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Abstract—In this letter, we propose an efficient continuous-
time LiDAR-Inertial-Camera Odometry, utilizing non-uniform B-
splines to tightly couple measurements from the LiDAR, IMU, and
camera. In contrast to uniform B-spline-based continuous-time
methods, our non-uniform B-spline approach offers significant
advantages in terms of achieving real-time efficiency and high accu-
racy. This is accomplished by dynamically and adaptively placing
control points, taking into account the varying dynamics of the
motion. To enable efficient fusion of heterogeneous LiDAR-Inertial-
Camera data within a short sliding-window optimization, we assign
depth to visual pixels using corresponding map points from a global
LiDAR map, and formulate frame-to-map reprojection factors for
the associated pixels in the current image frame. This way circum-
vents the necessity for depth optimization of visual pixels, which
typically entails a lengthy sliding window with numerous con-
trol points for continuous-time trajectory estimation. We conduct
dedicated experiments on real-world datasets to demonstrate the
advantage and efficacy of adopting non-uniform continuous-time
trajectory representation. Our LiDAR-Inertial-Camera odometry
system is also extensively evaluated on both challenging scenarios
with sensor degenerations and large-scale scenarios, and has shown
comparable or higher accuracy than the state-of-the-art methods.

Index Terms—LiDAR-inertial-camera SLAM, localization,
sensor fusion, state estimation.

I. INTRODUCTION

A WIDE range of sensors can be applied for accurate
6-DoF motion estimation, among which LiDAR, IMU,

and camera might be the most popular and widely used. Due
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to the inherent complementarity of such three sensors, LiDAR-
Inertial-Camera Odometry (LICO) has achieved higher robust-
ness and accuracy than those which only utilize the component
sensors, especially in challenging structure-less and texture-less
environments, attracting significant attention [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11]. However, measurements from
these multi-modal sensors are usually received at different rates
and different time instants, which causes difficulty in fusing
them in a discrete-time odometry system. A common solution
is to interpolate the measurements or estimated poses at the
same time instants from different sensors for fusion [12], [13].

In contrast, the continuous-time trajectory representation can
avoid the need for interpolation and naturally enables pose
queries at any given time, thereby facilitating the fusion of
high-rate, multi-rate, and asynchronous measurements from
various sensors [14]. Most of the existing LICO systems adopt
discrete-time trajectory [3], [5], [9], while there are some works
adopt continuous trajectory representation [11].

In terms of parameterizing 6-DoF continuous-time trajecto-
ries, most existing methods adopt a cubic, cumulative B-spline
which offers local control property [11], [14], [15], [16], [17].
In these approaches, control points of B-splines are often dis-
tributed uniformly. It has been proved that the spacing of control
points greatly influences the accuracy and time performance
of trajectory estimation [18]. In the case of uniform B-splines,
the spacing of control points is typically predetermined, which
determines the complexity of the trajectory. However, in many
applications, there is no prior knowledge about the complexity of
the trajectory to be estimated. Consequently, due to the inability
to dynamically adjust the distribution of control points, uniform
B-splines are prone to under- or over-parameterization [15]. An
appealing alternative is the use of non-uniform B-splines, which
allows for dynamic control point distribution instead of a fixed
frequency [15], [19], [20].

In terms of fusion methods in a LIC system, the existing
methods can be classified into two categories: loosely-coupled
methods, which utilize the visual-inertial system to provide
initial values for LiDAR scan matching [1], [2], and tightly-
coupled methods, which jointly optimize LiDAR measurements
with visual or inertial data [3], [6], [8], [9], [10], [11]. Generally,
tightly-coupled methods tend to require higher computation to
fuse raw measurements from various sensors but appear more
accurate and robust. To formulate effective constraints for the
estimated states by the LiDAR and the camera, data associations
are required. For the LiDAR, edge and planar features [21] ex-
tracted based on curvature are commonly adopted. The extracted
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features from different scans are associated by finding closet
neighbors [6], [21]. For the camera, extracted visual features
from images are associated by optical flow tracking [22] or
distinctive descriptors such as ORB [23]. Beyond intra-sensor
data associations, there are also associations across sensors such
as initializing or assigning the depth of visual features or pix-
els [10], [24]. Our previous work CLIC [11] tightly couple LIC
data within the continuous-time trajectory optimization based
on uniform B-splines. However, it disregards cross-sensor asso-
ciations and instead relies on triangulating visual features using
a lengthy sliding window of visual keyframes. This approach
unavoidably involves numerous control points and adversely
affects runtime efficiency of continuous-time framework.

In this work, we develop a continuous-time tightly-coupled
LICO system based on the non-uniform B-spline trajectory
representation, where control points are dynamically distributed
and LIC data are tightly and efficiently coupled. Briefly, the
contributions are summarized as follows:
� We propose a LiDAR-Inertial-Camera Odometry system

termed as Coco-LIC, utilizing continuous-time trajectory
parameterized by non-uniform B-splines. Compared to
methods based on uniform B-splines, control points here
are dynamically placed through our proposed simple but
effective distribution strategy.

� We naturally fuse LIC data without any interpolation.
Based on the reconstructed LiDAR point cloud map and
optical-flow tracking of visual pixels, we formulate frame-
to-map reprojection errors for the current image frame,
excluding the depth estimation and optimization for visual
pixels. This couples LiDAR and camera data in a tightly-
coupled and highly-efficient way.

� We specifically verify the necessity of the non-uniform
placement of control points in real-world scenarios, and
prove the efficacy of our control point spacing strategy.
Furthermore, the entire LICO system is extensively tested
on several challenging datasets, demonstrating its real-time
performance and high accuracy.

II. RELATED WORK

A. Continuous-Time SLAM

Furgale et al. [25], [26] are among the first to present a full
probabilistic derivation of the continuous-time state estimation
for solving the SLAM problem based on B-splines. Afterward,
they enable the joint estimation of the spatial and temporal
extrinsic between different sensors by continuous-time batch
optimization, which has been validated on the Visual-Inertial
system and stereo LIC system [27], [28]. Lovegrove et al. [14]
utilize the continuous-time formulation to incorporate
measurements from rolling shutter cameras and IMU. As
a well-crafted and comprehensive continuous-time calibration
package for the LiDAR-Inertial system, Lv et al. [29] simul-
taneously estimate the intrinsic and extrinsic while addressing
degenerated motions. Different from these offline and batch
calibration tasks, some works start to apply the continuous-time
representation to online incrementally estimate odometry for the
LiDAR-Inertial system [16], [30], multi-camera systems [31],
event cameras [32], rolling shutter cameras [17] and so on. With
the finding of the efficient derivative computation for cumulative
B-splines on Lie groups [33], continuous-time odometry tends
to achieve sub-real-time or even real-time performance [11]. A

dedicated marginalization strategy in slid-window estimators is
also proposed for the continuous-time framework [11], [17].

Continuous-time formulation benefits the fusion of high-rate,
multi-rate, and asynchronous sensors. Cioffi et al. [18] further
compare the continuous-time methods with the discrete-time
methods comprehensively and find the frequency of the uni-
formly distributed control points in B-splines matters a lot for
the trajectory estimation. In real practice, the smoothness of
a trajectory can vary significantly, and each segment actually
requires a different density of control points to accurately model
the real trajectory [34]. An adaptive metric for spacing control
points is proposed in [20] by comparing the objective function
cost against its expected value. Anderson et al. [34] then adopt
this scheme in continuous-time pose-graph optimization and
find that sharp variations in robot velocity usually indicate the
requirement for more control points. Vandeportaele et al. [19]
add more control points where the angular velocity or linear
acceleration is larger, and vice versa. Hug et al. [15] recom-
mend employing a more generic and non-uniform representa-
tion to prevent the under or over-parameterization. Admittedly,
although the non-uniform formulation is critical for continuous-
time trajectory estimation, it has only been employed in just
a few batch offline applications, lacking implementation and
verification in online odometry systems. Our work, to the best
of our knowledge, is among the first to adopt non-uniform
continuous-time representation in the odometry task and demon-
strates its efficacy through extensive experiments.

B. LiDAR-Inertial-Camera Fusion for SLAM

As early works of LICO, [1], [2] leverage monocular or stereo
VIO to initialize LiDAR scan matching in a loosely-coupled
way. Built upon a factor graph and composed of two subsystems,
a LIO and a VIO, LVI-SAM [3] shows robustness in vari-
ous LiDAR-degenerated or visual-failure scenarios. Similarly,
characterized by an IMU-centric estimator, Super-Odometry [4]
works well with an extra IMU odometry subsystem. Yet, the
following tightly-coupled methods maintain only one state vec-
tor and show brilliant performance. LIC-fusion [5], [6] and
CLIC [11] both tightly fuse LiDAR features, sparse visual
features, and IMU measurements within a sliding window, while
the former adopts MSCKF [35] filter based framework [36] and
the latter is based on continuous-time optimization framework.
Wisth et al. [7] develop a unified multi-modal landmark tracking
method and fuse IMU measurements with visual and LiDAR
landmarks. R2LIVE [8] executes Error-State Iterated Kalman
Filter (ESIKF) update whenever a LiDAR scan or a camera
image comes and continues to optimize camera poses and vi-
sual landmarks in the window. Furthermore, R3LIVE [9] and
FAST-LIVO [10] maximally reuse the map points selected from
the global LiDAR map to conduct frame-to-map photometric
updates in an ESIKF framework, which avoids the triangulation
and optimization for visual features over multiple keyframes.

Unlike R3LIVE [9] and FAST-LIVO [10], our method di-
verges by simultaneously fusing data from three sensors within
a fixed time interval, rather than fusing LiDAR-Inertial or Visual-
Inertial data separately.

III. METHODOLOGY

We first introduce the convention in this letter. We denote
the 6-DoF rigid transformation by A

BT ∈ SE(3) ∈ R
4×4, which
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Fig. 1. Pipeline of Coco-LIC.

transforms the point Bp in the frame {B} into the frame {A}.
A
BT =

[A
BR ApB

0 1

]
consists of rotation A

BR ∈ SO(3) and trans-

lation ApB ∈ R
3. Exp(·) maps Lie Algebra to Lie Group and

Log(·) is its inverse operation. (·)∧ maps a 3D vector to the
corresponding skew-symmetric matrix, while (·)∨ is its inverse
operation. The control points in the time interval [ta, tb) are
denoted as Φ(ta, tb).

A. System Overview

Fig. 1 shows the pipeline of Coco-LIC. In the beginning,
we assume the system is stationary and initialize the IMU bias
and gravity by IMU measurements similar to [36]. From now
on, the continuous-time trajectory is extended and optimized
every Δt (0.1 in this letter) seconds based on the frequency of
LiDAR. Suppose we have estimated the trajectory before tκ−1,
we will then estimate the trajectory in [tκ−1, tκ) once the LIC
data in this time interval is ready, where tκ = tκ−1 +Δt. We first
dynamically decide the number of control points in the next Δt
seconds utilizing the proposed adaptive non-uniform technique
(Section III-C). Subsequently, the newly added control points
are initialized and further optimized in a manner of factor graph
(Section III-D), using LiDAR planar points [21], IMU raw
measurements and the latest image in [tκ−1, tκ). Finally, after
marginalization, we update the local and global LiDAR map
for scan-to-map LiDAR association and frame-to-map visual
association (Section III-E), respectively.

In summary, we aim to estimate the following states by LIC
data over [tκ−1, tκ):

X κ = {Φ(tκ−1, tκ), x
κ
Ib
},

xκ
Ib

= {bκ−1
g , bκ−1

a , bκ
g , b

κ
a}, (1)

which include control points Φ(tκ−1, tκ) and IMU bias xκ
Ib

.
bg and ba indicate gyroscope bias and accelerometer bias,
respectively. The IMU biases during [tκ−1, tκ) are assumed to be
bκ−1
g and bκ−1

a for simplicity. They are under Gaussian random
walk and evolve to bκ

g and aκg at time instant tκ. We denote all
LiDAR planar points in [tκ−1, tκ) as Lκ, all IMU raw data as
Iκ, and the latest image frame as Fκ.

B. Non-Uniform Continuous-Time Trajectory Formulation

In this letter, we adopt two non-uniform cumulative B-splines
to separately parameterize the 3D rotation and the 3D translation.
The 6-DoF poses at time t ∈ [ti, ti+1) of a continuous-time

trajectory of degree k are denoted by:

R(t) = Ri−k ·
k∏

j=1

Exp
(
λj(t) · Log

(
R−1

i−k+j−1Ri−k+j

))
,

p(t) = pi−k +

k∑
j=1

λj(t) · (pi−k+j − pi−k+j−1) ,

λ(t) = M̃(k+1)(i)u,u =
[
1 u · · · uk

]�
, u =

t− ti
ti+1 − ti

,

(2)

where Rx and px denote control points (x ∈ {i−
k, . . . , i}) [37]. ti−1 and ti represent any two adjacent knots
of B-splines. [38] The knots {t0, t1, t2, . . .} of B-splines are
non-uniformly distributed together with the control points,
thus the cumulative blending matrix M̃(k+1)(i) is non-constant
which is the main difference between uniform and non-uniform
B-splines [39]. λj(t) is an element of vector λ(t) with index j.
Cubic B-spline is adopted in this letter, which implies k = 3,
and the blending matrix (M(4)(i))� is derived as follows
[33], [39]:⎡

⎢⎣
m0,0 1−m0,0 −m0,2 m0,2 0

−3m0,0 3m0,0 −m1,2 m1,2 0
3m0,0 −3m0,0 −m2,2 m2,2 0
−m0,0 m0,0 −m3,2 −m3,3 m3,2 m3,3

⎤
⎥⎦ , (3)

ma,b denotes the element in row a, column b, computed by knots
ti−2 ∼ ti+3 [39]. M̃(4)(i) can be derived accordingly:

M̃(k+1)(i)m,n =
k∑

s=m

M(k+1)(i)s,n. (4)

The continuous-time trajectory of IMU in the global frame {G}
is denoted as G

I T(t) = [GI R(t),GpI(t)]. In this letter, the ex-
trinsics between LiDAR/camera and IMU are pre-calibrated, so
we can handily get LiDAR trajectory G

LT(t) and camera trajec-
toryG

CT(t). B-splines provide closed-form analytical derivatives
w.r.t. temporal variables [27], [33], leading to easily computed
angular velocity and linear acceleration. The time derivatives of
the B-splines can be derived as:

G
I Ṙ(t) = G

I R(t) · (Iω(t)
)
∧

= Ri−k

(
Ȧ1A2A3 +A1Ȧ2A3 +A1A2Ȧ3

)
(5)

Ga(t) = Gp̈I(t) =
k∑

j=1

λ̈j(t) · (pi−k+j − pi−k+j−1) (6)

where Ȧj = Exp(λ̇j(t) · Log(R−1
i−k+j−1Ri−k+j)).

C. Adaptive Non-Uniform Technique

New control points should be added to extend the trajectory,
the number of which is set as a constant value in uniform-spline-
based methods. However, such uniform placement might fail to
precisely model the trajectory segments with violent motions, or
introduce redundant control points where the motion is steady,
leading to an increase of the computational cost. To address
the issue of the uniform B-spline not being able to flexibly
accommodate trajectory complexity online, we employ an adap-
tive non-uniform technique analogous to [19]. Specifically, we
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Fig. 2. Number of control points to add depends on IMU. Ng and Na might
correspond to the different values of ncp, while we choose the larger one.

try to get the norm of average angular velocity Ng and linear
acceleration Na in the global frame in [tκ−1, tκ):

Ng =
1

n

∥∥∥∥∥
n∑
i

G
I Rmi

Iωmi

∥∥∥∥∥ ,
Na =

1

n

∥∥∥∥∥
n∑
i

(
G
I Rmi

Iami
− Gg

)∥∥∥∥∥ , (7)

where Iωmi
and Iami

are angular velocity and linear accel-
eration measured by IMU, respectively. n denotes the number
of IMU measurements. The rotation G

I Rmi
is integrated from

tκ−1 using raw IMU measurements. Gg =
[
0 0 9.8

]T
is the

gravity in the global frame. Both Ng and Na reflect the intensity
of the motion. We then determine the number ncp of control
points to add according to Fig. 2, which is proven to be effective
and generic in our experiments. The new control points are all
initially assigned with the value of the last control point in the
latest optimization. They are uniformly distributed in [tκ−1, tκ)
with the time interval divided uniformly by 1

ncp
. Then we can

query the pose at any time instant over [tκ−1, tκ). Subsequently,
the newly added control points are further optimized by solving
a factor graph optimization as (13) with only IMU factors and a
prior factor specified in Section III-D, where we only optimize
Φ(tκ−1, tκ) and keep the other states constant.

D. LiDAR-Inertial-Camera Optimization

1) Scan-to-Map LiDAR Factor: In the continuous-time
framework, we estimate the trajectory of a whole scan instead
of merely estimating a single pose, which enables simultaneous
motion distortion removal and trajectory estimation [16]. Con-
sider a LiDAR planar point Lp in Lk measured at time t, we can
transform it to the global frame by

Gp̂ = G
LR(t)Lp+ GpL(t). (8)

We find for Gp̂ five closest neighbor points in the local LiDAR
map, and fit a 3D plane using these neighbor points. The local
LiDAR map is constructed atop keyscans that are selected by
time and space [16]. Thus the point-to-plane error can be defined
as:

rL = Gn�
π
Gp̂+ Gdπ, (9)

where Gnπ and Gdπ denote the unit normal vector and the
distance of the plane to the origin respectively. Jacobians of
rL w.r.t. control points can be found in [11], the main difference
lies in λ(t) where the cumulative blending matrix is not constant
according to (2).

Fig. 3. Projection of a LiDAR map point across image frames. Gps in the
global LiDAR map is fixed during optimization.

2) Frame-to-Map Visual Factor: Similar to [9], [10], we
associate 3D map points in the global LiDAR map (detailed
in Section III-E) with the image by projection. Suppose We
have associated the map points P = {Gp1, . . . ,

Gpm} in the
last image frame Fκ−1 with the corresponding pixels �̂κ−1 =
{ρ̂1κ−1

, . . . , ρ̂mκ−1
}. We then track these pixels �̂κ−1 into frame

Fk by KLT sparse optical flow [22] and get tracked pixels
�κ = {ρ1κ , . . . ,ρmκ

}. Afterward, RANSAC based on the fun-
damental matrix and PnP are successively leveraged to remove
outlier associations, and we finally get a group of map points P
successfully associated with pixels in the current image frame
Fk. Consider a map point Gps observed in frame Fk with the

optical-flow tracked pixelρsk =
[
us vs

]�
. As shown in Fig. 3,

the reprojection error of the tracked LiDAR point in frame Fk

is defined as:

rC = πc

(
C p̂s

e�3 C p̂s

)
−
[
us

vs

]
, C p̂s =

G
CT

�(t)Gps, (10)

where ei is a 3× 1 vector with its i-th element to be 1 and
the others to be 0. πc(·) denotes the projection function which
transforms a point on the normalized image plane to a pixel. Note
that we also apply Cauchy robust kernel to the reprojection error
in optimization to further suppress outliers. In such a fashion
based on the optical flow tracking of existing map points with
known depth, we can avoid triangulation and sliding window
optimization of visual features, thus keeping a short sliding win-
dow within [tκ−1, tκ) for high efficiency and accuracy, without
numerous control points involved.

3) IMU Factor and Bias Factor: We seamlessly use raw IMU
measurements to formulate IMU factors like [11], [17], instead
of using IMU preintegration. For IMU data in Iκ at time t, we
define the following IMU factor:

rI =

[
Iω(t)− Iωm + bκ−1

g
Ia(t)− Iam + bκ−1

a

]
, (11)

and bias factor based on the random walk process:

rIb =

[
bκ
g − bκ−1

g

bκ
a − bκ−1

a

]
, (12)

where Iωm, Iam are the raw measurements of angular velocity
and linear acceleration at time t, respectively. Ia(t) and Iω(t)
can be computed from the derivatives of the continuous-time
trajectory in (5) and (6) by:

Ia(t) = G
I R

�(t)
(
Ga(t)− Gg

)
,

Iω(t) =
(
G
I R

�(t) · GI Ṙ(t)
)
∨
,

where the computation of Iω(t) has been further sped up using
recurrence relation [33] without costly computing G

I Ṙ(t).
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Fig. 4. (a) Factor graph. (b) Marginalization.

4) Optimization and Marginalization: To estimate the afore-
mentioned states X κ, we jointly fuse LIC data in a factor graph
as displayed in Fig. 4 and formulate the following nonlinear
least-squares problem:

argmin
Xκ

{∑
‖rL‖2ΣL

+
∑

‖rC‖2ΣC
+
∑

‖rI‖2ΣI

+
∑

‖rIb‖2ΣIb
+
∑

‖rprior‖2Σprior

}
, (13)

which is solved by the Levenberg-Marquardt algorithm in Ceres
Solver [40] and sped up by analytical derivatives. rprior is the
prior factor from marginalization. ΣL, ΣC , ΣI , ΣIb , Σprior are
the corresponding covariance matrices.

After the optimization is done for the newly added control
points and IMU bias, we marginalize states that will not be
involved in the next Δt seconds, that is [tκ, tκ+1), and obtain
the prior factor which constrains the states as follows:

X κ
prior =

{
Φ(tκ−1, tκ) ∩Φ(tκ, tκ+1), b

κ
g ,b

κ
a

}
,

where Φ(tκ−1, tκ) ∩Φ(tκ, tκ+1) represents the control points
shared by the trajectory segments in [tκ−1, tκ) and [tκ, tκ+1).

E. LiDAR Map for Visual Factor

We maintain a global LiDAR map stored in voxels [9], [10] for
the fast query of map points associated with images. The voxel
resolution is 0.1 m in our experiments. After the optimization
of the trajectory in [tκ−1, tκ), the global LiDAR map is updated
with LiDAR planar points fromLκ. For high-quality association,
tracked map points in P with large reprojection error on Fκ are
removed. We then project map points in the current FoV onto
Fκ and add new successfully associated map points into P . We
ensure tracked map points are evenly distributed on images and
prioritize retaining map points closer to the camera to alleviate
the occlusion problem.

IV. EXPERIMENTS

In the experiments, we first compare and analyze the tra-
jectory estimation accuracy and the time cost of uniform and
non-uniform methods based on LiDAR-Inertial data. Second,
we evaluate the proposed Coco-LIC in degraded sequences and
compare it with several typical open-source LIO, VIO, and
LICO methods. Finally, we conduct experiments on a large-scale
dataset to further assess accuracy and time consumption in
outdoor environments.

All experiments are executed on a desktop PC with an Intel
i7-8700 CPU @ 3.2 GHz and 32 GB RAM. In one dataset, we
keep the same parameters of Coco-LIC for all sequences for a
fair comparison. We run all experiments six times and take the
average values as results. The noise parameters of the IMU are

TABLE I
DESCRIPTION OF THE SEQUENCES

taken from the datasheet. Also, the estimated poses of Coco-LIC
used for evaluation by evo [41] are queried from the continuous
time trajectory at 100 Hz.

A. Comparison of Uniform and Non-Uniform Placement

We collect LiDAR-Inertial data by a sensor rig comprising a
16-beam 3D LiDAR Velodyne VLP-161 at 10 Hz and an Xsens
MTi-300 IMU2 at 400 Hz, with ground-truth data at 120 Hz
recorded by a motion capture system. The accuracy of the motion
capture is at the millimeter level. Note that cameras experience
motion blur under violent motions leading to the poor quality of
visual data, while extremely intense movements are contained
in this experiment, thus we here only use LiDAR-Inertial data,
which is sufficient for non-uniform verification. In real-world
applications, motion can be divided into three modes, that is,
smooth, violent, and hybrid:
� smooth case: ground vehicles moving on smooth roads, and

cleaning robots working in office park.
� violent case: quadruped robots repeatedly impacting the

ground, and aerial robots quickly avoiding obstacles.
� hybrid case: humans holding a scanning device to build a

map of the environment.
We gather data with a total of nine sequences detailed in

Table I, including three motion patterns mentioned above.
Table II summarizes the RMSE of APE and the time con-

sumption for different control point distributions in LIO. Here,
uni-x means there is x number of control points per Δt seconds
using uniform B-splines, while non-uni represents dynamically
placing control points by the adaptive non-uniform technique
specified in Section III-C.

1) Smooth Sequences: uni-1 achieves the highest accuracy,
and increasing the number of control points can lead to slightly
lower accuracy or even failure to estimate the trajectory (uni-
16), which suggests that fewer control points are sufficient
to accurately model the trajectory with lower complexity for
smooth motions, while too many control points might cause
over-fitting. Additionally, the time consumption for optimization
significantly increases with more control points, probably due to
the increase in the dim of states. In contrast, non-uni adaptively
places control points at a density of 1 per Δt seconds in most
cases, obtaining comparable accuracy and computation time to
uni-1.

2) Violent Sequences: The trajectories exhibit high complex-
ity under large angular velocity and linear acceleration, which

1[Online]. Available: https://velodyneLiDAR.com/vlp-16.html
2[Online]. Available: https://www.xsens.com/hubfs/Downloads/Leaflets/

MTi-300.pdf
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TABLE II
THE RMSE OF APE RESULTS AND THE TIME CONSUMPTION FOR OPTIMIZATION OF LIO WITH DIFFERENT CONTROL POINT DISTRIBUTIONS (UNIT:

METERS/MILLISECONDS)

Fig. 5. Trajectories estimated by LIO with non-uniform distribution of the
control points on hybrid sequences. The different colors of the trajectories
correspond to different densities of control points. From blue to red, control
points change from sparse to dense.

Fig. 6. Top shows the IMU data in Hybrid1 and the middle shows the number
of control points set per Δt with time by adaptive technique. The bottom shows
the pose error curve over time based on different distributions of the control
points and the red one denotes the result of non-uni.

uni-1 fails to adapt to, resulting in poor pose estimation. Increas-
ing the number of control points can improve accuracy, but still,
excess ones will decrease accuracy and increase computation
time. On the other hand, non-uni adjusts the density of control
points based on inertial data at each time interval, achieving the
optimal accuracy with moderate computation cost.

3) Hybrid Sequences: It is inadequate for uni-1 to accurately
fit trajectory segments with intense motions, causing the failure
of the estimation. Adding adequate control points can enhance
the accuracy, whereas it appears to be unnecessary and incurs
excess computation consumption for simple and smooth motion
profiles. By adding control points during intense motions and
reducing them during smooth motions, as displayed in Fig. 5,
our non-uni attains the highest accuracy at almost the lowest
time cost. Fig. 6 also depicts that non-uni maintains a small

Fig. 7. Odometry and mapping result of Coco-LIC on the sequence degener-
ate_seq_00, where severe LiDAR degeneration happens when Livox Avia faces
the ground for a while. Coco-LIC overcomes the degradation and succeeds in
returning to the origin.

pose error throughout the whole trajectory owing to the adaptive
non-uniform technique.

B. Robustness and Accuracy Evaluation of LiDAR-Inertial-
Camera Odometry

We test our LICO (Coco-LIC) on both challenging datasets
and large-scale datasets, comparing it against four LIC methods:
LVI-SAM [3], R3LIVE [9], FAST-LIVO [10], CLIC [11] and a
LIO system FAST-LIO2 [42], as well as a VIO system VINS-
Mono [12]. Since LVI-SAM only supports rotating LiDAR and
R3LIVE only supports solid-state LiDAR, Table III misses the
results of LVI-SAM and Table IV misses R3LIVE. During
the experiments, the loop closure module is disabled for pure
odometry evaluation, and the reported results are the average of
6 runs. Note that, CLIC assigns three control points every Δt
seconds, as described in [11], whereas Coco-LIC dynamically
places control points.

1) Challenging Degenerate Dataset: We validate the robust-
ness of Coco-LIC in all challenging sequences provided in
R3LIVE and FAST-LIVO, using Livox Avia3 LiDAR at 10 Hz
and its internal IMU at 200 Hz, along with a camera at 15 Hz.
These sequences exhibit severe degradation, such as the solid-
state LiDAR with small FoV facing the ground or walls, and the
camera facing textureless surfaces or capturing blurry images

3[Online]. Available: https://www.livoxtech.com/avia
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TABLE III
THE START-TO-END DRIFT ERROR ON ALL CHALLENGING SEQUENCES OF R3LIVE AND FAST-LIVO (UNIT: METERS/DEGREES). DEGENERATE_SEQ_00,

DEGENERATE_SEQ_01, AND DEGENERATE_SEQ_02 ARE FROM R3LIVE

TABLE IV
THE RMSE (M) OF APE RESULTS ON URBANNAV DATASET. FOR SIMPLICITY,

THE SEQUENCES URBANNAV-HK-MEDIUM-URBAN-1,
URBANNAV-HK-DEEP-URBAN-1, AND URBANNAV-HK-HARSH-URBAN-1 ARE

REFERRED TO AS MEDIUM, DEEP, AND HARSH RESPECTIVELY

due to aggressive motions, as partly shown in Fig. 7. The ground
truth is not provided, but the rig starts and ends at the same
position.

Table III shows the start-to-end drift error of various methods.
VINS-Mono fails to work in the Visual_Challenge sequence due
to intense motions and varying illumination, which makes it
fail to stably track the visual features. The LiDAR_Degenerate
and degenerate_xx sequences suffer from serious degradation
of LiDAR point cloud, and when Livox Avia LiDAR faces a
plane, FAST-LIO2 lacks constraints in certain DoFs, leading
to insufficient pose estimation. R3LIVE and FAST-LIVO can
handle various degenerations and have low start-to-end drift in
most sequences, but there are also cases where both methods
experience significant drift. In contrast, by tightly coupling LIC
data, Coco-LIC achieves plausible performance in all sequences
and minimal drift in several sequences. Besides, it is worth
noting that although CLIC fuses all information at a time, it still
fails to work in LiDAR-degenerated scenarios. This is because
CLIC enforces the majority of control points in the visual sliding
window to be fixed, resulting in no full exploitation of visual
data [11].

2) Large-Scale Dataset: To quantitatively evaluate our ap-
proach, we conduct experiments on the large-scale UrbanNav
dataset [43]. The dataset includes a 32-beam 3D LiDAR Velo-
dyne HDL-32E4 at 10 Hz, a stereo camera at 15 Hz (only use
the left camera in this experiment), and an Xsens MTi-10 IMU
at 400 Hz, collected in urban areas with many dynamic objects
by a human-driving vehicle.

Table IV shows the RMSE of APE of the aforementioned
methods. VINS-Mono performs poorly due to incorrect feature
tracking caused by moving objects. LIO and LICO achieve
satisfactory results in the absence of degraded LiDAR scenes.
However, FAST-LIVO has slightly higher trajectory errors,

4[Online]. Available: https://velodynelidar.com/products/hdl-32e

TABLE V
THE AVERAGE TIME CONSUMPTION (MILLISECONDS) OF DIFFERENT MODULES

OF FAST-LIO2, CLIC, COCO-LIC ON THE SEQUENCE MEDIUM

possibly due to its sparse direct visual alignment being af-
fected by moving objects and lighting changes. Notably, in
highly-dynamic motion scenarios, the accuracy of CLIC and
Coco-LIC is higher attributed to their continuous-time trajectory
representation, which effectively handles LiDAR distortion and
efficiently fuses high-rate IMU data. Additionally, Coco-LIC
reuses high-quality map points for visual factors, resulting in
better performance than CLIC.

We further investigate the time consumption of competitive
methods and Coco-LIC on the sequence Medium with a duration
of 785 seconds. Table V summarizes the result. LiDAR Associa-
tion refers to updating the local LiDAR map (global LiDAR map
in the case of FAST-LIO2) and finding associations for LiDAR
surf points. For CLIC, Visual Association means visual feature
extraction and tracking, and for Coco-LIC, it means updating the
global LiDAR map and associating map points with the image
frames. Optimization represents executing ESIKF update or
factor graph optimization. FAST-LIO2 shows brilliant efficiency
due to the adoption of ESIKF and ikd-Tree [42]. Compared
to the closest work, CLIC, the proposed Coco-LIC is involved
fewer control points and excludes the depth estimation process,
which leads to less consuming time. Overall, all three compared
methods are able to achieve real-time performance. Coco-LIC
consumes around 639 seconds on the entire sequence. Note that
the current implementation of Coco-LIC can be further opti-
mized for efficiency, such as by refining the map management
strategy to accelerate the association.

V. CONCLUSION AND FUTURE WORK

This letter presents Coco-LIC, a continuous-time LiDAR-
Inertial-Camera odometry that tightly integrates information
from LiDAR, IMU, and camera using non-uniform B-splines.
The method achieves higher accuracy in pose estimation with
moderate time consumption by placing more control points
where motion is aggressive and fewer control points where mo-
tion is smooth. Additionally, it relies on the LiDAR map points
for formulating frame-to-map visual factors. This eliminates the
need for depth estimation and optimization by multiple visual
keyframes, which benefits the efficiency of our continuous-
time estimator. Real-world dataset experiments demonstrate
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the importance of non-uniform control point placement and
the effectiveness of our non-uniform continuous-time method.
Robustness and accuracy evaluations show that Coco-LIC out-
performs other state-of-the-art LIC Odometry, even in severe
degenerate scenarios. In the future, it is worthwhile investigating
more efficient map management strategies and incorporating
complementary sensors like event cameras.
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