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A B S T R A C T

As point clouds are 3D signals with permutation invariance, most existing works train their reconstruction
networks by measuring shape differences with the average point-to-point distance between point clouds
matched with predefined rules. However, the static matching rules may deviate from actual shape differences.
Although some works propose dynamically-updated learnable structures to replace matching rules, they need
more iterations to converge well. In this work, we propose a simple but effective reconstruction loss, named
Learnable Chamfer Distance (LCD) by dynamically paying attention to matching distances with different weight
distributions controlled with a group of learnable networks. By training with adversarial strategy, LCD learns
to search defects in reconstructed results and overcomes the weaknesses of static matching rules, while the
performances at low iterations can also be guaranteed by the basic matching algorithm. Experiments on
multiple reconstruction networks confirm that LCD can help achieve better reconstruction performances and
extract more representative representations with faster convergence and comparable training efficiency.
1. Introduction

Point cloud is one signal describing the 3D shape, which is widely-
used due to its convenient acquisition from 3D sensors such as RGB-D
camera or LiDAR. Different from regular 1-D signals or 2-D images,
point clouds are permutation-invariant, which means changing specific
permutations of points does not change described shapes. In other
words, the permutations of points do not include any useful infor-
mation. In this condition, commonly-used mean squared errors (MSE)
cannot be directly applied to point cloud reconstruction. To train
a point cloud reconstruction network, most existing works use the
Chamfer Distance (CD) or Earth Mover’s Distance (EMD) [1] as training
losses. They match points with predefined rules and measure shape
differences between input point clouds and reconstructed results by av-
erage point-to-point distance. However, the losses based on manually-
defined matching rules are static, which means the optimization goals
are fixed and unchanged for all data during training. They may deviate
the actual shape differences and make the reconstruction fall into local
minimums with inferior reconstructed results but low reconstruction
losses. Although some works [2–4] introduce GAN discriminators [5]
to improve the reconstruction performance, they simply add the dis-
criminator constraints to CD or EMD. Their improvements are limited
as the discriminators only provide slight corrections to unchanged CD
or EMD as shown in [6]. PCLoss [6] replaces the matching-based losses

∗ Corresponding author.
E-mail addresses: 21725129@zju.edu.cn (T. Huang), qingyaoliu@zju.edu.cn (Q. Liu), xiangruizhao@zju.edu.cn (X. Zhao), junc@zju.edu.cn (J. Chen),

yongliu@iipc.zju.edu.cn (Y. Liu).

with distances between comparison matrices extracted with dynamic-
updated learnable structures, which totally avoids the adoption of static
matching rules and learns to use changing measurements to measure
the shape differences. It learns to search the shape defects by adver-
sarial process, which has better performances due to the removal of
predefined rules. But the totally learnable structures perform relatively
inferior at the beginning of training process because it needs iterations
to learn to find the defects.

Considering the problems mentioned above, we propose a simple
but effective learnable point cloud reconstruction loss, named Learn-
able Chamfer Distance (LCD) by designing a reasonable combination of
dynamic learning-based strategy and static matching-based loss evalua-
tion. The differences between LCD and existing methods are presented
in Fig. 1. Unlike the totally learning-based design in PCLoss [6], LCD
learns to predict weight distributions for matching distances of different
points. During training, LCD is optimized by turns with the reconstruc-
tion network through an adversarial strategy to search regions with
more shape defects, where the weight distributions are dynamically ad-
justed to pay more attention to matching distances of different regions.
Benefited from the adoption of dynamic learning-based strategy, LCD
can achieve outstanding performances for the training of reconstruction
networks, while the static matching-based evaluation can provide an
initialization prior for the optimization and ensure that LCD has better
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Fig. 1. Differences between our method and existing reconstruction losses. Unlike the
totally learning-based loss evaluation by extracting comparison matrices in PCLoss,
our method uses networks to dynamically predict weight distributions for matching
distances.

performances than totally learning-based PCLoss [6] at the beginning
of training process.

Our contributions can be summarized as

• We propose Learnable Chamfer Distance (LCD), which can learn
to search shape defects by dynamically predicting weight distri-
butions for matching distances;

• Benefited from the reasonable combination of learning-based
strategy and matching-based evaluation, LCD has faster conver-
gence than existing learning-based losses;

• Experiments on multiple point clouds reconstruction networks
demonstrate that LCD can help the reconstruction networks
achieve better reconstruction performances and extract more
representative representations.

2. Related works

2.1. Point cloud reconstruction

Point cloud reconstruction aims to design networks, e.g. auto-
encoders, to reconstruct point clouds through the representation ex-
tracted from the input point clouds. It can be adopted to related tasks
like completing [3,8–11] or sampling [12–14] point clouds, while the
extracted intermediate representations can be used for the unsupervised
classification [15–17]. Following PCLoss [6], the basic point cloud
reconstruction network is often organized with encoders to extract
representations from point clouds, and decoders to generate point
clouds from the intermediate representations. The commonly-used
encoders include PointNet [7], PointNet++ [18], and DGCNN [19],
while decoders often come from fully connected networks proposed
in AE [16] and FoldingNet proposed in [15]. In this work, we follow
PCLoss [6] to construct multiple reconstruction networks to evaluate
performances of different losses.

2.2. Reconstruction loss design

Most existing point cloud reconstruction-related tasks rely on the
Chamfer Distance (CD) [8] and Earth Mover’s Distance (EMD) [1],
which evaluate the reconstruction losses based on the average point-to-
point distance between matched input and reconstructed point clouds.
However, the predefined matching rules are static, which may cause
the training processes fall into local minimums due to the deviation
of predefined rules. In this condition, many researchers attempt to
introduce learning-based strategy to improve the constraining perfor-
mances. Most researchers [2–4] design GAN discriminators [5] for
44
extra supervisions. However, these works simply add the discriminator
constraints to basic CD or EMD losses. Their optimizations still mainly
reply on the matching-based CD or EMD, where the discriminators can
only provide slight corrections. Therefore, these methods often have
limited improvements. Although DCD [20] fixes the matching rules in
CD by considering the density distribution of reconstructed points, it is
still limited by the static evaluation for reconstruction losses.

PCLoss [6] replaces the usage of static matching rules with a dy-
namic learning process. It learns to extract comparison matrices from
point clouds with differentiable structures and measure shape differ-
ences with distances between comparison matrices. But the totally
learning-based training process in PCLoss makes it need more iterations
to converge well, while the relatively complex structures bring low
training efficiency. In this work, we explore to organically combine the
learning-based strategy with matching rules by learning to pay atten-
tion to different matching connections. Benefited from the learning-
based strategy, our method has better performances than matching-
based methods, while the adoption of static rules ensures it has faster
convergence than totally learning-based methods like PCLoss.

3. Methodology

In this work, we propose a new method named Learnable Chamfer
Distance (LCD) to evaluate the reconstruction loss by measuring the
average point-to-point distance weighted with dynamically updated
distributions. In this work, we use the static matching rules in CD [8]
to calculate the matching distances due to its high efficiency. The
structure of LCD is presented in Section 3.1. The training process of
the reconstruction network with LCD is presented in Section 3.2.

3.1. The structure of Learnable Chamfer Distance

We propose a series of learnable structures to dynamically predict
the weight distributions for the matching distances of different points.
As shown in Fig. 2, the weight distributions 𝑊𝑖 and 𝑊𝑜 are predicted
with Siamese Concatenation block (SiaCon) and Siamese Attention
block (SiaAtt). SiaAtt predicts weight distributions for the matching
distances, while SiaCon extracts global shape representations from
both input and reconstructed point clouds and injects them to SiaAtt.
Specifically, in SiaCon block, two parameter-shared 𝑓1(⋅) are used to
extract global features from input point cloud 𝑆𝑖 and reconstructed
result 𝑆𝑜. They are concatenated to construct a overall perception for
the shapes 𝑆𝑖 and 𝑆𝑜. In SiaAtt block, two global features extracted by
𝑓2 include independent shape information of 𝑆𝑖 and 𝑆𝑜, respectively.
This information is fused with overall perception of two models to
predict a weight for each coordinates with MLP in 𝑔(⋅).

Let 𝑆𝑖 and 𝑆𝑜 be the input point clouds and reconstructed results,
respectively. CD loss can be defined as

𝐿𝐶𝐷(𝑆𝑖, 𝑆𝑜) =
1
2
( 1
|𝑆𝑖|

∑

𝑥∈𝑆𝑖

min
𝑦∈𝑆𝑜

‖𝑥 − 𝑦‖2

+ 1
|𝑆𝑜|

∑

𝑥∈𝑆𝑜

min
𝑦∈𝑆𝑖

‖𝑥 − 𝑦‖2).
(1)

We can see that CD measures the reconstruction loss through the
average distance between points in 𝑆𝑖 or 𝑆𝑜 and their nearest neighbors
in another point set.

Let 𝑓1(⋅), 𝑓2(⋅) be the combination of parameter-shared Multi Layer
Perceptrons (MLPs) and symmetric pooling operations like PointNet
[7], 𝐶𝑜𝑛(⋅) be the concatenation of features, 𝑔(⋅) be a group of MLPs,
SiaCon can be defined as

𝐹𝑖𝑜 = 𝐶𝑜𝑛(𝑓1(𝑆𝑖), 𝑓1(𝑆𝑜)). (2)

In SiaAtt, we have
{

𝐹𝑖 = 𝑔(𝐶𝑜𝑛(𝑆𝑖, 𝑓2(𝑆𝑖), 𝐹𝑖𝑜)), (3)

𝐹𝑜 = 𝑔(𝐶𝑜𝑛(𝑆𝑜, 𝑓2(𝑆𝑜), 𝐹𝑖𝑜)).



Pattern Recognition Letters 178 (2024) 43–48

45

T. Huang et al.

Fig. 2. The pipeline of Learnable Chamfer Distance. 𝑓1 and 𝑓2 are constructed following PointNet [7] framework to extract global features, while 𝑔 merges multiple features to
predict weight distributions 𝑊𝑖 and 𝑊𝑜 for matching distances. The input point cloud 𝑆𝑖 and reconstructed point cloud 𝑆𝑜 are introduced to Siamese Concatenation module to
extract global shape representation 𝐹𝑖𝑜, which is injected into Siamese Concatenation module to predict weight distributions 𝑊𝑖 and 𝑊𝑜 for matching distances between 𝑆𝑖 and 𝑆𝑜.

Fig. 3. Qualitative comparison between LCD and other methods based on AE [16] following PCLoss [6]. Our method can help create clearer details as shown in the circled regions.
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Algorithm 1 Training Process with LCD.
Input: Input 𝑆𝑖, reconstructed results 𝑆𝑜, the number of iterations
𝑖𝑡𝑒𝑟, the reconstruction network 𝑅𝑒𝑐𝑁𝑒𝑡(⋅)
for 𝑛 = 1 to 𝑖𝑡𝑒𝑟 do

Calculate output of the reconstruction network:
𝑆𝑛
𝑜 = 𝑅𝑒𝑐𝑁𝑒𝑡(𝑆𝑛

𝑖 ).
Let 𝜃𝐿 and 𝜃𝑅 be the parameters of LCD and the reconstruction
network, respectively.
Fix 𝜃𝑅 and optimize 𝜃𝐿 by descending gradient:
∇𝜃𝐿𝐿𝐿𝐶𝐷(𝑆𝑛

𝑜 , 𝑆
𝑛
𝑖 ).

Fix 𝜃𝐿 and optimize 𝜃𝑅 by descending gradient:
∇𝜃𝑅𝐿𝑅(𝑆𝑛

𝑜 , 𝑆
𝑛
𝑖 ).

end for

The weight distributions can then be defined as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑊𝑖 =
𝜎 + 𝑒−𝐹

2
𝑖

|𝐹𝑖| ⋅ 𝜎 +
∑

𝑒−𝐹
2
𝑖
,

𝑊𝑜 =
𝜎 + 𝑒−𝐹 2

𝑜

|𝐹𝑜| ⋅ 𝜎 +
∑

𝑒−𝐹 2
𝑜
,

(4)

where the boundary coefficient 𝜎 is a small constant used to adjust the
weight distribution. Intuitively speaking, in Eq. (4), 𝐹𝑖 is firstly scaled to
0∼1 with 𝑒−𝐹

2
𝑖 , where the scaled results will be normalized into weight

distributions satisfying ∑

𝑊𝑖 = 1 and ∑

𝑊𝑜 = 1. 𝜎 is used to soft the
weight distributions and prevent each weight from being too small to
optimize. The final loss measurement can be defined as

𝐿𝑅(𝑆𝑖, 𝑆𝑜) =
1
2
( 1
|𝑆𝑖|

∑

𝑥∈𝑆𝑖

𝑊𝑖 ⋅ min
𝑦∈𝑆𝑜

‖𝑥 − 𝑦‖2

+ 1
|𝑆𝑜|

∑

𝑥∈𝑆𝑜

𝑊𝑜 ⋅ min
𝑦∈𝑆𝑖

‖𝑥 − 𝑦‖2).
(5)

Note that our method estimates the weight for each point in a
same point cloud/sample, which is quite different with the boosting-
related re-weighting methods to predict weights for various point
clouds/samples in the dataset.

3.2. Training pipeline

LCD is trained with adversarial strategy to consistently search for
existing shape differences between reconstructed results and input
point clouds.

The whole training process with LCD is a generative-adversarial
process similar as GAN [5], which updates the parameters of LCD and
the reconstruction network by turns. In each iteration, LCD is optimized
by 𝐿𝐿𝐶𝐷 to explore more shape differences, where the reconstruction
network is then optimized with 𝐿𝑅 to eliminate the searched differ-
ences. Let 𝐿𝑅 be the reconstruction loss defined in Section 3.1. We
define the adversarial loss to optimize LCD as 𝐿𝐿𝐶𝐷 = −𝑙𝑜𝑔(𝐿𝑅 + 𝜎𝑟),
where 𝜎𝑟 is a tiny value to avoid errors when 𝐿𝑅 → 0.

4. Experiments

4.1. Dataset and implementation dtails

Training details. ShapeNet part dataset [16] is composed of
12288/1870/2874 models in the train/val/test splits. For the recon-
struction task, we train the networks on the train split of ShapeNet
part dataset, while evaluating on its test split. For the unsupervised
classification, we still train networks on the train split of ShapeNet part
dataset and use ModelNet10 and ModelNet40 containing 10 and 40
categories of CAD models to evaluate the classification accuracy fol-
lowing FoldingNet [15]. Each model consists of 2048 points randomly
46
Fig. 4. The error visualization during the whole training process.

sampled from the surfaces of mesh models. In this work, learning rates
of reconstruction networks and LCD are set as 0.0001 and 0.002, while
𝜎 and 𝜎𝑟 are set as 0.01 and 1e−8. The matching-based evaluation of
CD [8] is introduced to calculate the matching distances in LCD.

Reconstruction Networks. To compare LCD with existing recon-
struction losses, we conduct comparisons based on multiple recon-
struction networks. AE [16] and FoldingNet [15] are two classic and
commonly used point cloud reconstruction networks, which have been
used in many works [4,8,10,21]. In this work, we follow PCLoss [6]
to construct 6 reconstruction networks with three commonly-used en-
coders PointNet [7], PointNet++ [18] and DGCNN [19] and 2 basic
decoders AE [16] and FoldingNet [15]. The reconstruction perfor-
mances of whole structures and unsupervised classification accuracy of
intermediate representations are adopted to evaluate the performances
of different training losses.

4.2. Comparison with existing reconstruction loss

To confirm the performance of our method, we follow PCLoss [6] for
the comparison settings. The reconstruction errors and performances of
representation learning are adopted for evaluation. The qualitative and
quantitative results are presented in Fig. 3 and Table 1, respectively.
Multi-scale Chamfer Distance (MCD) proposed by [6,22] and Hausdorff
distance (HD) from [6,23] are used as metrics in this work. We can
see that our method achieves lowest reconstruction errors on multiple
reconstruction networks. As shown in the circled regions of Fig. 3, our
method can help the reconstruction network create clearer details such
as the wings of airplane and the back of chairs, which confirms its
effectiveness.

The reconstruction networks can also be used to extract intermedi-
ate representations from point clouds for classification. We also conduct
a comparison on unsupervised classification following AE [16], Fold-
ingNet [15], and PCLoss [6]. In details, the reconstruction networks
are trained with different losses on ShapeNet [24] and adopted to
extract representations from point clouds in ModelNet10 and Model-
Net40 [25]. The extracted representations will be used to train Sup-
ported Vector Machines (SVMs) with corresponding labels, where the
classification accuracy can then reflect the distinguishability of repre-
sentations.

As shown in Table 2, our method has higher classification accuracy
than existing methods in most phenomena, which means LCD can help
the reconstruction networks learn more representative representations.

4.3. Training process analysis

To analyze the training process when optimizing the reconstruc-
tion networks with LCD. We visualize and compare the reconstruction
errors during the iterations between our method and a few represen-
tative training losses including CD [8], EMD [1], PCLoss [6] based on
AE [16]. The results are presented in Fig. 4. We can see that LCD has



Pattern Recognition Letters 178 (2024) 43–48T. Huang et al.

T
C

T
T
C

T
A

m
i
i
e
p

4

a
A
a
t
c

4

t
t
a
𝑙
o

Table 1
Comparison with reconstruction losses. Bold marks the best results.

Networks AE Folding AE (PN++) Folding (PN++) AE (DGCNN) Folding (DGCNN)

Metrics MCD HD MCD HD MCD HD MCD HD MCD HD MCD HD

CD [1] 0.32 1.87 0.40 4.13 0.37 2.50 0.34 3.37 0.30 1.88 0.52 3.84
EMD [1] 0.25 2.23 – – 0.26 2.51 – – 0.21 2.09 – –
DCD [20] 0.28 1.75 0.91 8.41 0.28 1.84 0.47 5.43 0.26 1.86 – –
PCLoss [6] 0.23 1.66 0.33 2.57 0.24 1.87 0.31 2.50 0.20 1.51 0.43 3.10
Ours 0.22 1.51 0.31 2.47 0.24 1.66 0.28 2.37 0.20 1.48 0.34 2.45
t
T
v
c
m
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𝜎
d
s
n
m
c

t
a
r

able 2
omparison on unsupervised classification.
RecNet Dataset Methods

CD EMD PCLoss Ours

AE MN10 90.60 89.49 91.48 91.48
MN40 85.92 85.47 86.36 86.60

Folding MN10 91.03 – 91.70 91.04
MN40 85.22 – 85.35 86.81

AE (PN++) MN10 90.38 90.15 92.04 92.70
MN40 88.03 88.07 87.54 88.39

Folding (PN++) MN10 91.48 – 91.48 92.59
MN40 87.01 – 86.73 87.87

AE (DGCNN) MN10 91.37 91.26 92.37 92.81
MN40 87.50 87.54 88.11 87.54

Folding (DGCNN) MN10 91.26 – 91.81 92.37
MN40 86.85 – 87.50 86.65

able 3
raining efficiency comparison conducted on an NVIDIA 2080ti with a 2.9 GHz i5-9400
PU.
Methods Non-learning Learning-based

CD EMD DCD PCLoss Ours

Time (ms) 23 216 23 57 43

able 4
blation for components.
CD SiaAtt SiaCon 𝑙𝑜𝑔‖ ⋅ ‖ MCD HD

✓ 0.32 1.87
✓ ✓ 0.22 1.98
✓ ✓ ✓ 0.22 1.54
✓ ✓ ✓ ✓ 0.22 1.51

uch faster and steadier convergence than existing methods. Beside,
t performs much better than totally learning-based PCLoss at 0∼200
terations, which confirms that the introducing of static matching-based
valuation can ensure the performances at the beginning of training
rocess.

.4. Comparison on training efficiency

In this section, we compare the time cost consumed by a single iter-
tion between different methods. The results are presented in Table 3.
lthough LCD is slower than CD and DCD, it has better performances
s shown in Table 1. We can see that LCD has higher efficiency than
he totally learning-based reconstruction loss PCLoss due to its more
oncise designation, which can further confirm its effectiveness.

.5. Ablation study

Ablation study for the components. In this section, we explore
he effect of proposed components by removing them and retraining
he networks. SiaAtt and SiaCon denote the Siamese Attention block
nd Siamese Concatenation block, respectively. 𝑙𝑜𝑔‖ ⋅ ‖ means the
𝑜𝑔‖ ⋅ ‖ operation mentioned in Section 3.2 to dynamically adjust the
ptimization of LCD. The results are presented in Table 4. We can see
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Fig. 5. Ablation study for components over iterations.

Fig. 6. Influences of 𝜎 (a) and LCD learning rate (b).

hat removing any component would reduce the final performance.
o compare the effect of these components more intuitively, we also
isualize the reconstruction errors over all the iterations in Fig. 5. We
an see that with adding the SiaAtt, SiaCon, and 𝑙𝑜𝑔‖ ⋅ ‖ gradually
akes the errors reduce fast and stably over the whole iterations.
n interesting condition is that SiaAtt reduces MCD while slightly

ncreasing the HD metric at the end of iterations. It may come from
he lack of perception for the overall input and output shapes, making
t difficult to find the regions with larger reconstruction errors and
islead the training of reconstruction networks. This condition is then

ddressed by injecting overall shape features with SiaCon.
Influence of the boundary coefficient 𝜎. The boundary coefficient

defined in Section 3.1 may affect the weight distribution for matching
istances. Here, we present experiments to explore its influence as
hown in Fig. 6-a. We can see that larger or smaller 𝜎 both have
egative influences on the results. According to Eq. (4), too small 𝜎
akes the distribution steep and hard to train, while too big 𝜎 may

ause the distribution over-smoothing and limit its performance.
Influence of the LCD learning rate. The LCD learning rate decides

he convergence and has influence on final performance. We conduct
group of experiments to observe the influence of the LCD learning

ate. The results are presented in Fig. 6-b. We can see that too small
r large learning rates both reduce performances. Small learning rates
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may limit the ability of LCD to search shape differences, while larger
learning rates may lead to its unsteady convergence.

5. Conclusion

In this work, we propose a simple but effective point cloud recon-
struction loss, named Learnable Chamfer Distance (LCD), by combining
the dynamic learning-based strategy and static matching-based eval-
uation in a more reasonable way. LCD dynamically predicts weight
distributions for matching distances of different points, which is op-
timized with adversarial strategy to search and pay more attention
to regions with larger shape defects. Benefited from the reasonable
combination of matching-based evaluation and learning-based strat-
egy, LCD has both faster convergence and higher training efficiency
than totally learning-based PCLoss. According to the experiments on
multiple reconstruction networks, LCD can help the reconstruction
networks achieve better reconstruction performances and extract more
representative representations.
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