CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2014; 26:447-467
Published online 1 February 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3006

Performance analysis of a mobile agent prototype system based on
VIRGO P2P protocols*

1,2,

Yunliang Jiang >, Yong Liu 2%, Wenliang Huang* and Lican Huang*

Unstitute of Cyber-Systems and Control, Zhejiang University, Hangzhou, China
2State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
3 China Unicom Labs, Beijing, China
4Zhejiang Sci-Tech University, Hangzhou, China
3School of Information & Engineering, Huzhou Teachers College, Huzhou, China

SUMMARY

The mobile agent technique has been broadly used in next generation distributed systems. The system per-
formance measurement and simulation are required before the system can be deployed on a large scale.
In this paper, we address performance analysis on a finite state mobile agent prototype on the basis of
Virtual Hierarchical Tree Grid Organizations (VIRGO). The finite states refer to the migration, execution,
and searching of the mobile agent. We introduce a novel evaluation model for the finite state mobile agent.
The experimental results based on this evaluation model show that the finite mobile agents can perform well
under multiple agent conditions and are superior to the traditional client/server approach. Copyright © 2013
John Wiley & Sons, Ltd.

Received 27 June 2011; Revised 4 January 2013; Accepted 4 January 2013

KEY WORDS: mobile agent simulation; VIRGO; performance analysis

1. INTRODUCTION

In future computing environments, the cost of moving data will be much larger than the cost of
moving codes. Although the bandwidth of a network has been improved significantly, the most
challenging problem is still the large cost of transferring the data to perform computation. Thus, the
mobile agent (MA) technique may be a desirable solution to address this challenge, especially when
the computation logic is complex, for example, when users want to process both their data in the
storage of a public cloud and their local private data alternately, or the scenario in Section 2.3. In
addition, the MA will also be useful to address the challenge of the automatic provision of services
and will effectively manage workload segmentation and portability (in other words, the seamless
movement of workloads across many platforms and clouds) [1].

Cloud computing [2,3] and virtual organization (VO) techniques [4—6] are new network architec-
tures that enable self-organization and self-management. Currently, the ecosystems of cloud services
require tight coupling with clients deployed on each of the users (or peers) to improve the user
experience. Those clients may be powerful platforms for MA, for example, iTunes from Apple Inc.
Chome from google, or eMule, which can be implemented as a type of cloud service that is con-
structed with numerous peers and can be designed as a peer platform® to execute the agents for

*Correspondence to: Yong Liu, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, 310027, China.

TE-mail: yongliu@iipc.zju.edu.cn

“Here, a platform such as iTunes or eMule installed on PCs could correspond to the agent home that is mentioned in the
following section of this paper.

$Here, a platform such as iTunes or eMule installed on PCs could correspond to the agent home that is mentioned in the
following section of this paper.

Copyright © 2013 John Wiley & Sons, Ltd.

448 Y. JIANG ET AL.

services such as music sharing, software dispatch, and safety. The VO technology can help decrease
the complexity of MA substantially by hiding the operating system and communication differences
among the network nodes. The VO-based MA applications could be one of the major forms of next
generation network applications. On the one hand, the internet software ecosystem has evolved into
a cloud architecture that is constructed with numerous peers. For example, the 360 safe guider!
is installed on three hundred million personal computers (PCs) in China, which is resident on a
background of computers and provides antivirus, software update management and system opti-
mization services. It can now share the malicious software information via all of the client peers
that are installed in the user’s PC and provide an antivirus cloud service. The old Internet Protocol
(IP)-based management protocols could be difficult to organize for the large numbers of peers and to
provide convenient cloud services; thus, the virtual group-based architecture and MA techniques are
desired. On the other hand, current MA-based applications are limited because of their safety and
supporting environments; the next generation cloud architecture with tiny peers [7, 8] could provide
a perfect solution for the MA-based applications. The cloud client software installed on peers could
provide communication supports for those agents and could also restrict the access contents of the
agents (this strategy could refuse malicious agents) such that the agents can focus on their tasks and
simplify the services that are designed. Thus, the performance of a mobile agent system with large
peers and organized with VO should be evaluated before being deployed in a real case; however,
there are few studies that focus on this field.

Mobile agent is an intense research area [9-13], and many implementations have taken place in
real-world applications [12, 14-16], which were developed based on prototype systems. The MA
applications can autosearch the resources (including computation, data, and specific devices) in the
networks and move to the proper network node to achieve their tasks [11, 13]. These applications
could provide an easy way to execute comprehensive tasks; however, to evaluate the real system
performance of the MA under networks is a challenge because the network conditions are quite
complex and the deployments of resources are dynamic.

As measuring the metrics in real MA systems is intractable and time-consuming, the simulation
of MA systems is still valuable to study. The simulation of an MA can obtain metrics rapidly and
easily and can evaluate the performance easily and quickly under varied network conditions and
system settings, developing further MA simulation techniques is useful.

1.1. Related works on performance evaluation of MA

There have been considerable works on MA simulation and performance evaluation [14, 15, 17-28].
The essential of the simulation on MA’s performance evaluation is that the simulation should
approach to the real system as far as possible. Thus, there are two main approaches in performance
evaluation of MA: one is using some probability distributions to approximate the executing process
and concurrency of MAs [26,27]. Although those mathematical approaches could provide concise
representation of the performance evaluation and simulation, it is hard to say those evaluations
could approach to the real system accurately. For the mutation, concurrency of MAs may not only
be described with several probability functions simply, let alone complex tasks with MAs on cloud
computing environments. In the other hand, once the task of MA changed, the probability functions
used in evaluation may be varied; the other approach is building real min-system to execute the
MAs directly [28]. The drawback of these approaches is obviously, it could not provide references
for real large multiple-MA-system especially in complex network environments. In additional, both
two approaches mentioned earlier did not provide flexible evaluation on performance of MA, which
means those evaluation approaches are most aimed to the same stale task of MA and cannot provide
scalable evaluation for different tasks on MA system.

With the evolution of network environments, the performance evaluation of MAs have undergone
four stages, which is MA’s performance evaluation on wired Transmission Control Protocol/IP net-
work [23], Remote Method Invocation (RMI) [18], Wireless network [19], 3G network [27] and
so forth. And the researchers have also compared the performance of MA with Remote Procedure

Iwww.360.cn

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF MOBILE AGENT PROTOTYPE SYSTEM 449

Call [23], client/server (C/S) model [29-32] under varied network environments. To the best of our
knowledge, there is not any work on the performance evaluation of MAs under the VO environment.
Thus, proposing proper performance evaluation models for MAs under new network architecture,
for example, VO networks or cloud architectures, is needed.

We address this problem and propose a quantitative performance evaluation model for that archi-
tecture with a large number of finite state MAs (FS-MA) [33] under a virtual hierarchical tree Grid
organizations (VIRGO) platform [5, 6] in the following section.

1.2. Contributions of our approach

The MA-based performance evaluation approach provided in this paper is addressed on the
following technical challenges:

(1)

(i)

(iii)

(iv)

Current performance evaluation approaches could not provide accurate simulation and eval-
uation for multiple MAs’ performances in large-scale network environments. The mathe-
matical evaluation approaches [26,27] can only use the probability distribution to roughly
approximate the MA’s actions; once users want to change the evaluation tasks of MA, those
probability functions may be invalid. Although using the real evaluation system with min-
network condition, [28] could not provide accurate performance estimation for large-scale
networks, such as the cloud or VO environments. Besides, if users want to evaluate different
tasks for MAs, then they normally need to rewrite the codes of MA. This may be very incon-
venience for the pre-deployment simulations in complex services, which often need to adjust
the tasks configurations. So, the first challenge may be the accurate performance evaluation
for MAs with varied tasks in large-scale networks.

As mentioned earlier, sometimes, the evaluation tasks are varied, whereas both current
approaches need to either rewrite the codes of MAs or readjust the mathematical models.
How to provide a reusable and flexible performance evaluation for MA when processing
complex evaluation tasks may be the second challenge.

When concerning the concurrency of multiple MAs, there should be more reality than mod-
eling with assuming probability function that means the evaluation system should execute
those multiple MAs in real; otherwise, the concurrency could not be truly evaluated only
with mathematical functions. This is the third challenge.

The fourth challenge is how to evaluate the MA’s performance under the large-scale VOs.
Although there are several works on the performance evaluation of MA under wired net-
works and wireless network, the evaluation works of MA on VOs are still in the blank
stage.

On the basis of the aforementioned implementation challenges in performance evaluation of MAs,
we present our FS-based MA performance evaluation approach, which may be novelty and useful
in the future cloud computing architecture and will be able to solve the challenges.

Our contributions on the performance evaluation of MA are presented as follows:

@

(i)

We present a scalable performance evaluation approach for MA (Section 2.2), which sum-
marizes the whole life cycle of MA as an automotioning FS machine (FS-agent) driven by
resources, and then complex tasks of MA can be abstracted as content-FS sequence defined
by the users freely. With this approach, users can focus on the design of content-oriented
tasks without concerning the detailed executing processing of MA, which is concentrated
with the FS-agent. This approach is also network independent and can be implemented in
varied network environments.

We present a real executing policy in the performance evaluation of MA, which means all the
MAs defined by the content-FS are really executed in the simulation platform; the workload
of MA’s tasks and service time for MA’s data size transferring are calculated from the true
environments. This could provide more accurate estimation for the performance of multi-
ple MAs in large network environment. And we also use multiple-thread method to execute
multiple MAs to simulate the real concurrency among multiple MAs.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467

DOI: 10.1002/cpe

450 Y. JIANG ET AL.

(iii)) We present several metrics for MA system, such as average service availability and average
aggregate bandwidth, to evaluate the performance of MA system under VIRGO architecture.

(iv) We also compare the performances of MA-based approach and service-oriented architec-
ture (SOA)-based approach on VIRGO architecture and provide a reference for application
design with those two approaches.

1.3. Organization of sections

The remainder of this paper is organized as follows. In Section 2, we introduce the VO architecture-
VIRGO and the finite state MA system. Section 3 provides details about the performance evaluation
model and the corresponding simulation environment. The experimental results investigating the
C/S model and the MA model are discussed in Section 4, and conclusions are drawn in Section 5.

2. MOBILE AGENT BASED ON VIRGO VIRTUAL ORGANIZATION ARCHITECTURE

2.1. Virtual hierarchical tree Grid organizations

Virtual hierarchical tree Grid organization [6] is an open-source project that is self-organizing and
decentralized, on the basis of unstructural and structural peer-to-peer; it merges an n-tuple replicated
virtual tree-structured network and a random cached unstructured network. It can provide a series of
lookup protocols to manage its virtual groups and resource searching similar to virtual and dynamic
hierarchical architecture [4].

Users can access VIRGO from the access-point node. Once the new user node is added into
VIRGO, it will be managed by its owner nodes. VIRGO uses gateway nodes to route the differ-
ent groups (or levels). A typical two-tuple virtual hierarchical tree is shown in Figure 1; the real
nodes are mapped into virtual groups (see the dashed lines) and are overlapped. Each virtual group
includes two nodes from the upper layer . In our MA model, we use VIRGO [6] to support the
mobile computation. The login and logout of the nodes use a VIRGO protocol [6]. An impor-
tant part of the MA-based computation model is to perform a resource/service search before actual
migration/computation can take place. With an appropriate search policy in place, a tree-structured
VO can decrease the search time and cost significantly. In the following FS-MA performance evalu-
ation, we adopt the full tree search policy [4] as the default search policy. In the future, we may use
the VIRGO protocol [5,34] to avoid the possible load bottleneck of the nodes in the root layer.

2.2. Finite state mobile agent

The FS-MA system consists of two important components, namely the FS-agent and the content-FS.
The FS-agent is an FS machine that represents the state transition diagram of an MA. The content-
FS defines how a complex task can be executed and deployed with the composition of subfinite
states. It plays a similar role as Web Services Flow Language in a Web Service and can also be
viewed as a workflow description protocol for the execution and migration of the MA [33].

FS-agent in finite state mobile agent

The life cycles of the entire actual MA can be defined as an automotioning FS machine driven
by resources. Here, resources represent the general designation of data, devices, and software in
remote nodes that will potentially affect the state transition of mobile agents. That is why, we call
those MA as FS-agent. As shown in Figure 2, the FS machine includes five states and one transition
relationship between those states:

¢ Request state - each agent begins its life in this state and tries to request the resources and
execution time slot, which are required for the task.

¢ Blocked state - once an agent obtains necessary service time, it transits into this state. All the
service mobile agents who obtain enough service time while without enough service resources
at certain nodes will be put into the blocked state queue.

¢ Suspended state - an agent will transit into this status once it obtains all the necessary resources.
The system maintains a queue for the agents in this state that have enough resources while
without enough service time at certain nodes.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF MOBILE AGENT PROTOTYPE SYSTEM 451

oot wirtual group J
/

Second-layer virtual group

Thard-layer virtual group
TI wireless
S

3G mobdel T~
Phone i
=
desktop

— "

enlrance

2, -

Figure 1. Virtual hierarchical tree topology [6].

Resource

Timeout

Resource
Hit

Request Migration

Resource
Miss

Require

Service
Resource

Time

Figure 2. Transition relationship of the finite state agent.

© Migration state - this state represents that an agent tries to obtain necessary resources from a
remote node after it fails to acquire those resources from the current node.

o Serving state - if an agent obtains enough resource and service time, then it will execute its
service.

In a real FS-MAs system, any FS-agent is actually executed in a container called agent home.
The agent home is deployed at all the nodes and essentially provides following services to all
the agents:

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

452 Y. JIANG ET AL.

<?xml version="1.0"?>

<ContentFS>
<STATE stateid="0" call="S0" nstatenum="1">] ,]
<NextS stateid="1" > SO:Find contact’s socials
<rdf:RDF> in Zhejiang Province

<rdf:Description

rdf:about="http://icad.8866.org/Mining/localhost">
< facilities:LogDB>available</ facilities:LogDB > Phone call log
< facilities:location>localhost</ facilities:location > DB available

</rdf:Description>

</rdf:RDF>
</Néxts> S1:Calculate Total Phone
</STATE> call time with contacts

<STATE stateid="1" call="S1" nstatenum="1">
<NextS stateid="2">
<rdf:RDF>

<rdf:Description Computation
rdf:about="http://icad.8866.org/Mining/Remote">

from Zhejiang Province

< facilities:ComputS>available</ facilities:ComputS > Se_rver
< facilities:location>localhost</ facilities:location > available
</rdf:Description>
</rdf:RDF> e
</NextS>

</STATE>

</ ContentFS >

Figure 3. A simple content-FS for the social data mining task in telecomm.

¢ All the functions of an agent are invoked by the agent home indirectly.

¢ Queue management and agent execution scheduling - It maintains several different queues
(e.g., blocked queue and suspended queue) for the agents at the current node and is responsible
for allocating service time for them if necessary.

¢ Resource searching - It will proactively search resources on the behalf of blocked agents.

Content-FS in mobile agents

Content-FS is a service description protocol for FS-MAs; and content-FS is similar to Web Ser-
vices Description Language and Web Services Flow Language, which provide coarse-granularity
service description for web service.

There are three elements in content-FS, that is, subservice states, resources, and transition rela-
tionship. Subservice states represent subtasks in a service task and are basic building blocks in the
service workflow design process. The resources refer to required resource and service time for each
subtask, and only the resources arrives at the requirements; the content-FS can switch from one
substate to another substate directly. Transition relationships in content-FS describe the functions
and logic workflows of the services. A service typically begins with a start state and stops at an
end state.

Figure 3 shows a simple content-FS for the social data analyzing task in telecomm, which try to
calculate one user’s total phone call time in Zhejiang Province. In this example, ‘SO’ and ‘S1’ are
the binding name for the corresponding subservice states. The ‘NextS’ tag describes the next state
of current state, and the corresponding required resources are described by the ‘rdf” tag.

2.3. Background and implementation scenario of finite state mobile agent

China Unicom is the second telecom operator in China and consists of multiple subcompanies,
which are divided by province, and those subcompanies are allowed to carry out their own informa-
tion systems and operate account independently. The architecture of China Unicom is similar with
the VO, which may be autonomy in each level of organization. This architecture is favorable for
each subcompany because of its flexibility in making changes. However, this makes it not easy to
integrate the information systems and data from all the subcompanies. Thus, China Unicom tries to

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF MOBILE AGENT PROTOTYPE SYSTEM 453

carry out a project to integrate all the information systems and data of all the subcompanies, aiming
at providing a low cost, scalable approach that can easily share all the information systems and data.
The MA is an optimal approach for its low cost and highly scalability.

Why is MA, why not SOA?

Firstly, it is highly complex and costly for China Unicom to redesign all the database and informa-
tion system with the SOA architecture; secondly, it is also impossible to require each subcompany
to upgrade all their information systems and data to the service architecture. Even if parts of their
information systems and data are switched to SOA, it is very hard to design a perfect granular of ser-
vices to be able to handle new tasks. Besides, the SOA needs the resource owner to build and deploy
such services to others. This is not practical for in many user scenarios because (i) those services
are normally required by other subcompanies, the service provider may not fully understand the
specific requirements of the service from each individual customer, and both the provider and users
need to spend much cost on communication and designing for services; and (ii) in particular for
the China Unicom organization architecture, the service usually cannot bring revenue to the service
provider (the subcompany), and as a consequence, they do not have enough motivation to provide
high quality service.

In the MA-based approach, all the tasks are specified and developed by the users, and thus, it will
avoid the risks mentioned earlier. Besides, in this case, the MA-based approach will also decrease
the cost compared with SOA; the MA only need the subcompanies to provide interfaces for their
information systems and data instead of wrapping all those systems and data as services which is a
much heavier and complicated task.

Although MA is a superior approach for the integration project, it still needs to evaluate the per-
formance of MA-based approach before its deployment. This is the main original intention of this
article.

Two metrics, that is, the response time and the service availability, are used to compare the C/S-
based approach and the MA-based approach. The response time can also be regarded as the agent
executing time, which can be represented as the waiting time of the end users. The service avail-
ability will reflect the available time for the task executions. We will first model the computation of
these two metrics and then build simulation experiments for comparing agents with clients in the
condition of large-scale nodes.

3. EVALUATION OF FINITE STATE MOBILE AGENT

3.1. Finite state mobile agent work scenarios and process

The most important thing in the FS-MA computing process is finding one node with a series of
resources, which can drive the FS-MA to the next state. In this process, the FS-MA only needs to
communicate with a local node in the VIRGO platform, and the node in the VIRGO platform will
implement all of the remote communications for the current FS-MA.

The typical agent can be modeled as the states’ switching process in Figure 4. State 0 and state 1
represent the operations of obtaining the mining services and retrieving the phone call log database,
respectively. Rg and R, represent the corresponding resources. Figure 4 shows the FS-MA execut-
ing process in detail and that the FS-MA can be viewed as a batch of executing states, which will be
driven by the request resource.

(i) A two-state agent ‘exam’ in Figure 5 is deployed on node X in the VIRGO platform, initialized
with state 0 (all FS-MAs beginning with state 0).

(i) Agent ‘exam’ needs resource R to implement its state 0, so it sends an R request message to
the VIRGO platform. We can view the VIRGO platform as a black box and need not address
the details of resource searching in the FS-MAS executing process.

(iii) The VIRGO platform will find a node with Ry and will inform the local node X .

(iv) After the exam receives the message from the local host indicating that node Y has the resource
it needs, it will transfer to node Y.

(v) Agent ‘exam’ executes state 0.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

454 Y. JIANG ET AL.

a Agent is deployed on node X]
" b NeedsRo
¢ Node Y has Ro
Agent: exam AV
L 3 d Agent transfer to Y
State 0 needs Ro >
e Agent Run State 0
State I needsRi | [| —m = = — —
. S
\
AU U
\ L 0
\ Agent Run State 1
\\ _____
\
\
\\ No resource
\ Sleep a while
Retr-y
Figure 4. Finite state mobile agent executing process.
Execute Block
NodeY ——=—————=—————
Search
VO —_——— —_———
Request R%source Res()urc{e Satisfy
| |
|
|
NodeX ===l —=—=—

T1 T2 T3 T4 15

Figure 5. Time sequences of the agent executing process.

State 1 will repeat the process that is described earlier. When all of the nodes with the required
resources that exam needs are unavailable, the VIRGO platform will send back the UNFIND signal,
and thus, the exam will switch to the block array and be frozen until the required resources are

available.

The time sequences of the agent executing are shown in Figure 5. According to the figure, the
executing process can be divided into several subtime intervals. These are the time for the agent
searching the destination nodes, Tcqrch; the time for the agent migration, Tyigraton; the time for the
agent executing in remote nodes, 7execute; and the time for agent blocking, Tpjock- As Figure 5 shows,
we have 77 < T, < T3 < T4 < Ts < Tg, and in our evaluation model, we ignore the time beacon

delay between those subtime intervals. Then, we have the following formulas:

Tsearch ~ T2 - Tl (1)

Tmigration ~ T3 -T2 (2)

Texecute = Ty — T3 (3)

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467

DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF MOBILE AGENT PROTOTYPE SYSTEM 455

Totock ~ Te — T5 “)

3.2. Resources search algorithm

We use the full tree search query policy [4] in VIRGO for resources searching. First, we find
the root virtual group, and then the coordinate of virtual group members of this group forwards
the query message to all of their son members. All of these members execute in parallel, sending the
message down to the members of their low-layer groups until the query message reaches the leaf
nodes. The nodes that have the needed resources will answer the search query after receiving the
message. Finally, VIRGO will select one node to be the resource target, according to the response
time, and return it to the searcher. The full tree search query algorithm is given as follows [4]:

Algorithm 1: Full tree resource query

Input: node P, which queries the specific resource
Output: node Q, which contains the queried resource

1 Psend(gmessage, gate_node(P));
2 C = revg_node(gate_node(P));

3 gate_node(P).send(gmessage, C);
4 Q = C.Route(qmessage);

5 return Q,

The gate_node(P) function will return the gateway node of P, and the rcvg_node(P) will return
the gateway node in the root layer of VIRGO. The function of route is given as follows:

Algorithm 2: cvg.Route(qgmessage)

if Type(VGroup(cvg)) == leaf then
for each g € VGroup(cvg) do

if g.compare_resource(qmessage) == true then
q.send(rmessage,gate_node(q)), return q;
end
end
end
else
for each p € VGroup(cvg) do
p-Route(gmessage);
end
end

Here, Type will return the type of the virtual group (if it is a leaf group of the VO group),
and VGroup(p) will return the group of p, g.compare_resource(m) and will compare the resources
contained in node ¢ and queried by message m. The node will return true when matched.

The search algorithm is based on the message passing approach. The messages are forwarded by
the nodes in the virtual group. Because the communications in the virtual group are not based on the
request-acknowledge method, the message dropping condition may occur. The message dropping
condition refers to the condition whereby messages are lost at a certain part of the virtual group. In
our search algorithm, another condition, namely resources missing, may occur when the resources
requested by the agent are not found in the virtual group. Because of the messages dropping and the
resources missing, there should be maximal search time latency for the finite state agent execution.
In other words, once the agent requests the resources and exceeds the maximal search time latency,

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

456 Y. JIANG ET AL.

it will be treated as message dropping, and the agent will be switched to the block queue. When an
agent switches to the block queue, it will start a timer, and a block queue query time latency will be
given. Then, the local node will resend the resources request for the agent in the block queue once
its timer count exceeds the query time latency.

The maximal search time latency and the query time latency normally are given by the virtual
group, and their values are affected by the network conditions, such as the size and scale of the
whole virtual group. This scenario hops between the top root and the bottom leafs. In our FS-MA
system, agents or local nodes can also specify these two values individually.

3.3. Parameters and evaluation model

Later, we define all of the parameters used in our model for easy reference. The parameters are listed
as follows:

oS4 is the average size of the agent (bits). The parameter S4 is the average size of the agents,
and includes the agent codes, the executing states of the agents, and the temporal data when
executing.

o C, is the number of substates in the agent.

¢ N4 is the number of agents deployed in the VO. The parameter N4 is the total number of

agents running in the VO. In our simulation experiments, we use the same agent to execute in

the system. Then, the substates number of each agent, Cy, is equal in our experiments.

i is the index of the substates of the agent, 1 <i < C,,.

j 1is the index of the agent deployed in the VO.

S is the search message data size (bits).

Thax 1 the maximal searching time latency.

B is the bandwidth available in the VO (bits/s). Here, B is the raw bandwidth of the VO net-

work, but the practice bandwidth can never reach the raw bandwidth. We assume that the real

message transfer bandwidth would achieve Bjs and that the agent data transfer bandwidth

would achieve B4 after the influence of the network protocols and hardware devices.

B 4 is the communication overhead factor for agents’ migration (84 < 1).

B is the communication overhead factor for messages in VO (B < 1).

B 4 is the effective bandwidth available for agent migration (bits/s), By = B4 B.

By is the effective bandwidth available for messages (bits/s), Bys = Bum B.

Ly is the minimal network hops between node x and node y in VO.

Ty is the minimal query time latency for the blocked agent (s).

count; is the block count for the ith substate executing of the agent. Because the agent request-

ing resources may fail multiple times, we use count; to represent the block times of the ith

substate executing.

Ty, is the ith substate executing time, 1 <i < G, (s).

Ny, is the number of the unexecuted agent in queue of the node y.

PE is the performance of the substate executing on node x, (substates/s).

X,
o f is the performance efficiency of the software and hardware platform on node x (o f <1).

SO0 00 SO0 0

S 00O

The agent’s substate executing time, T, , in different nodes is varied and relies on the hardware
speed of the nodes and the software performance in the current nodes. We use Pf to represent node
x’s performance and ozf to represent the overhead of that node x, including the hardware processing
speed, the software language, the compiler, the running time environment, and the system resources.

The substate executing time also depends on the unexecuted queue in the current node. Here, we
apply the first-come-first-serve policy' to this queue such that the agent should wait until there are
no other agents before it in that queue.

Performance measurements for the mobile agent system. After giving the parameters used in
the evaluation model, the following measurements are presented as the computed results of other
previous parameters:

"Here, we may add other policies for performance evaluation.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF MOBILE AGENT PROTOTYPE SYSTEM 457

Ti

migration 15 the agent migration time for its ith substate.

Tijock 18 the agent block time for its ith substate.

T, ..h is the agent searching time for its ith substate.

T ooue 1S the agent executing time for its ith substate.

Tiorar 1S the total agent consuming time, including the transferring time via network, the pro-
cessing time in remote or local node, the resources searching time, and the blocking time. The
total agent consuming time equates to the sum of the agent consuming time in each substate
executing, migration, searching, and blocking. The total agent consuming can also be viewed
as the response time for each agent as follows:

[R R R

Ttotal = Tmigration + Tblock + Tsearch + Texecute (5)

o Ry is the agent service availability. This parameter contains the ratio of the total agent exe-
cuting time with the total consuming time, and we use this measurement to evaluate the
performance of the agent system:

RA — Texecute (6)
Ttotal
© By is the agents’ aggregate bandwidths. This parameter contains the used bandwidth in the
agent’s whole life cycle and defined as the total transferring data size versus the total agent
consuming time.
o By is the average agents aggregate bandwidths. This parameter is the average value of all the
agent aggregate bandwidths and can be used to estimate the system performance:

Na pJj
By = M 7)
Ny
Computing the parameters. We deduce the performance measurements from the detail sub-
state to the whole agent executing process. Assume the agent start to execute its ith substate
(1 <i < (), and then we have the following computing formulas. The agent finds that the current
node cannot provide sufficient resources for its ith substate executing, and then it will send out the
search messages and request the resources. The searching time for the ith substate executing is the
following:

P { 2Ly, y, - zf% if resources are found @)

search Tinax if resources are not found

Here, the x; and y; are the source node and destination node, respectively. The resources search
time that is consumed should be null if the resources lie on the local node. The minimal network
hops is the following:

e 0
Then, the searching time that is consumed in the agent life cycle can be calculated as follows:
Teearch = Y Thoren (10)
which is the following:
Cy Sur

Tsearch = Z 2Lx,~y,~ ' (11)

i=1

B-Bu

Here, the condition of without resources is included into the block state, and the time consuming,
Tax, adds to the block time consumption.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

458 Y. JIANG ET AL.

If the agent finds the desired resources, then the agent will transfer to the remote node, and the
time calculates as follows:

Sy
B-Ba
Here, the data transferring of the agent is based on the reliable connection. The ¢ is the coefficient
factor of the latency in the network in our evaluation model, and thus, we have the following:

Ti

migration

=Ly, € (12)

B 0. ifLyy =0 5
=) o <e<1, ifLyy, #£0 (13)

Lix;v;

Because the total migration time consists of each migration time in the substate executing, we
have the following:

Tmigralion = Z Trf]igration (14)
Then, the total consumed migration time can be calculated as follows:
C
n SA
Trieration = Lyy 5" (15)
mlgratlon Z Xiy, B . ﬁA

i=1
If the agent cannot find the desired resources, then in this condition, a block occurs. The agent

home™**, which deploys on the node, will block the agent for a while and will resend the searching
messages for the agent after a certain latency period. Thus, the block time is the following:

Tbilock = Thax - count; + T - count; (16)

Then, the total block time in the agent’s life cycles has the following:

Toock =), Thtock (17)

and
Cn
Tolock = Z (Tnax - count; + Tp - count;) (18)
i=1
When agent arrives at the destination node and waits for its executing at that node, there may be
some other agents coming before the new agent. Thus, an unexecuted agent queue is established in
that node, and the agent home deployed in that node will manage and schedule the unexecuted agent
queue. Then, the calculation for the agent executing time is related with the process node’s state,
including its hardware speed, its software overhead, and the length of the queue. Thus, the time for
agent executing can be calculated as follows:

i ny, +1
Texecute = E; E; (19)
P yi " %y;

If the unexecuting agent queue is empty, then the ng,l_ =0(n g,l_ is the number of MA in the waiting
queue ahead of the arriving MA); the agent will be executed without any queue. The total executing
consumed time is as follows:

Texcene = O Tovecute (20)
which is the following:
C i
2 +1
Terecute =) —5—5- 21
i=1 Py’ -y

“It is the software installed in nodes, which enables MAs working under its monitor.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF MOBILE AGENT PROTOTYPE SYSTEM 459

After presenting the calculated formulas for each suboperation in the agent’s ith substates execut-
ing, and the total calculation time of each suboperation, we can obtain the total agent consuming
time as follows:

Cn
Ttotal = Z (Telxecute + Triligralion + Tbllock + Tslearch) (22)
i=1
C i C C C
n nt. + 1 n n SA n SM
Tiotal = %""Z (Thnax - count; +Tp, -count,-)+z Ly,y; -&- +Z 2Ly o
i=1 Py oyl o i=1 B-pa B'("zg
Then, the agent service availability can be calculated as follows:
Cn o ni 1
—E E;
‘= Pylay
Ry = i=1 1y %y (24)

. l o
i=1 i %y;

Cn n’y +1 S S
> [ﬁ + (Thnax - count; + Ty, -count;) + Ly, - &+ g7 + 2Ly, - ﬁ}

The agent service availability is a ratio between the total consumption time and the executing
consumption time of agent. It can reflect the efficiency of the MA system, for the consumption time,
except the executing consumption time is the total overhead in the agent executing process.

The bandwidth workload of the agent is also another important measurement. Here, we use the
agent aggregate bandwidth as the workload measurement. The workload in agents’ running time
can be classified into two parts: one is the searching information bandwidth usage and another is
the transfer for the agent itself. The bandwidth workload for single agent can be calculated by the
following formula:

Cm Cn
2 Si-Lyy e+ 3 Sa-Lyy, ¢
k=1 i=1
By = (25)
Ttotal
Here, C,, is the total message number in the agent execution life cycle, and Sy is the total
searching information size.
The bandwidth workload of the agent can be used to evaluate that of the whole network. The
average bandwidth workload of the multiple agents can be calculated by formula (26), and this
measurement can also be used as a network performance monitor measurement.

We can give out the average bandwidth workload of the agents as follows:

-L € -L €
1 N4 Pt 1 Xk Vi +[§1 A X;i Vi

By = — .
Na i T

total

(26)

3.4. Network topology simulation and parameters measurement

To evaluate the performance of the agent system, we first need to estimate reasonable parameters
for the agent performance model that was presented. Because our FS-MA system is deployed on the
Internet environment, the networks are as varied as the networks where VIRGO existed, measuring
time points, and other parameters. It is difficult to record the agent’s executing logs and to analyze
the whole agent system’s performance when a large number of agents are executing in the network.
Thus, we conduct a small-scale test environment to measure the model parameters. The parame-
ters measurement experiments environment consists of two normal PCs: one is an Intel Pentium 4
1.6 G processor, 512 M RAM, 80 G Maxtor hard disk, running in Windows XP professional SP2,
and the other is an AMD1600+(1400 MHZ) processor, 512 M RAM, 80 G Maxtor hard disk run-
ning in Debian 3.1. The FS-MA system is deployed on these two machines, and both machines are

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

460 Y. JIANG ET AL.

connected with a 10 Mbps wired Ethernet hub. In this test experiment, the maximal searching time
latency and the minimal query time latency for the blocked agent are set as Tyox = S5sand Tp = 5's,
respectively. The message size, Sys, in the FS-MA is always set to 1024 bytes.

3.4.1. Measuring B4. A test experiment is performed on the 10 Mbps (that is, 10,485,760 bps)
Ethernet network. To measure the B4, we conducted approximately 100 times the transferring
experiments between the two PCs, which deploy the FS-MA, and obtained the average transfer-
ring time. In these experiments, we ran the agents on those two machines and logged the total agent
migration transferring time in each experiment. The agent size is 5 Mb (which is approximately
41,943,040 bits). The test result of the average agent migration time between these two machines
is 5562.4 ms. Then, the effective bandwidth of the FS-MA system can be computed as the total
transferring data size divided by the time. In other words,

41, 943, 040 bits
By = ——————— =7,589,577 bps 27
5.5264 s

and we can calculate the 8 4 as follows:

Bs _ 7,589,577b
Ba=A = 220D) gn3g (28)
B~ 10,485,760 bps

3.4.2. Message transferring time. Because the maximal message data size in our FS agent system
is 1024 bytes, less than the size of a Transmission Control Protocol segment on the Ethernet, which
is approximately 1500 bytes, the transferring time in this condition will be affected by the network
latency more than the transferring bandwidth. In addition, we assume that the messages are for-
warded by the nodes without buffering and delaying in our FS agent system. Then, the transferring
time between two near hops of the messages can approximate the network latency, and in our test
environment, the latency is approximately 400 ms. Thus, we have the following:

Sm
B-Bu

~ 400 ms 29)

3.4.3. Coefficient factor of the latency in network. As the measurement of network bandwidth of
the Internet is a challenge work, the available bandwidth in practice is affected by many factors
[35,36]. We use the coefficient factor to indicate the total affections, and we constrain the network
bandwidth between the best and worst conditions by that parameter. In our performance evaluation,
we seek to discuss the worst condition, which is ¢ = 1.

3.4.4. Simulations of the network topology and the agent system. We build a VIRGO platform on
a PC, and we simulate multiple nodes, which could be communication and search resources for
agents. The network topology simulation system consists of two parts: the node-controlling mod-
ule and the environment-controlling module. The node-controlling module is implemented by a
multiple threads Java program, which uses a similar thread to simulate the controlling and schedul-
ing functions of the agent home for each node. The environment-controlling module simulates the
practice network conditions and interacts with the node-simulating threads.

We also write a multiple-thread program using Java to schedule and simulate the multiple agents
that execute in the VO architecture. Each thread controls running one agent, including searching in
the VIRGO, migration in the VIRGO, blocking in the current node, and executing in the nodes. The
program can simulate and record all of the agents’ running processes, and the experimental results
are presented in the next section.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF MOBILE AGENT PROTOTYPE SYSTEM 461

Table I. Parameters of virtual organization-based
network condition.

Parameters Symbol Value
Grid size Ggs 60 x 60
Number of nodes in grid N 1000
Bandwidth B 10 Mbps
Coefficient of latency time e 1

4. RESULTS

4.1. Multiple agents

In practice, the performances of different machines are varied, and the performance efficiency ozf
also varies as the time and machine state changing. Thus, it is quite difficult to measure the per-
formance and performance efficiency af for each machine individually. In the simulation, we can
obtain the practice agent executing time, which is calculated by formula (19), and then we define
the average service state time as follows:

Cn

Texecule 1 ”;- +1
Tastr=—F—=—+=") —% & (30)
Cy Cn ; py’ft ~ayE;

In the agent-executing process, high-performance machines that the agents run will spend less
time than the low performance machines, and the Tgt will also be less. On the other hand, the
same agent substate executing in a different machine will cause different time consumption because
of the performance overhead of the machines. Then, the Tast also can be viewed as the characteristic
to measure with respect to the machine performances.

The multiple agent experiments focus on two issues. One issue is the relationship between the
average service availability and the number of FS-MA. The other issue is the influence of the num-
ber of FS-MAs on the network. The details of the parameter settings are specified in Table I. In
multiple agent experiments, we load the same VIRGO platform at each time and use a three-state
MA, with the average service state time of Tasy = 25 s. Although a huge number of agents are
executing, the resources access competition cannot be void. The resource access competition is the
condition under which two or more agents request the same resource node at the same time. Under
this condition, the dispatching policy for agent is desired. In our multiple FS-MA system, we adopt
a first-come-first-serve policy.

Figure 6 presents the relationship between the number of agents and the average service availabil-
ity. The results show that the average service availability will not decrease significantly; however,
the number of agents increases greatly. Even under the worst condition, where the agent number
equates to the node number of the VIRGO platforms, the service availability is acceptable. Figure 6
also shows that the agent size will affect the service availability significantly.

Figure 7 shows the relationship between the average agent executing time and the number of
agents with different agent sizes. As observed from the diagram, the average agent executing time
grows slightly when the number of agents increases. According to Figures 6 and 7, we can see that
the FS agent system will maintain stable performance when the number of agents grows. Thus, the
FS-MA system can achieve a perfect performance in both the system’s scalability and the executing
efficiency when a large number of services are executing all together.

In Figure 8, we show the relationship between the number of agents and the average aggregate
bandwidth. Because the average aggregate bandwidth can be viewed as the workload measurement
of the whole network, we can conclude that the number of agents increasing greatly will not add to
the workload of the whole network notably.

In the FS-MA system, the agent migration length (hops) is another important measurement for
agent performance. Figure 9 shows that the agent migration length will remain stable when the

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

462 Y. JIANG ET AL.

Average Service availability

T T T T T
[} 200 400 600 800 1000
Agent Number

Figure 6. Agent number versus average service availability (agent size = 64 K, 512 K, 5 M).

200
VN
///A/// ~
1 /A\‘/’/k/'/A A —m— 64K
180 4 A —® 512K
— & 5M

Q
E 160
[
°]
%‘
g 140
of
7]
4 1
~

120

100

T T T T T
0 200 1400 600 800 1000

Agent Number

Figure 7. Agent number versus response time (agent size = 64 K, 512 K, 5 M).

—m— 64K
—e@— 512K

0.02

0.01

0.00

average aggregate bandwidth

T T T T T
0 200 400 600 800 1000
Agent Number

Figure 8. Agent number versus average aggregate bandwidth (agent size = 64 K, 512 K, 5 M).

number of agents changes; it also suggests that the migration length will depend on the resource
distributions rather than on the number of agents.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF MOBILE AGENT PROTOTYPE SYSTEM 463

—m— 64K

—4&— 5M

33 - L J

32 -

Transfer Length
L

31 -

T T T T T
o0 200 400 600 800 1000
Agent Number

Figure 9. Agent number versus transfer length (agent size = 64 K, 512 K, 5 M).

Table II. Parameters and corresponding parameter relationships between the mobile agent (MA)
approach and the client/server (C/S) approach.

Parameters MA C/S

Task transfer data Agent size Request data size

Composing of task Substates of MA Services binding in nodes

Task number Agent number Requestor number

The time to finish the task Total agent executing time Total services response time

The efficiency of finishing the task Services availability Total service time/total response time

4.2. Comparison experiments between the agent approach and the client/server approach

Because the agent approaches are always introduced to the SOA architecture to improve the perfor-
mance and adaptively of such systems [37], we also implement our performance model to evaluate
the performance between the agent approach and the C/S approach. To evaluate how effective the
MA approach is compared with the traditional C/S approach, we designed one comparison experi-
ment to explore the performances of these two approaches. In the experiment, we implemented the
same workload task by these two approaches. The benchmark task consists of four subtasks and a
request for four different resources. In the MA approach, the benchmark task can be presented as a
substate MA. In the C/S-based SOA approach [5], four web services bind in four different servers,
and the client should accomplish the task by requesting these four services in sequence.

In this experiment, these two approaches adopt the same network topology, and both approaches
complete the same number of tasks. Although the node distributions of the two approaches are
the same, we add several additional service binding nodes in the C/S approaches, which are
deployed randomly. The details of the parameters in the experiment and the corresponding parameter
relationships between the two approaches are shown in Table II.

The experimental results are shown in Figures 10—12. We compare the time to finish the task and
the efficiency of finishing the task for the two approaches with different agent sizes (64 KB, 512 KB,
and 5 MB). In the figures, MA presents the performance of the MA approach, and the ‘concurrency
25’ presents the performance of the C/S approach when the maximum concurrencies of the servers
is 25. From the figures, we can observe the following:

(i) The number of requestors in the C/S approach will greatly affect the task finishing time and
the task finishing efficiency. As the number of requestors increases, the response time of the
C/S approach increases sharply, and the efficiency of the C/S approach decreases sharply. In
contrast to the C/S approach, the MA approach might not be affected by the number of agents,
and there is only a slight increase in the task finishing time and a decrease in the service
availability when the number of agents increases.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

464 Y. JIANG ET AL.

(a

~

S 1.0
I B ~—— = — concurrency=25
£ 0.9 - —®— concurrency=50
Qo8] — 4 — concurrency= 100
E] - concurrency= 150
= 0.7 - MAs
Y
g 4
T 0.6+
" 1
U 0.5
M]
>
L 0.4
g 1
0N o.3-
0 4
¢ o]
g 4
Lo
2 4
0.0 T T T T T
(o} 200 1400 600 800 1000
Agent N/Client
()2000—
1800 —m— concurrency=25
1600 h —® — concurrency=50

—&— concurrency=100
1400 - concurrency=150
_ - MAs

Response Time
=
e}
e}
=]
|

Agent N/Client

Figure 10. Comparison between the mobile agent (MA) approach and the client/server approach when the
task transfer data size is 64 KB. (a) Agent number/client versus availability and (b) Agent number/client
versus response time.

(a

0.6 4

— = — concurrency=25
- concurrency=50
—— concurrency=100

g concurrency=150
— =% MASs

0.4

0.2+

Average Service Availability™

0.0 T T T T T
o 200 400 600 800 1000
Agent N/Client
2000 —+ — = — concurrency=25
—®— concurrency—50

—#— concurrency=100
1600 — —w — concurrency=150
7 — % MASs

Response Time
=
o
o
]
Ll

T T T T
o 200 100 600 800 1000
Agent N/Client

Figure 11. Comparison between the mobile agent (MA) approach and the client/server approach when the
task transfer data size is 512 KB. (a) Agent number/client versus availability and (b) Agent number/client
versus response time.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

PERFORMANCE ANALYSIS OF MOBILE AGENT PROTOTYPE SYSTEM 465

(a) 0.20 -
o) 7
2 0.18 - - -
pu| 4 Tt -
% 0.16 - —
| 1 N . o—©
g 0.14 — — = — concurtrency=25
é R —® — concurrency=50
0 0.12 - — 4 — concurrency=100
»_.){ - —w% — concurrency=150
5> 0.10 -
Y 4
» o.0s -]
) 4
)
% 0.06 -
'a 4
S 0.04
< 4
0.02 T T T T T
o 200 400 600 800 1000
Agent N/Client
(0)z100
2200 - concurrency=25
5000 — ® concurrency=50
E — & — concurrency=100
o IBOOi - concurrency=150
E 1600 — - MAs
P 4
g 1100
? i
c 1200 -
1) 4
5~ 1000 - .
) i — _—
¢ soo-] -
E A A
600 - - - A~ - ad v v
] g 777 e — TR
— ———
1400 - =
200 - - - . - =
T T T T T
[¢) 200 400 600 800 1000

Agent N/Client

Figure 12. Comparison between the mobile agent (MA) approach and the client/server approach when the
task transfer data size is 5 MB. (a) Agent number/client versus availability and (b) Agent number/client
versus response time.

(ii) Increasing the maximum concurrencies of the servers in the C/S approach will improve
its performance efficiently. However, the cost of promoting the maximum concurrencies of
the servers is quite expensive in practice. On the other hand, the super-servers with higher
concurrencies, in practice, may be idle most of the time, which causes a waste of resources.

(iii) Comparing Figures 10—12, we can see that the performance of the C/S approach will decrease
greatly as the task transfer data size becomes large. Meanwhile, the MA approach will retain a
similar performance when the transferring data size becomes bigger; so, the MA will be more
efficient for distributed cases.

5. CONCLUSION

A FS-MA approach based on virtual hierarchical architecture—VIRGO—has been presented in this
article. To evaluate the performance of this approach, the evaluation model of MA on VIRGO has
also been proposed, and the experiments in multiple agents executing simulation show the capabil-
ity of our prototype. The relationships among the service availability, the total executing time, the
average service state time, the migration time, the average aggregate bandwidth, and the number
of agents are discussed. The results indicate that the FS-MA system will maintain the acceptable
performance (the average aggregate bandwidth is quite low, and both the average total agent’s ser-
vice executing time and average service availability are stably holding at satisfied values) when the
number of agents increases sharply. We also conducted comparable experiments between the MA-
based approach and the C/S-based approach. The results also indicate that the MA-based approach
is superior to the C/S-based approach.

The experimental results show that the performance evaluation model presented here is reason-
able. We plan to investigate a large-scale environment, such as millions of nodes in VIRGO, to
further evaluate the model.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

466 Y. JIANG ET AL.

The full tree search could encounter heavy traffic in the nodes within root layers of the VIRGO
[6] architecture. In the future, we plan to use resource classification on VIRGO [6] to solve the
problem.

We will use more parameters involved in the performance evaluation process of agent systems
in future studies, such as different parameters for VIRGO, policies of migration and interoperation
[37,38], and the system parameters, that is, the workloads of memory, CPU, and I/O. Furthermore,
according to the simulation results, we plan to integrate MA into a VIRGO project [34] and to
implement it in a cloud computing architecture [2].

ACKNOWLEDGEMENT

This research is based upon work supported in part by National Natural Science Foundation of China
(61173123) and Natural Science Foundation of Zhejiang Province (Z1100822,Y1101237). We would like
to deliver our sincere thanks to the anonymous reviewers for their constructive suggestions in improving
our paper.

REFERENCES

1. Papazoglou MP, van den HW. Blueprinting the cloud. IEEE Internet Computing 2011; 15(6):74-79. DOI: 10.
1109/MIC.2011.147.

2. Brian H. Cloud computing. Communication of ACM 2008; 51(7):9-11. DOI: 10.1145/1364782.1364786.

3. Michael A, Armando F, Rean G, Anthony DJ, Randy HK, Andy K, Gunho L, David AP, Ariel R, Ion S, Matei Z. A
view of cloud computing. Communication of ACM 2010; 53(4):50-58. DOI: 10.1145/1721654.1721672.

4. Huang LC, Wu ZH, Pan YH. Virtual and dynamic hierarchical architecture for E-science grid. International Journal
of High Performance Computing Applications 2003; 17(3):329-347. DOI: 10.1177/1094342003173007.

5. Huang LC. A P2P service discovery strategy based on content catalogues. Data Science Journal 2007; 6:5S492—-S499.
DOI: 10.2481/dsj.6.

6. Huang LC. VIRGO: Virtual hierarchical overlay network for scalable grid computing. In Proceeding of the European
Grid Conference (EGC2005), February 2005, Vol. 3470. Springer: Berlin, 2005; 911-921.

7. Christensen JH. Using RESTful web-services and cloud computing to create next generation mobile applications.
In Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems
Languages and Applications (OOPSLA). ACM: New York, NY , USA, 2009; 627-634.

8. Chun BG, Thm S, Maniatis P, Naik M, Patti A. CloneCloud: elastic execution between mobile device and cloud. In
Proceedings of the Sixth Conference on Computer Systems (EuroSys), Salzburg, Austria, 2011. ACM: New York,
2011; 301-314.

9. Ong KL, Zhang Z, Ng WK, Lim EP. Agents and stream data mining: a new perspective. IEEE Intelligent Systems
2005; 20(3):60-67. DOI: 10.1109/MIS.2005.39.

10. Danny BL, Mitsuru O, Giinter K, Kazuya K. Aglets: programming mobile agents in Java. Lecture Notes in Computer
Science 1997; 1274:253-266. DOI: 10.1007/3-540-63343-X_52.

11. Nestinger S, Chen B, Cheng HH. A mobile agent based framework for flexible automation systems. /[EEE/ASME
Transactions on Mechatronics 2010; 15(6):942-951. DOI: 10.1109/TMECH.2009.2036169.

12. Theilmann W, Rothermel K. Optimizing the dissemination of MAs for distributed information filtering. /EEE
Concurrency 2000; 8(2):53-61. DOI: 10.1109/4434.846194.

13. Vu AP, Ahmed K. Mobile software agents: an overview. IEEE Communication Magazine 1998; 36(7):26-37. DOI:
10.1109/35.689628.

14. Marios DD, Melinos K, George S. Performance evaluation of mobile-agent middleware: a hierarchical approach. In
Proceeding of the 5th International Conference on Mobile Agents, Atlanta, GA , USA , December 2001, Vol. 2240.
Springer: Berlin, 2002; 244-259.

15. Sergio I, Eduardo M, Arantza I. A system based on MAs to test mobile computing applications. Journal of Network
and Computer Applications 2009; 32(4):846-865. DOI: 10.1016/j.jnca.2009.01.003.

16. Chung YF, Chen TS, Lai MW. Efficient migration access control for mobile agents. Computer Standards &
Interfaces 2009; 31(6):1061-1068. DOI: 10.1016/j.cs1.2008.09.039.

17. Elena GM, Sergio I, José M. Performance analysis of MAs tracking. In Proceedings of the 6th International
Workshop on Software and Performance (WOSP). ACM Press: New York, 2007; 181-188.

18. Ismail L, Hagimont D. A performance evaluation of the mobile agent paradigm. In ACM SIGPLAN Notices,
Vol. 34(10). ACM Press: New York, 1999; 306-313.

19. Kotz D, Cybenko G, Gray RS, Jiang G, Peterson RA, Hofmann MO, Chacén DA, Whitebread KR, Hendler JA.
Performance analysis of mobile agents for filtering data streams on wireless networks. Mobile Networks and
Applications 2002; 7(2):163-174. DOI: 10.1023/A:1013778922814.

20. Marios DD, George S. Performance evaluation of mas: issues and approaches. In Performance Engineering: State of
the Art and Current Trends, Vol. 2001. Springer: Berlin, 2001; 148—166. DOI: 10.1007/3-540-45156-0_10.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467
DOI: 10.1002/cpe

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

PERFORMANCE ANALYSIS OF MOBILE AGENT PROTOTYPE SYSTEM 467

Robert SG, David K, Ronald AP, Joyce B, Daria AC, Peter G, Martin OH, Jeffrey MB, Maggie RB, Renia J,
Niranjan S. Mobile-agent versus client/server performance: scalability in an information-retrieval task. In Proceed-
ing of the 5th International Conference on Mobile Agents (MA), Atlanta, GA, USA, December 2001, Vol. 2240.
Springer: Berlin, 2002; 229-243.

Robert SG, George C, David K, Ronald AP, Daniela R. D’ Agents: applications and performance of a mobile-agent
system. Software: Practice and Experience 2002; 32(6):543-573. DOI: 10.1002/spe.449.

Strasser M, Schwehm M. A performance model for mobile agent systems. In Proceeding of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applications (PDPTA), June 30 — July 3, 1997, Vol. 2.
CSREA Press: USA; 1132-1140.

Trappey CV, Trappey AJ, Huang CJ, Ku C. The design of a JADE-based autonomous workflow man-
agement system for collaborative SoC design. Expert Systems with Applications 2009; 36:2659-2669. DOI:
10.1016/j.eswa.2008.01.064.

Woodside M. Scalability metrics and analysis of MA systems. In International Workshop on Infrastructure for
Multi-Agent Systems: Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems, Vol. 1887.
Springer-Verlag: London, UK, 2001; 234-245.

Erdem T, Mehmet HG, Mustafa Y, Selahattin K. Performance analysis of mobile agents using simulation. In
Proceedings of the Advanced Engineering Design Conference (AED2003). Prague: Czech Republic, 2003; 111-122.
Vasileios B, Miltiadis K, Stathes H, Lazaros FM. Performance evaluation of a mobile agent-based platform for ubiq-
uitous service provision. Pervasive and Mobile Computing 2008; 4(5):755-774. DOI: 10.1016/j.pmcj.2008.07.003.
Trillo R, Tlarri S, Mena E. Comparison and performance evaluation of mobile agent platforms. In Third Interna-
tional Conference on Autonomic and Autonomous Systems (ICAS’07), Athens (Greece). IEEE Computer Society:
Washington, DC, USA, 2007; 41-46. DOI: 10.1109/CONIELECOMP.2007.66.

Johansen D. Mobile agent applicability. In Proceedings of the Second International Workshop on Mobile
Agents(MA’98), September 1998. Springer: Stuttgart, Germany, 1998; 80-98.

Kpper A, Park AS. Stationary vs. mobile user agents in future mobile telecommunications networks. In Proceeding
of the Second International Workshop on Mobile Agents (MA’98), September 1998. Springer: Stuttgart, Germany,
1998; 112-123.

Puliato A, Riccobene S, Scarpa M. An analytical comparison of the client-server, remote evaluation and MAs
paradigms. In The First International Symposium on Agent Systems and Applications and Third International
Symposium on MAs (ASA/MA99), October 1999. IEEE Computer Society Press: Los Alamitos, CA, 1999; 278.
Rahul J, Sridhar I. Performance evaluation of mobile agents for E-commerce applications. 8th International
Conference on High Performance Computing, Hyderabad, India, 2001; 331-340. DOI: 10.1007/3-540-45307-5_29.
Liu Y, Xu CF, Wu ZH, Pan YH. A finite state mobile agent computation model. In Proceeding of 6th Asia-Pacific
Web Conference on Advanced Web Technologies and Applications (APWeb), Hangzhou, China, April 2004, Vol. 3007.
Springer: Berlin, 2004; 152-157.

VIRGO (2010) HomePage of VIRGO. (Available from: http://virgo.sourceforge.net) [accessed 22-26 April 2001].
Dovrolis C, Ramanathan P, Moore D. What do packet dispersion techniques measure? Proceeding of Twentieth
Annual Joint Conference of the IEEE Computer and Communications Societies(INFOCOM?2001), Anchorage,
Alaska, USA, 2001; 905-914.

Harfoush K, Bestavros A, Byers J. Measuring bottleneck bandwidth of targeted path segments. Proceeding of Tven-
tieth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), San Franciso,
CA, USA, March 2003; 2079-2089.

Michael NH, Munindar P S, Mark HB, Keith SD, Edmund HD, Timothy WF, Les G, Hrishikesh JG, Nicholas RJ,
Kiran L, Hideyuki N, Parunak HVD, Jeffrey SR, Alicia R, Gita S, Samarth S, Katia PS, Milind T, Thomas W,
Rosa LZG. Research directions for service-oriented multiagent systems. /EEE Internet Computing 2005; 9(6):65-70.
DOI: 10.1109/MIC.2005.132.

Giancarlo F, Alfredo G, Wilma R. Achieving MA systems interoperability through software layering. Information
and Software Technology 2008; 50(4):322-341. DOI: 10.1016/j.infsof.2007.02.016.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:447-467

DOI: 10.1002/cpe

