-based models [19], [20], [35],
[36]. To embed 2D pixel position and 3D point cloud con-
sistently, we only embed the = and y position of the point
cloud and recover the real scale ¢(m/piz) of the satellite
map by zoom Level (pixel Coordinate = worldCoordinate *
gzoomLevely The main reason is that satellite images are ob-
tained by aerial satellite surveys of the ground, ignoring the
height information of surface objects. The points in the LIDAR
point cloud with the same horizontal coordinates (z, y) should
correspond to the same point on the satellite image and maintain
feature invariance along the z-axis.

C. Point Matching Module

This module is designed to accurately determine the pixel
coordinates of the point cloud in the image. A single 2D image
feature may correspond to multiple 3D point cloud features when
conducting coarse-level matching. It means that the projection
of multiple points will fall on the same image patch. This many-
to-one matching method differs from the one-to-one matching
approach used by many traditional images matching [19], [35]
and point cloud matching [20], [36] methods. There are two
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reasons for this. The first is that the resolution of the image
and the point cloud are different when downsampling, and the
other is that points with the exact horizontal coordinates (x, )
should correspond to the same point on the satellite image due
to a viewpoint difference. To achieve better matching results, we
choose the dual-softmax operator. First, we normalize the F},
and FF, features output by the Transformer module and calculate

the fractional matrix S € R(1/16)*HWxNa by
S(i,j) =< normalize(FL(i)), normalize(FE (j)) > .

Since not all 3D points can be found on the 2D image, we extend

the fraction S to S by adding a new row as a bin filled with a
variable a. Then, we get the matching confidence matrix P by
softmax with temperature ¢,

P(i,j) = softmaz(S(-,7)/t):.

Finally, we select the maximum value on the column of P and
only select the match if the max confidence of the match is
higher than the preset threshold ¢h.. The coarse-level matching
predictions denote as:

M. = {(i07jc)|7)(i(:>jc) = max(P('vjc))7P(i(:ajc) > thc}~

D. Fine-Level Matching Module

Coarse matching is initially applied to the low-resolution
inputs, but the accuracy of the matches is not sufficient for
precise positioning. To address this limitation, we implement
additional processing and refinement to improve the precision of
the matching results. For each coarse match (i, j.), we sample
the fine features F{ and F}* from the image and point cloud.
Precisely, in the 2D image, we first calculate the corresponding
position (u.,v.) of i. on the feature map ¥ and then crop a
window of size w X w at that position. For the 3D point cloud,
We sample a local point cloud P’ from P based on the position
of j. at Euclidean distance and then obtain the local point cloud
feature from the F'¥.

Similar to the Coarse-Level Transformer, we use the Trans-
former to obtain the features (Ftlf and Ftp ) to compute the
precise point position on the image (Fig. 2: Fine-Level Matching
Module). Notably, this part uses only local point features learned
by the backbone, without any location embeddings. In fact, after
resolving the global ambiguity by coarse matching, point-level
matching mainly depends on the proximity between points.
Finally, we select the features of the centroid j r from PJe and all
points in the image block and calculate the matching probability
to obtain the heat map. By calculating the expected value of
the probability distribution, we get the pixel position iy as the
matching position. After each point obtained by coarse matching
is processed, the matches are collected to form the final dense
global point correspondence My = (if,jy).

E. Loss Functions

In network training, the total loss function consists of two loss
functions of coarse-level and fine-level: £ = L. + L.

The coarse-level loss function is the Focal Loss of the confi-
dence matrix P. We use the known transformation relationship
T,: between the image and the point cloud to get the accurate
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rough match M¢!, and then calculate £, by:

1
T

(ic,je)eME*

L= (1 _,P(ic,jc))ﬂ/ IOgP(iCajc)

The fine-level matching uses L2 — loss. For each query point j 7,
we also measure its uncertainty by computing the total variance
02(j¢) of the corresponding heat map. The goal is to optimize
the location of the refinement with low uncertainty, resulting in
the final weighted loss function:

=S

(if,jf)E]V]f

1 . )
Ly= m”lf_lgtu

where 44, is obtained by projecting each j; onto F]{ . Ignore
(if,7¢) if the projection of j; exceeds the local window taken
by if on FY.

F. Geo-Localization Node

We develop a localization node named Geo-localization Node
(GLN) for the odometry (Fig. 3). The node receives the 6-
DoF odometry poses {T}?|k =1,2,3...,n} and LiDAR scans
{PLr|k =1,2,3...,n} to correct the odometry trajectory with
D-GLSNet and pose graph optimization. D-GLSNet provides
feature-matching results between LiDAR point clouds and
satellite maps to enable the registration of LiDAR data and
maps. We then use the 3-DoF registration results {77 =
(Azy, Ayg, Abyqw, )} and 6-DoF pose {T} } to construct a pose
graph, which will be optimized to give more accurate poses
{T,f }. As GLN and odometry are separate threads, the node is
suitable for arbitrary SLAM systems, and it provides new and
accurate calculations without affecting the odometry.

In order to obtain 77", we search for the closest local satellite
map I* from the global map as input to D-GLSNet using the
latest pose T,j:l optimized by the pose graph. We feed the frame
of LiDAR points P"* and the local satellite map I* into the
D-GLSNet network to obtain the alignment relations and then
calculate the deviation of the LIDAR coordinates from the global
map 7. In practice, we need to measure the vehicle’s rough
starting position T},,.;,,, which can be obtained with only GPS,
to intercept the satellite map I° quickly.

GLN is a pseudo-GPS signal that also corrects for cumulative
errors in positioning and can be more stable and less affected by
“urban canyons’ than GPS. In addition, GLN can keep odometry
remains stable and accurate, especially in urban scenarios with
rich structural information. Although the initial position is re-
quired, it does not need to be measured precisely, which makes
the system easier to implement and use.

IV. EXPERIMENTS

In this section, we conduct a detailed evaluation of our pro-
posed D-GLSNet on 2D satellite imagery and 3D LiDAR point
cloud direct matching tasks. In addition, we also evaluate the
accuracy of our designed module GLN combined with different
LiDAR odometry. To this end, we train on KITTI-360 [37]
and then evaluate it on KITTI odometry datasets. We exclude
scenario KITTI 01 as the highway scene is not the focus of our
attention and KITTI 03 as GPS ground truth is unavailable.
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A. Implementation Details

In order to train our network to achieve pixel-to-point image
and point cloud matching, we train on the dataset with images
and point clouds that have an accurate pixel-to-point correspon-
dence. We download the satellite images corresponding to each
LiDAR point frame from Google Maps using KITTI-360’s GPS,
and collect images with a pixel resolution of ¢ = 0.196 m/pix.
Then, we remove LiDAR points farther than 50 m and down-
sample them with a resolution of 0.4 m. Several types of data
augmentation are applied during the training process. We ran-
domly rotate and pan the satellite image and intercept an image
of size 480 x 480 pixels from the collect map as the input
to the network. We randomly offset the LiDAR and satellite
images horizontally by a maximum of 27.72 meters. In addition,
we manipulate the images with photometric variations and add
pretzel noise to increase the diversity of the data. We randomly
rotate the LiDAR point cloud, where the roll and pitch angles
are rotated by no more than 10°, to simulate LIDAR mounting
changes and ground undulations. We also add random positional
noise to the coordinates of each LiIDAR point. We train our neural
network on an NVIDIA GeForce RTX 3090. The complete
model is trained end-to-end, with the weights being initialized
randomly. The model is trained using Adam with an initial
learning rate of | = 5¢~5, which will be dynamically adjusted by
Warmup and MultiStepLR. We set the temperature t = 0.01, the
point selection threshold th, = 0.5 for Point Matching Model,
and window size w set to 8. More details can be obtained by
reading our code.

B. Evaluation on Matching

To assess the effectiveness of our 2D-3D direct matching
network D-GLSNet in the pixel-to-point image and point cloud
matching tasks, we use the following metrics commonly adopted
in related work: 1) Average matching number (AMN): the
number of correct pixel-to-point matches where the distance
between a pixel and a point pair is below a threshold (i.e.,
2 m) under its ground truth transformation; 2) Inlier Ratio (IR):
the percentage of correct pixel matching among all possible
matches; 3) Recall (R): the percentage of correct matches to
all ground truth matches; 4) Feature Matching Recall (FMR):
the percentage of point cloud pairs with an inlier ratio above a
certain threshold (i.e., 30%).

None existing works can directly address pixel-to-point
matching in 2D and 3D domains without keypoint detection. The
closest related work [25] to ours requires manual pixel-to-point
supervision, and no data is publicly available. Therefore, we
present our results under different configurations, as summa-
rized in Table I, where small, medium, and big indicate different
sizes of feature extraction networks, respectively, and [N,, Ny]
denotes the number of layers in the Coarse-Level and Fine-Level
Transformer. We train 800 k steps for each configuration and
select the best model. During the evaluation, we randomly apply
a yaw rotation to the LiDAR point cloud and shift the satellite
image, consistent with the training process. Our results show that
the number of matching points obtained from the Fine-Level
stage is significantly higher than that from the Coarse-Level
stage for all performance metrics. Additionally, increasing the
size of the feature extraction network and the number of Trans-
former layers improves the matching performance, but using an
additional Transformer yields higher returns.
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TABLE I
RESULTS OF OUR MODEL D-GLSNET ON THE KITTI DATASET UNDER DIFFERENT CONFIGURATIONS. THE TABLE ALSO SHOWS BOTH THE COARSE-LEVEL AND

FINE-LEVEL MATCHING RESULTS

D-GLSNet Fine-Level Coarse-Level

backbone [N, Ny] size(MB) | AMN IR R FMR Time(ms) | AMN IR R FMR  Time(ms)
[0,0] 75.18 41.52 56.28 2042 75.22 32.06 32.12 4433 1581 72.28 31.00
Small [2,1] 97.71 4588 58.49 2247 77.06 40.56 35.14 4525 17.23 7444 36.61
[4,2] 120.25 48.65 57.78 23.71 75.49 48.24 37.25 4492 18.18 73.15 41.75
[0,0] 154.95 4412  58.31 21.62 76.66 37.11 33.94 4548 16.66 75.76 36.14
Medium [2,1] 177.48 53.31 60.66 2597 78.83 45.14 40.70 46.77 19.84 76.87 41.16
[4,2] 200.02 59.54 62.57 28.88 80.50 55.14 44.82 4722 21.75 77.84 48.19
[0,0] 362.68 50.14 57.63 2472 75.18 50.57 37.87 4432 18.73 71.69 49.55
Big [2,1] 385.22 5593 58.60 27.48 7493 57.36 42.80 4543 21.03 72.69 53.43
[4,2] 407.75 62.15 61.73 30.49 75.36 65.96 4713 47.38 23.16 73.80 59.24

The best result is bold, and the underline is the second.

Fig. 4.

Diagram depicts the matching of satellite maps and LiDAR point clouds, with lines indicating matching pairs. Results for three scenarios are shown

from top to bottom, with image center shifts of 0 m, 20.78 m, and 41.58 m, and LiDAR positions varied accordingly. The last column’s shift exceeds our training

configuration’s maximum.

We present qualitative results in Fig. 4. The figure illustrates
that as the distance difference between the satellite map’s center
and the LiDAR’s location increases from left to right, there are
still good matches available although the number of matches
gradually decreases. Certainly, we can incorporate larger local
satellite images and random translation changes during training
to achieve better matching, but this may lead to additional
computational overhead. Our objective is to integrate matching
networks with LIDAR SLAM. During normal LiDAR odometry
operations, there will not have a large deviation within a certain
period of time. Therefore, it is non-essential to adapt to situations
where the distance difference between the center and the LiDAR
position is large.

We assess the registration error of our method using three
indicators: 1) Relative Rotation Error (RRE): measuring yaw
distance from ground truth; 2) Relative Translation Error (RTE),
measuring Euclidean distance between the z — y vector and
ground live conversion vector; 3) Registration Recall (RR), the
percentage of image point cloud pairs with RRE and RTE below
a specific threshold. Our D-GLSNet(Medium, [4,2]) model
performed well on various KITTI sequences shown in Table II,
with an average registration accuracy of 1.43 m. These results

TABLE I1
REGISTRATION RESULTS ON KITTI ODOMETRY BY THE MODEL
D-GLSNET(MEDIUM, [4,2]). WE ENSURE THAT AT LEAST 15 INLINE MATCHES
ARE CONSIDERED SUCCESSFUL DURING REGISTRATION

Sequence RTE RRE RR(< 2m,< 5°) RR(< 4m,< 10°)
00 0.79 1.49 96.48 99.07
02 1.46 3.59 86.41 98.32
04 209 147 69.57 95.65
05 144 585 91.51 96.75
06 2.10 7.61 79.09 94.27
07 0.77 092 98.90 99.45
08 198 821 79.85 94.71
09 1.01 245 91.76 99.34
10 124 154 81.15 99.65

Average 143 3.68 86.08 97.47

demonstrate our method’s potential to replace consumer-grade
GPS.

C. Localization Accuracy

To test our method’s effectiveness, we combine two Li-
DAR odometry methods, A-LOAM and LIO-SAM, with our
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TABLE III
RMSE(M) AND MEAN(M) OF APE RESULTS OF THE TWO-DIMENSIONAL POSES IN METERS ON THE KITTI DATASET. MISSING CELLS INDICATE SCENARIOS THAT
WERE NOT SUCCESSFULLY TRACKED

00 02 04 05 06 07 08 09 10
Method

rmse / mean  rmse / mean rmse / mean rmse/ mean rmse/ mean rmse/mean rmse/ mean rmse / mean rmse / mean

A-LOAM 15.17 / 11.83 - 1.64/1.03 10.69/8.63 834/6.18 1.35/1.24 31.32/2620 16.73/13.59 7.51/6.76
A-LOAM + GPS 0.59 /7 0.50 - 0.59 7 0.48 0.36 / 0.28 0.63 /0.48 0.37 / 0.33 1.41/0.96 0.77 /1 0.59 0.54 /1 0.47
A-LOAM + GLN 0.96 / 0.87 - 0.67 / 0.54 0.84 /1 0.77 0.88 / 0.69 0.56 / 0.52 1.53/1.26 1.22/1.10 1.13 /091
LIO-SAM - 444173637 0.67/091 11.09/9.06 8.89/6.54 1.00/0.94 37.53/3091 18.04/14.40 6.33/5.60
LIO-SAM + GPS - 2.10/1.12 0.35/0.24 0.34/0.26 0.53/0.43 0.29 / 0.25 1.41/0.92 0.74 /1 0.57 1.13/0.75
LIO-SAM + GLN - 1.84/1.72 0.38 /0.28 0.91/0.84 0.91/0.73 047 /0.44 147/ 1.21 1.30/ 1.16 1.19/0.93

TABLE IV APE w.r.t. translation part (m)

MEAN(M) OF APE RESULTS OF THE TWO-DIMENSIONAL POSES IN METERS
ON THE KITTI DATASET. LOWER BOUNDS ARE GIVEN FOR METHODS THAT
DID NOT REPORT EXACT RESULTS

Method 00 02 04 05 06 07 08 09 10
Brubaker et al. [39] 2.1 4.1 - 2.6 - 1.8 24 42 39
Floros et al. [40] >10 >20 - - - - - - -

Yan et al. [31] >10 - - >10 >10 >10 - >10 >10
Miller et al. [6] 20 9.1 - - - - - 72 -
Kim et al. [8] 4.65 - - - - - - 7.69 -
Zhu et al. [32] - - - - - - 445 - -
Fervers et al. [9] - 142 0.66 0.77 0.57 0.85 251 - 0.96
A-LOAM + GLN  0.87 - 0.54 077 0.69 052 126 110 091
LIO-SAM + GLN - 172 028 084 073 044 121 1.16 093

Missing cells indicate scenes that are not evaluated or not tracked successfully. The
best result is bold, and the underline is the second.

Geo-localization Node (GLN) ITI-F. LOAM is a LiDAR SLAM
system divided into two threads: odometry at high frequencies
and map-building at low frequencies. A-LOAM is based on the
principles of LOAM and is openly available in code. LIO-SAM
builds on LOAM by tightly coupling IMU measurements in
the odometry section and adds GNSS adaptation as a global
map optimization. We adjust LIO-SAM parameters to ensure
stable operation on most sequences, as the original version of
LIO-SAM degenerates on some KITTI dataset sequences. We
conduct a real-time system test on the KITTI dataset, initializing
the system with the first frame GPS of each sequence. We use
GPS/IMU as the ground truth and measure the horizontal offset
performance using APE (Absolute Position Error). We test each
sequence six times and take the average.

We compare the results with the original odometry and those
fused with GPS. To control variables, we assume that the noise
level of the GLN and GPS is 1 m and maintains a frequency
of approximately 1 Hz during trajectory optimization. The final
results are displayed in Table III. As we use KITTI’s GPS as
ground truth, integrating GPS should theoretically provide the
upper limit of accuracy we can achieve. The table reveals that
the odometry has been quite precise in several short sequences.
However, there are noticeable positioning errors at longer dis-
tances due to the impact of accumulated drift. Just like using
GPS, our method can reduce cumulative errors, and already
approximate the results of GPS on some sequences. Fig. 5
depicts that our approach can eliminate accumulated drift of
the odometry, keeping the positioning error low and enhancing
the system’s overall robustness and stability.

We compare our method with previous work, as shown in
Table IV. Our approach outperforms previous state-of-the-art
methods on most sequences. Specifically, our method achieves
the best results in 7 out of 9 sequences and performs well in the
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Fig. 5. Quantitative and qualitative results for Sequence 00 and 02 of KITTI.
(a) Is the localization error comparison between the A-LOAM and A-LOAM +
GLN on Sequence 00. (b) Is the estimated trajectories of the two methods. (c) Is
the localization error comparison between the LIO-SAM and LIO-SAM + GLN
on Sequence 02. (d) The estimated path of the two methods.
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remaining two. Notably, our approach only requires LiDAR data,
eliminating the need for ground image inputs such as [9], which
makes our method less hardware-dependent and easier to use.
Furthermore, unlike [6], which requires semantic segmentation
of the map as a preprocessing step, our method only requires
the original satellite image and LiDAR point cloud input. Our
modular design also ensures the flexibility and universality of
our implementation, enabling easy integration with any front-
end odometry method, such as A-LOAM and LIO-SAM, as we
demonstrated.

V. CONCLUSION AND FUTURE WORK

We propose D-GLSNet, a novel 2D-3D matching network for
registering LiDAR point clouds and satellite images. Our GLN
can be integrated with SLAM to generate pseudo-GPS signals
for odometric trajectory correction. We experiment extensively
on KITTT to validate our D-GLSNet and the odometry combined
with GLN, comparable to low-accuracy GPS and not limited by
external disturbances such as signal strength, building block-
age, etc. However, our method cannot work in some degraded
scenes, such as dense woods and highways, and we will consider
combining multiple sensors to solve the degraded scenes in our
subsequent work.
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