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A B S T R A C T

Applying CNN on embedded systems is challenging due to model size limitations. Pruning and quantization
can help, but are time-consuming to apply separately. Our Single-Shot Pruning and Quantization strategy
addresses these issues by quantizing and pruning in a single process. We evaluated our method on CIFAR-10
and CIFAR-100 datasets for image classification. Our model is 69.4% smaller with little accuracy loss, and
runs 6–8 times faster on NVIDIA Xavier NX hardware.
1. Introduction

Convolutional Neural Networks (CNNs) are currently widely used in
computer vision. The widespread use of CNNs is due to the outstanding
computational performance and the growth of large-scale datasets.
The performance of CNNs is increasing, and the recognition error
rate is decreasing, but at the same time, their spatial and temporal
complexity is increasing; the number of parameters and the number of
computational operations during network training are also increasing.
For example, VGG-16 has up to 138 million parameters, and its overall
model size is over 500 M (Simonyan and Zisserman, 2014). It requires
15.5 billion floating-point operations to classify a single image. More-
over, the introduction of ResNet (He et al., 2016) solved the problem of
degradation that occurs when the model depth is increased, thus raising
the parameter and computation levels of the model to unprecedented
heights. Furthermore, as the number of parameters increases, the cost
of both CNN training and inference is rising. For high-performance
inference devices such as GPUs, this is not a difficult task, but for in-
ference platforms with limited resources, high computational costs and
high performance requirements make performing visual tasks difficult.
To address this issue, one possible solution is to reduce the cost of
training and inference. By implementing techniques that can lower the
cost of these processes, we can improve the efficiency and effectiveness
of CNNs, which is good to energy structure on carbon emissions and
energy storage (Zhang et al., 2023; Licheng and Wang, 2022; Yu et al.,
2023).

At the same time, the Internet of Things (IoT) development allows
small models to extend deep learning to a more extensive application
space. The need for image classification, target detection and OCR
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(optical character recognition) text recognition algorithms in robots,
drones, and other mobile embedded devices is constantly on the rise,
necessitating algorithms that are highly accurate and have minimal
latency. Researchers strive to meet these demands by continuously
delving into cutting-edge technologies and exploring novel methodolo-
gies. Their aim is to develop more sophisticated algorithms that allow
mobile devices to operate more intelligently and serve people better.
Moreover, the compression of neural networks holds a crucial signifi-
cance in enhancing the cognitive (Li et al., 2022) as well as perceptual
facets (Li et al., 2023) of computer vision. How to compress and employ
CNN models on embedded devices without compromising accuracy has
become a frontier hotspot for network structure optimization.

Quantization and pruning are commonly used to reduce the num-
ber of model parameters and computation operations. Quantization is
to convert parameters from 32-bit floating point numbers to 16-bit
floating point numbers or 8-bit integer to reduce memory occupied
by parameters and operation run-time (Jacob et al., 2018). Pruning is
adding a judging mechanism to the network training process, eliminat-
ing unimportant connections, filters, and layers, to achieve the purpose
of streamlining the network structure (Han et al., 2015a)

Current pruning methods are divided into weight pruning, channel
pruning, and inter-layer pruning according to granularity (Guo et al.,
2016). Weight pruning is a kind of sparse pruning. The convolu-
tional kernel obtained from pruning has unstructured characteristics.
However, this unstructured convolutional kernel requires a particular
hardware configuration to hit the acceleration effect. Inter-layer prun-
ing reduces the network’s depth, effectively reducing the number of
network parameters, but the performance degradation is very prob-
lematic (Anwar and Sung, 2016). The performance of the model and
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the number of parameters are well-balanced through filter pruning.
Additionally, filter pruning is also known as structured pruning, which
is easy to use on embedded systems (Wen et al., 2016).

As model compression techniques, pruning and quantization are
now explored separately. Some people combine them (Han et al.,
2015a). However, when they are done individually, pruning and quan-
tization result in a considerable loss in model accuracy since the model
is incapable of learning from and correcting any quantization errors
promptly. Likewise, quantization and pruning are carried out indepen-
dently, which is difficult and consumes much training time. Our goal
is to appropriately combine pruning and quantization so that they may
be accomplished in a single training phase and that the gradient update
can be used to lessen the accuracy loss brought on by quantization error
and pruning during the iterative process.

We present Single-Shot Pruning and Quantization, which can ac-
complish linear quantization and two kinds of pruning methods, norm
pruning and centroid pruning, in one training procedure. For the
quantization and pruning errors to be updated simultaneously when
the parameters are updated, the training procedure employs the ‘‘soft
pruning’’ (He et al., 2018) method, in which the pruned channels are set
to zero. Additionally, we carried out tests and successfully applied the
concept to an embedded system. In this work, we make the following
contributions:

• We propose the Single-Shot Pruning and Quantization method,
which can quantize and prune the model in one training process.
Our method successfully enables us to take into account the
quantization error and pruning mistake during the deep learning
network training and update the weights under these flaws.

• We construct a model, prune all the zeroed filters, and then
modify it to be hardware-adaptive. In terms of training time, we
conduct a comparative analysis between our approach and the
quantized after pruning methods, and find that our technique
achieved a remarkable 20%–25% reduction in training time.

• We train our MobileNetV2 in CIFAR-10 and CIFAR-100 from
scratch and test the mean inference time and Multiply–
Accumulate Operations (MACs)to evaluate the performance of the
compressed model. We accelerate MobileNetV2 on NVIDIA Xavier
NX by six to eight times with about 2% relative accuracy drop on
CIFAR-10 and CIFAR-100.

. Related work

Nowadays, the most popular deep neural network compression
echniques can be divided into four types: quantization (Hubara et al.,
016; Zhao et al., 2017; Zhou et al., 2017; Chen et al., 2023a,b,
021), network pruning (Chen et al., 2015; Han et al., 2015b; Mao
t al., 2017), knowledge distillation (Ba and Caruana, 2014; Hinton
t al., 2015; Liu et al., 2023) and low-rank factorization (Denton
t al., 2014; Sainath et al., 2013). Low-rank factorization is a powerful
echnique that exploits matrix decomposition to accurately ascertain
he parameters contained in convolution filters, thereby decreasing the
omputational requirements of deep neutral networks and liberating
emory resources (Sainath et al., 2013). Knowledge distillation is
network structure optimization strategy that involves transferring

nowledge from the teacher’s network to the student’s network to
uide the training of the student’s network and compress and speed the
etwork (Hinton et al., 2015). Quantization is a process that decreases
he width of the weight in the filters (Fiesler et al., 1990). It maps
he float values with 32-bit to 16-bit float numbers or 8-bit or fewer
idth integers, meaning that the output consists of a smaller range of
alues than the input, meanwhile without too much accuracy drop in
he process. In order to simplify the network structure, network pruning
s a judgment mechanism that is applied to the network training process
o remove unnecessary connections, nodes, and even convolutional
2

ernels (LeCun et al., 1989) t
Low-rank factorization Low-rank factorization is the process of
breaking down an original tensor into some low-rank tensors, which
facilitates the reduction of convolution operations and facilitates net-
work operating speed. The convolution kernel can be regarded as a
3-D tensor, and the fully connected layer can be regarded as a 2-D
tensor. If 𝑋𝑚𝑛 is a numerical matrix, rank(𝑋𝑚𝑛) is the rank of X. If
rank(𝑋𝑚𝑛) is much smaller than m or n, then we call 𝑋𝑚𝑛 a low-rank
matrix. Each row or column of the low-rank matrix can be expressed
as a linear combination of other rows or columns, indicating that it
contains a large amount of redundant information. By projecting the
matrix onto a lower-dimensional linear subspace, it is possible to rep-
resent it with only a few low-rank vectors and decrease computational
workload. To accelerate a simple CNN model with a straightforward
structure, several low-rank approximation and clustering methods pro-
posed by Denton et al. (2014) achieved a 2x acceleration on a single
convolutional layer, while suffering 1% accuracy drop in classification
tasks. The low-rank approximation is applied layer by layer, and fine-
tuning is performed based on the approximation error once each layer
has been approximated. Utilizing non-linear least squares, Lebedev
et al. (2014) computes the Canonical Polyadic decomposition for the
kernel tensors. Additionally, Batch Normalization is used by Tai et al.
(2015) to transform activations in CNNs’ hidden layers, allowing for the
network to be trained from scratch and further enhancing the overall
model performance.Low-rank factorization needs more re-training and
is computationally expensive compared to the original model.

Quantization. The concept of quantizing neural networks was first
proposed by Balzer et al. (1991) and Fiesler et al. (1990) to facilitate the
hardware implementation of neural networks. The neural network can
be quantized before, during, or after training. For practical inference,
the floating-point Neural Network model is often built and subsequently
quantized (Zhou et al., 2017). After training, quantization is used to
speed up inference and conserve energy. Nevertheless, quantization
is used in training to lower the network size and increase the accu-
racy. By employing a hash function to randomly group connection
weights, HashedNets (Chen et al., 2015) minimize model sizes by giving
all connections in the same hash bucket the same parameter value.
DoReFa-Net was suggested by Zhou et al. (2016) to train CNN using low
bit-width weights and activations with low bit-width gradients. Gradi-
ents must be quantized stochastically, but weights and activations can
be quantized deterministically in the DoReFa-Net. Choi et al. (2018) de-
veloped the PArameterized Clipping acTivation (PACT) function, a new
activation method for determining the best quantization scale during
training, in which a new activation clipping parameter 𝛼 is introduced
and optimized during training. Hubara et al. (2016) presented quan-
tized Neural Network for quantifying weights and activations during
training and inference.

Network Pruning. LeCun proposed Optimal Brain Damage (OBD)
LeCun et al., 1989), which substantially speeds up the network’s
raining process while achieving the ideal balance between network
omplexity and training error by deleting irrelevant connections from
he network. The Hessian matrix in the loss function of Hassibi et al.’s
roposed ‘‘Optimal Brain Surgeon’’ (OBS) (Hassibi et al., 1993)is un-
onstrained, which makes OBS more generalizable than OBD in other
etworks. In order to transfer deep convolutional networks to mobile
evices, Han et al. (2015a) suggested Deep compression, which in-
ludes pruning, quantization, and coding algorithms and can compress
he network by 35–49 times without impacting accuracy. According
o Guo et al. (2016), reinstating pruned essential connections is crucial
or enhancing network performance since the relevance of parameters
hanges as the network is trained. Dynamic Network Surgery suggests
ombines a repair operation with the pruning process to reactivate the
runed connections when they become crucial. By performing these
wo operations alternately after each training session, they significantly
ncrease the effectiveness of the network learning process. Magnitude-
ased pruning does not work well in the convolutional layer, according

o Li et al.’s research (Li et al., 2016), but it works well in the fully
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Fig. 1. The method of Single-Shot Pruning and Quantization. The trained filters are marked as yellow, while the quantified filters are marked as green. The filters pruned by
orms are marked as white, and those pruned by centroid are marked as blue. The values of the parameters are indicated by the numbers in the filters. The filters are trained in
loop, which includes quantization, mix pruning, and retraining. At the last training epoch, all zeroized filters are pruned, and the small model is produced as output.
onnected layer. By directly deleting the convolutional kernels and the
ccompanying feature maps, which have less of an impact on the output
ccuracy, in a non-sparse linked manner, they cut the computational
omplexity by 30% .
Discussion. As far as we know, few works focus on pruning neural

etworks with quantization; most researchers divide quantization and
runing into two parts in their compression process, such as Han et al.
2015a). The errors caused by pruning and the quantization errors are
rained separately, where the parameters cannot be updated by the
wo kinds of errors simultaneously. Our work can prune and quantize
NNs in a Single-Shot process and modify the weights by pruning and
uantization errors. We use two pruning criteria in a ‘‘soft’’ manner
o give a better environment for the quantization part and increase
he model’s performance. Besides, we successfully implemented our
ompressed model on the embedded system, NVIDIA Xavier NX. We
chieved a pipeline from software to hardware.

. Single-shot pruning and quantization

Our method contains four steps, as illustrated in Fig. 1. First,
nitialize all the filters for better performance in the weight-updating
rogress. Second, we quantify all the filters with asymmetric quan-
ization. After that, we set a ratio, which determines the number
f channels pruned by norms, and prunes every convolutional layer.
hird, based on what has been pruned, we continue to prune the rest
hannels near the centroid by another ratio. After pruning, we retrain
ll the weights and turn to the next epoch. The entire algorithm is listed
n Algorithm 1:

.1. Initialization

Before applying the quantization method to our model, we need to
nitialize all the weights in all the layers to avoid imbalanced weight
istributions. The Lottery Ticket Hypothesis (Frankle and Carbin, 2018)
uggests that in a randomly initialized neural network, there exists

sub-network initialized with specific weights that can match the
esting accuracy of the original network after training. The SynFlow
3

ethod (Tanaka et al., 2020) proposed directly addresses the ‘‘winning
Algorithm 1 Single-Shot Pruning with Quantization
Require:

norm pruning ratio 𝑅𝑛%
centroid pruning ratio 𝑅𝑐%
quantization width 𝑚
layer number 𝐶
filter number per-layer 𝑁 = {𝑁𝑖, 0 ≤ 𝑖 ≤ 𝐶}
training epoch number 𝐸

Ensure:
model parameter  = {𝑖, 0 ≤ 𝑖 ≤ 𝐶}
for 𝑒𝑝𝑜𝑐ℎ = 1, 𝑒𝑝𝑜𝑐ℎ ≤ 𝐸; 𝑒𝑝𝑜𝑐ℎ = 𝑒𝑝𝑜𝑐ℎ + 1 do

Update the parameters 𝑖 by training data
Fake-quantize the weight with 𝑚 in 𝑖 by Equation 1
for 𝑗 = 1, 𝑗 ≤ 𝐶; 𝑗 = 𝑗 + 1 do

Zero the 𝑅𝑛%𝑁𝑖 filters by 𝑙2 − 𝑛𝑜𝑟𝑚
Zero the 𝑅𝑐%𝑁𝑖 filters near centroid by Equation 7

end for
end for
Get the rest none-zero filters ∗

Transform the ∗ to hardware-friendly model ̂
return ̂

ticket’’ issue during network weight initialization, preventing layer
collapse and premature pruning. A stronger hypothesis suggests that
for any network with sufficient redundant parameters, there exists a
sub-network initialized with random weights that can achieve similar
accuracy as the original network without any training. However, this
relies on many assumptions. Orseau et al. (2020) removes most of
these assumptions and relies solely on the constraint of a logarithmic
factor coefficient to the sub-network with constrained parameter re-
dundancy. Our training conditions satisfy the above hypothesis so we
adopt random initialization which ensures stable convergence of our
model. Related work such as He et al. (2018) and He et al. (2019b)
also demonstrate that random initialization does not affect stability.

Here we use cross-layer equalization (Nagel et al., 2021) to improve
depth-wise separable layers. This initialization method comes from
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Nagel, which makes quantization more robust by setting a diagonal
matrix with a scale factor for a neuron in a particular way.

3.2. Quantization

The quantization algorithm quantizes the weights of the network
matrix into a lower number of bits to represent them, which in turn
reduces the storage space and computational complexity occupied by
the network. We use asymmetric quantization per channel to quantify
the trained parameters. Firstly, we collect the distribution statistics of
the parameters to calculate the scale factor 𝐬 and zero-point 𝐳 for each
layer. Secondly, we set the zero-point 𝐳 and use the scale factor 𝐬 to

ap the floating point value to the integer grid. We apply quantization
peration as follows:

q = 𝐐(𝑥; 𝑠, 𝑧, 𝐵) = 𝐂𝐥𝐚𝐦𝐩
(⌊𝐱

s

⌉

+ 𝑧; 0, 2𝐵 − 1
)

(1)

in which 𝐬 stands for the scale factor, which specifies the step-size
of the quantifier. 𝐱 represents original activations or weights, and 𝑥𝑞
epresents quantified activations or weights. 𝐁 is the bit-width. ⌊⋅⌉

represents rounding-to-nearest-integer operation. The 𝐂𝐥𝐚𝐦𝐩 function
is defined as:

𝐂𝐥𝐚𝐦𝐩(𝑥;𝑚𝑖𝑛, 𝑚𝑎𝑥) =
⎧

⎪

⎨

⎪

⎩

𝑚𝑖𝑛, 𝑥 < 𝑚𝑖𝑛,
𝑥, 𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑚𝑎𝑥,
𝑚𝑎𝑥, 𝑥 > 𝑚𝑎𝑥

(2)

It is noted that we use simulated quantized weights and activations
for both forward and backward calculations, but update weights in
floating point with gradient updates for gradual rather than abrupt
changes. These modified weights are then quantized for further calcu-
lations. We use de-quantization function as follows:

𝐱̂q = 𝐃(𝐱q; 𝑠, 𝑧) = (𝐱q − 𝑧) × 𝑠 (3)

So in the end, the simulated quantized parameters could be ex-
pressed as:

𝐱̂q = 𝐃(𝐐(𝑥; 𝑠, 𝑧, 𝐵); 𝑠, 𝑧)

= 𝑠 ×
[

𝐂𝐥𝐚𝐦𝐩
(⌊𝐱

𝑠

⌉

+ 𝑧; 0, 2𝐵 − 1
)

− 𝑧
] (4)

The quantization function 𝐂𝐥𝐚𝐦𝐩 is a step function by nature,
and the output is a discretized constant. There is a gradient disap-
pearance problem for the discrete constant weights in the quantized
network, which brings trouble during gradient-based training. To ad-
dress that, Hubara et al. (2016) propose straight-through estimator
(STE), which approximates the gradient of the rounding operator as
1:
𝜕⌊𝐿𝑜𝑠𝑠⌉

𝜕𝑤
= 1 (5)

In this way, we can calculate the gradients of the quantized param-
eters. Here we choose to use 16-bit floating point and 8-bit integer as
our quantization width.

3.3. Pruning filters with small norms

After quantization, we need to focus on the most ‘‘significant’’
filters, so we use the ‘‘smaller-norms-less-important’’ principle. We use
SFP(Soft Filter Pruning) method (He et al., 2018), which suggests that
the filter with l2-norm in the lower 𝑅𝑛% of the ranking may be less
important. Instead of pruning them, the parameters of the filter are
set to zero, allowing these filters to participate in subsequent training
processes so that they can be re-trained and join the next training
epoch to avoid downgrading the robustness and performance of the
model. To determine the number of filters that should be zeroed out,
we established a hyper-parameter called the pruning rate, denoted as
𝑅𝑛%, for norm-based pruning. Precisely, during every training epoch,
the model is updated by training data. After that, we calculate all the
filters’ l2-norms, sort all the channels by l2-norms, and zero the filters
for the smallest 𝑅𝑛%. Then the partial zeroized model joins the centroid
4

pruning procedure.
3.4. Pruning filters near centroid

In mathematics and physics, the centroid, also known as geometric
center or center of figure, of a plane figure or solid figure is the arith-
metic mean position of all the points in the surface of the figure. The
same definition extends to any object in n-dimensional Euclidean space.
There is always a geometric center of a finite number of points, which
can be reached by calculating the arithmetic mean of each coordinate
component of these points. This center is the unique minimum of the
sum of squares of distances from one point in space to these finite
points: Given a finite set of points 𝑥1, 𝑥2,… , 𝑥𝑘 ∈ R𝑛, their centers
are defined by 𝑋𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 :

𝑋𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
𝑥1 + 𝑥2 +⋯ + 𝑥𝑘

𝑘
(6)

where 𝑥𝑘 = (𝑥𝑘1, 𝑥𝑘2, 𝑥𝑘3,… ..., 𝑥𝑘𝑛) ∈ R𝑛. From Eq. (5) we can find a
entroid of filters in the same layer as:

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
𝐹1 + 𝐹2 +⋯ + 𝐹𝑐

𝑐
(7)

From Fletcher et al. (2008) we know that centroid is a robust
estimation of centrality for data in Euclidean spaces. When a point
𝑥𝑘 is closest to the centroid point 𝑋𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 in high-dimensional space
and removing it has the least impact on the overall distribution of the
data, it can be regarded as having the most common information (He
et al., 2019b), and can be represented by a linear combination of
other points. Similarly, when a filter 𝐹𝑖 in the 𝑖th layer is closest to
the centroid filter 𝐹𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 , we can assume that removing it has the
least impact on the network. Therefore, we set a pruning rate 𝑅𝑐%,
select the 𝑅𝑐%𝑁𝑖 filters closest to the centroid in the 𝑖th layer, remove
them, and the removed 𝑅𝑐%𝑁𝑖 filters can be represented by the linear
combination of other (1−𝑅𝑐%)𝑁𝑖 filters. We apply similar operations to
all convolutional layers. As a result of the parameter updating process
involved in backpropagation, it becomes feasible to reconstruct the
layer without drop on performance. Thus, it is feasible to expedite our
inference by minimizing computational tasks and conserving memory
space.

 = {𝐹𝑖,𝑛;𝐹𝑖,𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑛=1,2,…...,𝑅𝑐%𝑁𝑖

√

(𝐹𝑖,𝑛 − 𝐹𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 )2} (8)

Here 𝑚 is the number of input channels, 𝑛 is the number of output
hannels, 𝑅𝑐% is the ratio or centroid pruning, 𝐹𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 means the
entroid of filters, and 𝑎𝑟𝑔𝑚𝑖𝑛𝑛=1,2,…...,𝑅𝑐%𝑁𝑖

means find the 𝑅𝑐%𝑁𝑖
channels with the smallest 𝑙2 norm among the output channels in the
𝑖th layer.

3.5. Re-training

After pruning filters with small norms and near centroid, we need
to retrain all the filters and update the weights by the backpropagation
algorithm to eliminate the quantified and pruning errors. Notice that
all the pruned filters are set to zero instead of pruning, so the channel
numbers remain the same, and most of the optimizer could be used to
update the filters. The refresh parameters are quantified and pruned
again until the training epochs are done.

3.6. Hardware-friendly model generation

Finally, we need to transfer the pruned model to a hardware-
friendly mode. There are three steps: First, prune all the channels set to
zeros at the last training epoch. Here we cut the number of channels to
the pruning ratio. Second, we rearrange the numbers of each layer so
that it can be divided by 8, which is suitable for hardware acceleration.
Third, we export the model to the ONNX model so that the trained
model can be employed better on embedded systems, such as Raspberry

Pi and NVIDIA NX Xavier.
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Fig. 2. PTQ and QAT workflow. The PTQ method involves calculating the scales
by collecting the statistics of parameters and activations in each layer of the pre-
trained model, before mapping the layer’s parameters to a corresponding low-bit value
range. QAT incorporates a ‘‘fake-quantization’’ module during training to introduce
quantization error into the model training process, thereby achieving a fine-tuning
effect to improve accuracy. Both workflows require quantizing the model to match the
specific inference machine.

4. Experiments

We aim to employ a classification model on the embedded system,
so we choose MobileNetV2 as our experiment network due to its low
cost of memory and energy and high accuracy. We have performed
quantization and pruning on MobileNetV2 with CIFAR-10 and CIFAR-
100 datasets. Then we pruned and exported a small model to the ONNX
model to evaluate its inference time and memory cost. To illustrate
our quantization and pruning method’s advantages, we have carried
ablation study for further comparison.

4.1. Settings

4.1.1. Quantization setting
We choose MobileNetV2 as our training model, and we use

16-bit float (FP16) and 8-bit signed integer (INT8) as our quantization
width. There are two kinds of workflow in CNN linear quantization:
Post-Training Quantization (PTQ) and Quantization-Aware Training
(QAT) (Krishnamoorthi, 2018). PTQ is a quantization method that
trains the model with full precision and converts the model to a specific
width, such as 16-bit or 8-bit. QAT uses fake quantization operators
to train the model in a ‘‘quantified’’ way and convert the model to a
specific width in the end. Fig. 2 shows the two quantization workflows.
Here we have trained both full-precision models from scratch for
further PTQ tests; 8-bit and 16-bit models used QAT during training.

4.1.2. Pruning setting
We use two kinds of criterion to prune the filters: norm pruning

and centroid pruning. We choose l2-norm for filter selection and use
l2-norm for distance calculation from Eq. (8). We prune all the convo-
lutional and batch normalization layers with the same norm pruning
and centroid rates in each training epoch.
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Table 1
MobileNetV2 on CIFAR-10.

Mode NP (%) CP (%) TP (%) Top1 Acc. (%) Top5 Acc. (%)

Baseline 0 0 0 86.67 99.85
Q 0 0 0 84.16 99.61

Q + P

0.1 0.2 0.3 84.11 99.42
0.1 0.3 0.4 85.08 99.33
0.1 0.4 0.5 84.21 99.25
0.1 0.5 0.6 81.69 99.10
0.2 0.2 0.4 85.35 99.40
0.2 0.3 0.5 84.2 99.31
0.2 0.4 0.6 81.97 99.27
0.2 0.5 0.7 77.5 98.78

‘‘NP’’ represents ‘‘Norm Pruning’’, which stands for the rate of norm pruning. ‘‘CP’’
represents ‘‘Centroid Pruning’’, which stands for the rate of centroid pruning. ‘‘TP’’
represents ‘‘Total Pruning’’, which stands for the total rate of filter pruning. ‘‘Top1
Acc.’’ represents the top1 classification accuracy, and ‘‘Top5 Acc.’’ represents the top5
classification accuracy.

Table 2
MobileNetV2 on CIFAR-100.

Mode NP (%) CP (%) TP (%) Top1 Acc. (%) Top5 Acc. (%)

Baseline 0 0 0 59.94 85.51
Q 0 0 0 53.6 84.35

Q + P

0.1 0.1 0.2 56.78 84.10
0.1 0.2 0.3 58.21 83.82
0.1 0.3 0.4 56.65 82.38
0.1 0.4 0.5 50.03 80.73
0.2 0.1 0.3 56.68 84.28
0.2 0.2 0.4 54.65 82.53
0.2 0.3 0.5 50.81 80.28
0.2 0.4 0.6 42.92 74.59

‘‘NP’’ represents ‘‘Norm Pruning’’, which stands for the rate of norm pruning. ‘‘CP’’
represents ‘‘Centroid Pruning’’, which stands for the rate of centroid pruning. ‘‘TP’’
represents ‘‘Total Pruning’’, which stands for the total rate of filter pruning. ‘‘Top1
Acc.’’ represents the top1 classification accuracy, and Top5 ‘‘Acc.’’ represents the top5
classification accuracy.

4.2. MobileNetV2 on CIFAR-10, CIFAR-100

We have trained MobileNetV2 on image classification tasks with
CIFAR-10 and CIFAR-100. The CIFAR-10 dataset consists of 60,000
32 × 32 color images divided into ten different classes, of which 50,000
are used for training and 10,000 for testing. Similar to the CIFAR-10,
the CIFAR-100 offers 100 classes with a total of 600 photos. There are
100 assessment photos and 500 training images per class. The CIFAR-
100’s 100 classes are divided into 20 superclasses. Each image has
a ‘‘fine’’ and a ‘‘coarse’’ designation, indicating the class to which it
belongs (the superclass to which it belongs). The parameter settings
are the same as He et al. (2016), and the training schedule is defined
as Zagoruyko and Komodakis (2016). From Tables 1 and 2, we can see
that we have achieved 50% reduction in the number of channels in the
model with a 2% drop in accuracy on the CIFAR-10 dataset and 40%
reduction in the number of channels in the model with a 3% drop in
accuracy on the CIFAR-100.

4.3. Comparison of different compressed MobileNetV2 on CIFAR10 and
CIFAR100

We conducted a comprehensive comparison between various com-
pressed methods for the Top1 accuracy on CIFAR10 and CIFAR100,
Multiply–Accumulate Operations (MACs), parameter count and the size
of the model, which can be found in Table 3. One MAC equals one
multiply or divides operation and one add or minus operation. Here we
use 40% as our pruning rate on PFEC (Li et al., 2017), FPGM (He et al.,
2022) and our method, and choose 8-bit as bit-width for DTQ (Liu et al.,
2018) and for our method. From Table 3, we can see that our method
achieved great advantages using MobileNetV2 on both CIFAR10 and
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Table 3
Comparison of compressed MobileNetV2 on CIFAR10 and CIFAR100.

Method CIFAR10 Top1
Acc.

CIFAR100 Top1
Acc.

Parameters (M) MACs (M) Size (MB)

DTQ (8 bit) (Liu
et al., 2018)

83.21 55.72 2.139 6.427 4.278

PFEC (40%) (Li
et al., 2017)

83.46 53.10 1.327 3.821 5.308

FPGM (40%) (He
et al., 2022)

84.20 53.28 1.112 3.132 4.448

Ours (40%, 8 bit) 84.35 56.65 1.063 3.007 2.216

‘‘CIFAR10/CIFAR100 Top1 Acc.’’ means the top1 accuracy of the method on CIFAR10/CIFAR100, ‘‘Parameters’’ means the number of the model generated by the method, ‘‘MACs’’
means the model’s number of multiply–accumulate operations. ‘‘Size’’ means the total size of the model in MB (Million Byte).
Table 4
Average inference time on hardware of CIFAR-10, CIFAR-100.

Data-set STATE FP32 (ms) TRT + FP32 (ms) TRT + FP16 (ms) TRT + INT8

CIFAR-10
Original (PTQ) 121.28 75.56 29.17 19.21
Original (QAT) 118.89 73.84 23.75 17.89
Pruned 50% (QAT) 63.20 35.48 15.15 11.98

CIFAR-100
Original (PTQ) 121.64 77.69 24.22 12.39
Original (QAT) 119.28 75.14 24.05 13.77
Pruned 40% (QAT) 73.88 41.58 16.65 8.70

This table shows the average inference time for 1024 RGB images on NVIDIA Xavier NX.
‘‘TRT’’ stands for ‘‘TensorRT’’.
CIFAR100 datasets. Due to the use of 8-bit integers for inference, we
greatly reduced the size of the model while maintaining comparable
parameter and computation requirements to PFEC (Li et al., 2017)
and FPGM (He et al., 2022). As a result, the memory demand for
deployment on embedded systems has significantly decreased, and the
computation has correspondingly reduced, leading to an increase in
the inference speed. Additionally, the utilization of structured pruning
guarantees a seamless integration into embedded systems, augmenting
overall usability.

4.4. Hardware test

We have tested the mean inference time of compressed models.
We randomly choose 1024 images from the dataset and measure the
mean time when the images are imported to the original model and
compressed model trained by CIFAR-10 and CIFAR-100. To compare
the contribution of quantization and pruning for speedup, we also
employ PTQ and QAT to the original model and test the inference
time at the same condition. The result is in Table 4. From the table,
we can see that regardless of the effect of hardware acceleration from
TensorRT, we improved the classification inference time from 75.56 ms
to 11.98 ms for 1024 images for the model trained on CIFAR-10, which
brings 6.26 times performance improvement.

4.5. Ablation study

4.5.1. Quantization workflow
We choose NVIDIA TensorRT as our hardware transform SDK for

deep learning inference. TensorRT can deliver low latency and high
throughput for inference. Hence, we separate the Original model in
floating point 32, the TensorRT model in floating point 32, and the
TensorRT model in floating point 16 to show separate the acceleration
of TensorRT, quantization, and pruning. To better illustrate and com-
pare the contribution of quantization and pruning methods to model
inference acceleration, we chose two quantization methods for the
original model: PTQ and QAT. From Table 4, we can see that PTQ
and QAT perform likely on inference acceleration. Pruning speed up
the procedure of inference. This is because fewer channels bring up
fewer parameters and operations.
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Table 5
Comparison of norm pruning, centroid pruning and mixed pruning.

Data-set PR (%) NP Acc. (%) CP Acc. (%) MP Acc. (%)

CIFAR-10

0.3 81.94 85.03 84.41
0.4 78.94 84.29 85.35
0.5 75.88 83.31 84.21
0.6 71.51 80.06 81.97

CIFAR-100

0.2 57.6 56.68 59.88
0.3 56.23 56.33 58.21
0.4 54.94 53.69 56.65
0.5 52.36 50.20 50.08

‘‘PR’’ represents ‘‘Pruning Rate’’, which stands for the rate of filter pruning. ‘‘NP Acc.’’
represents ‘‘Norm Pruning Accuracy’’, which stands for the classification accuracy of
norm pruning. ‘‘CP Acc.’’ represents ‘‘Centroid Pruning Accuracy’’, which stands for the
classification accuracy of centroid pruning. ‘‘MP Acc." represents classification accuracy
of the mixed pruning.

4.5.2. Comparison of norm pruning, centroid pruning and mixed pruning
We also compare the effect of norm pruning, centroid pruning,

and mixed pruning. We use norm pruning, centroid pruning, and mix
pruning separately on CIFAR10 and CIFAR100 at the same pruning rate
and compare their accuracy to find the best performance. The result
is in Table 5. From the table, we can see that on CIFAR-10, when
the pruning rate gets higher, mix pruning performs better than singly
norm pruning or singly centroid pruning. Besides, centroid pruning
performs better than norm pruning from 0.3 to 0.6 pruning rate. On
CIFAR-100, norm pruning performs better than centroid pruning while
they increase pruning accuracy. When the pruning rate increases, the
accuracy falls faster due to an inadequate number of parameters.

The main idea of norm pruning is that filters with small l2 norms
are considered unimportant, so these filters with small norms are
prioritized for removal during pruning. However, as the pruning rate
increases, some important filters may also be removed because they
are ranked low in the norm sorting, leading to a decrease in accuracy.
However, not all filters with small norms are unimportant. If the
distribution variance of filters in the layer is small and the minimum
norm value is relatively large, network pruning based on the ‘‘less-
norm-less-important’’ principle would remove filters that have a small
norm but contribute significantly to the output.

The main idea of centroid pruning is to measure the similarity and
‘‘replaceability’’ of each filter, and remove the most replaceable filter.

When the pruned filters are updated to non-zero by back-propagation,
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Table 6
MobileNetV2 on CIFAR-10 with post-training.

Dataset B Q TP (%) PTP Top1 Acc.
(%)

PAT Top1
Acc. (%)

CIFAR-10 86.67 84.13
0.3 80.71 84.11
0.4 78.01 85.35
0.5 65.85 84.21

CIFAR-100 59.94 53.60
0.3 38.92 58.21
0.4 35.24 56.65
0.5 12.90 50.81

‘‘PR’’ represents ‘‘Pruning Rate’’, which stands for the rate of filter pruning. ‘‘B’’ stands
represent ‘‘Baseline’’, which means that the classification accuracy of model without
any compression technique. ‘‘Q’’ represents ‘‘Quantization’’, which stands for the
classification accuracy of model after training with Quantization. ‘‘TP’’ represents ‘‘Total
Pruning Rate’’. ‘‘PTP Acc.’’ represents ‘‘Post-Training Pruning Accuracy’’, which stands
for the classification accuracy of model pruned after training. ‘‘PAT Acc.’’ represents
‘‘Pruning-Aware Training Accuracy", which stands for the classification accuracy of
model pruned during training.

other filters can be used to represent the replaced filter. Therefore, un-
der the same pruning rate on CIFAR10, the representation ability of the
centroid pruned model is better than that of the norm pruning model,
because it has more linearly independent tensor in high-dimensional
space. But when training MobileNetV2 on CIFAR100, the variance of
the parameter distribution is smaller and the smallest norm filter is also
relatively small. So at the same pruning rate, the benefits of removing
smaller filters are greater than the benefits of keeping them.

Mix pruning is a balance between norm pruning and centroid prun-
ing within the same pruning rate. It removes filters with small norms
that have little impact on the output, while retaining filters with
small norms but good representational capacity. This combination also
reduces computational complexity, as centroid pruning requires more
computational operations than norm pruning.

4.5.3. Comparison of pruning during training and pruning after training
We conducted a comprehensive analysis of the impact of PTQ and

QAT workflows on model performance, as well as the performance of
models with Post-training pruning and pruning-aware training. Table 6
indicate that the accuracy of post-training pruning on a QAT model is
inferior to that of pruning-aware training. This can be attributed to the
fact that each filter in a trained model corresponds to a feature map of
the input image. Without fine-tuning the model, pruning alone leads to
a reduction in the number of channels and consequent underfitting of
the model’s output.

4.5.4. Comparison of training time of quantization after pruning and single-
shot pruning and quantization

We conducted a comprehensive analysis of the training and export-
ing process for models using our methodology versus quantization post
pruning on NVIDIA GeForce GTX 1080 Ti. Specifically, we assessed the
impact of norm pruning rate = 0.1 and centroid pruning rate = 0.3
on overall time efficiency. Results indicate that when using Pruning +
QAT, norm and centroid pruning are the training components, in addi-
tion to QAT (INT8) and the model’s adaptation to NVIDIA TensorRT,
resulting in prolonged training time. Conversely, our Single-Shot ap-
proach incorporates quantization modules during pruning, eliminating
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the need for QAT. Nonetheless, the output model remains in FP32 form,
requiring additional time for conversion to TensorRT. From Table 7, we
can see that on CIFAR10, we saved 54.5 min and improved efficiency
by 19.4%; on CIFAR100, we saved 88.5 min and improved efficiency by
24.7%, and our method reduced the number of operations and lowered
operation complexity.

5. Conclusion

In this paper, we first list compression approaches for neural net-
works and highlight the complexity of the quantization and pruning
division implementation process, which suffers from the inability to
reduce both quantization and pruning errors during training. In order
to achieve this, we propose a technique that can both prune and
quantize neural networks. We successfully test the deployed trained and
compressed model on a hardware platform.

Our method outperforms the traditional approach of pruning and
quantization, as we introduce quantization into the training process.
This allows the network to take into account both quantization error
and pruning error during parameter updating, leading to an impressive
maintenance of accuracy while dramatically reducing training time by
20% to 25%. Our approach stands out among other model compres-
sion methods by significantly reducing the computational cost (MACs)
and size of the model while maintaining similar accuracy. Using a
combination of pruning and quantization, we are able to effectively
decrease the number of model parameters and bit-width of parame-
ters, thereby decreasing memory usage and power consumption during
model inference.

The compressed model effectively attained an 8-fold speedup while
being compressed to 30% of the original model with a 2% drop in
recognition accuracy.

6. Future work

In the future, we intend to combine pruning method with more
quantitative techniques and test it on tiny embedded systems like MCU.

Filters at different depths have varying sensitivity to feature maps of
different depths. Uniformly applying the same pruning rate to all con-
volutional layers can result in inadequate pruning for some layers with
redundant parameters and excessive pruning for other layers sensitive
to activations, leading to reduced performance. In the future, we will
set different pruning rates between different layers to achieve better
compression rates while maintaining high accuracy. Furthermore, we
plan to enhance the proficiency by integrating structured pruning tech-
niques alongside diverse quantization methodologies like LSQ (Esser
et al., 2019), LSQ+ (Bhalgat et al., 2020) and AdaRound (Nagel et al.,
2020) in our upcoming server-based CNNs training regimen. Sub-
sequently, we aim to apply our approach by conducting inference
evaluations on less powerful embedded devices such as NVIDIA Jetson
Nano and Raspberry Pi 4.
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Table 7
Comparison of training time of quantization after pruning and single-shot pruning and quantization.

Dataset Mode Pruning (min) QAT (min) Export (min) Total (min)

CIFAR10 Pruning + QAT 157.4 97.2 25.4 280.0
Single-Shot 198.7 0 26.8 225.5

CIFAR100 Pruning + QAT 192.6 127.5 38.3 358.4
Single-Shot 232.3 0 37.6 269.9

‘‘Pruning’’ refers to the time required for norm pruning and centroid pruning. ‘‘QAT’’ indicates the time necessary for quantization-aware training.
‘‘Export’’ denotes the time needed to transform a PyTorch model into a NVIDIA TensorRT engine. ‘‘Total’’ is the overall time taken to compress the
model and convert it to a hardware-friendly format.
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