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Adaptive Recurrent Forward Network for Dense
Point Cloud Completion

Tianxin Huang
Lin Li

Abstract—Point cloud completion is an interesting and
challenging task in 3D vision, which aims to recover complete
shapes from sparse and incomplete point clouds. Existing
completion networks often require a vast number of parameters
and substantial computational costs to achieve a high performance
level, which may limit their practical application. In this work, we
propose a novel Adaptive efficient Recurrent Forward Network
(ARFNet), which is composed of three parts: Recurrent Feature
Extraction (RFE), Forward Dense Completion (FDC) and Raw
Shape Protection (RSP). In an RFE, multiple short global features
are extracted from incomplete point clouds, while a dense quantity
of completed results are generated in a coarse-to-fine pipeline in
the FDC. Finally, we propose the Adamerge module to preserve the
details from the original models by merging the generated results
with the original incomplete point clouds in the RSP. In addition,
we introduce the Sampling Chamfer Distance to better capture
the shapes of the models and the balanced expansion constraint to
restrict the expansion distances from coarse to fine. According to
the experiments on ShapeNet and KITTI, our network can achieve
state-of-the-art completion performances on dense point clouds
with fewer parameters, smaller model sizes, lower memory costs
and a faster convergence.

Index Terms—3D point clouds, recurrent structure, highly
efficient completion.

1. INTRODUCTION

as LiDAR and depth cameras, 3D data have attracted in-
creasing attention in the computer vision and robotics fields. As
an appropriate representation for 3D spatial positions, 3D point
clouds have been widely used in applications such as SLAM [1]
and object detection [2], [3], [4]. However, point clouds acquired
from sensors are often incomplete and sparse due to their reso-
lution and occlusion limitations. As a consequence, recovering

W ITH the rapid development of real-time 3D sensors such
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complete and dense models from incomplete inputs has been
an important and challenging task, known as point cloud com-
pletion. An appropriate completion can improve the perception
performances on downstream tasks such as object detection [5],
[6], tracking [7] and scene understanding [8], [9].

Since the work of PCN [10], many deep learning-based meth-
ods have been proposed for the 3D point cloud completion
task. Some of them are based on 3D grids and 3D convolu-
tional neural networks (CNNs), such as GRNet [11], while oth-
ers are built based on PointNet [12] and PointNet++ [13], such
as TopNet [14] and SANet [15]. These networks are based on
high-dimensional global features or multiple local features to ac-
quire enough shape information from the inputs. Most of them
have numerous parameters and use a large amount of memory
to achieve good performance. To overcome these problems, we
propose a novel well-performing recurrent forward point cloud
completion framework that shares parameters in layers and ex-
tracts multiple short global features to greatly reduce the pa-
rameters and memory cost. In addition, most of the above works
pay little attention to preserving the details of the original incom-
plete point clouds, which will cause a distortion of the outputs.
Large distortions will lead to meaningless completion results. In
these cases, we merge the original shapes from the incomplete
models with the outputs of different resolutions to prevent our
completion results from having large distortions.

In this paper, we propose a novel Adaptive Recurrent For-
ward Network (ARFNet). As shown in Fig. 1, it is organized
in a “forward” framework, different from a “backward” frame-
work, such as U-Net [16], which has been proven to work well
on segmentation [17], [18] and point cloud completion [15].
However, U-Net is computationally expensive in searching and
aggregating the local features of different resolutions, especially
for dense point clouds. In addition, the intermediate coarse com-
pleted point clouds are not well considered because the features
are only extracted from the incomplete model. In our framework,
the operations are organized into multiple recurrent levels. Mod-
ules are parameter-shared to reduce the parameters and model
size, and we only extract multiple short global features in differ-
ent recurrent levels to decrease the computational cost. ARFNet
is composed of three parts: Recurrent Feature Extraction (RFE),
Forward Dense Completion (FDC) and Raw Shape Protection
(RSP). The output model from the former level is concatenated
with the incomplete model and fed to the latter level as a “par-
tial incomplete model”. In RFE, we design an Encode Cell and
Recover Cell to extract features for the different recurrent levels
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Fig. 1. Comparison of U-Net (left) and our framework (right). U-Net is based

on multiresolution local features, while our framework works on multilevel short
global features and considers intermediate coarse completion results for feature
extraction to achieve comparable performances with relatively low computa-
tional costs.

from an intermediate “partial incomplete model”. In FDC, we
propose an initial cell to create an initial sparse model, which
is lifted to higher resolutions with Decode cells. A larger lift-
ing ratio than most previous methods [19], [20] is adopted for
the Decode cell to generate dense point clouds with fewer re-
current levels. We share the parameters of the Encode cells and
Decode Cells to reduce the parameters and abstract a generic pat-
tern between the different resolutions. Finally, we introduce the
Adamerge module to preserve the details in the original incom-
plete models by driving the generated completion results from
the FDC toward their nearest neighbors in the original point
clouds in RSP. The Adamerge module adopts a small network
to predict a driving distance for each generated point. To better
capture the shapes and improve the uniformity of the results,
we apply a Chamfer Distance in the randomly divided subsets
of the dense point clouds, called a Sampling Chamfer Distance.
In addition, we improve the generation continuity in the FDC
by constraining the expansion distances by balancing them with
their estimated expectation.

Our research contributions can be summarized as follows:

e We propose a novel recurrent forward point cloud comple-
tion network by cyclically completing models with features
from coarse completed results;

® We propose an Adamerge module to adaptively preserve
the original shapes in a learnable way;

® We propose the Sampling Chamfer Distance to better cap-
ture the shape differences between the models and the bal-
anced expansion constraint to restrict the expansion dis-
tances from coarse to fine;

® The experiments on ShapeNet and KITTI demonstrate that
our network outperforms the existing methods on the 3D
completion task. In addition to the improvements in com-
pletion performance, the model size and parameters are
greatly reduced due to this structure.

II. RELATED WORK

Point Cloud Learning: Early works [21], [22], [23] usually
applied 3D CNNs based on voxel representations of 3D point
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clouds. However, the 3D voxels cannot be directly acquired.
Converting point clouds to voxels is expensive, which leads to
quantization errors, which are caused by ignoring some of the
details of the original data. Although some works [24], [25]
process 3D shapes through corresponding multiview images,
projections from 3D models to images may take extra compu-
tation resources and lose structural information. Qi et al. first
introduced a point-based point cloud learning network named
PointNet [12]. It processes point clouds directly with multilayer
perceptrons (MLPs) and aggregates the features with symmet-
ric functions. PointNet++ [13] captures local features by recur-
rently applying PointNet in the local regions acquired by ball
queries around the sampled points. Many works have been pro-
posed based on PointNet and PointNet++ such as point cloud
analysis [26], [27], [28], [29], [30], semantic segmentation [31],
[32], reconstruction [33], [34], [35] and compression [36], [37]
or upsampling [38], [39]. The latter works [40], [41], [42] en-
hance the performances of learned point cloud representations
by introducing graph convolutions, while some methods, such as
PointConv [43] and KPconv [44], use MLPs to assign different
weights for the points according to their coordinates and design
specific convolution methods.

Point Cloud Completion: Early works [21], [22] concentrated
on voxel-based model completions with 3D convolutions. How-
ever, voxel-based models incur inevitable quantization errors
from the collected point clouds, which limit their further appli-
cation. PCN [10] is the first point-based model for point cloud
completion. It generates a complete model in a two-stage process
that first generates a coarse result by a fully connected network
and refines it to a higher resolution with a folding-based net-
work. PFNet [45] completes models by generating the missing
parts with the proposed point pyramid decoder (PPD), which
is interesting but may have difficulty in generating missing re-
gions with unknown point numbers. TopNet [14] explores the
hierarchical rooted tree structure as a decoder to generate an ar-
bitrary grouping of points in the completion task. SANet [15]
adopts a commonly used U-Net structure with a skip-connection
and self-attention modules to complete the missing features. It
performs well on datasets with sparse points. The cascaded re-
finement network (CRN) [19] adds a cascaded refinement mod-
ule to achieve a transformation from coarse to fine by multiple
lifting with a small upsampling ratio. A mirroring operation on
the zy-plane and downsampling are used to initialize the coarse
outputs and introduce a shape prior. CRN performs better than
PCN and TopNet on ShapeNet [46], while it requires shape priors
to complete the models. The morphing and sampling network
(MSN) [47] improves the completion performance by assem-
bling incomplete models with outputs through minimum den-
sity sampling. It also proposes an approximation for the Earth
Mover Distance to train the network. GRNet [11] and NSFA [20]
achieve completion with quite different ideas. GRNet transforms
the incomplete models into 3D grid representations and adopts
a 3D CNN to learn the features and to complete the models.
NSFA treats point cloud completion as upsampling. The hierar-
chical feature learning architecture in PU-Net [38] is adopted to
extract the local features. Local features of different resolutions
are used to construct the points of the preserving or missing parts.
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Structure of ARFNet. It is organized into three recurrent levels, which can also be divided into three parts: RFE, FDC and RSP. The output from the

former level is concatenated with the incomplete model and fed to the latter level as an intermediate “partial completed model”.

CON [48] and IFNet [49] are two common surface completion
methods that concentrate on completing full surfaces from the
point clouds with little shape loss and relatively complete over-
all shapes, while point cloud completion focuses on completing
shapes from the point clouds with large occlusions and incom-
plete overall shapes. In addition, the outputs of CON and IFNet
are actually surfaces instead of point coordinates, which makes
them distinct from the point cloud completion methods.

III. METHODOLOGY

The goal of our work is the completion of incomplete point
clouds to dense shapes with fewer parameters and less cost.
As indicated in Fig. 2, the structure is organized into multiple
recurrent levels. The output model from the former level is con-
catenated with the incomplete model and fed to the latter level as
a “partial incomplete model”. The whole network is composed
of three parts, that include the Recurrent Feature Extraction
(RFE), Forward Dense Completion (FDC) and Raw Shape
Protection (RSP). The RFE extracts features for completion
in different recurrent levels, while the FDC creates models of

different resolutions based on the output features. Subsequently,
shape details from the incomplete model are added to the model
by RSP. The output of the last recurrent level is taken as the
final output.

A. Recurrent Feature Extraction

In the Recurrent Feature Extraction module (RFE), we pro-
pose the Encode Cell and Recover Cell to extract the global
features for subsequent completion operations. An Encode cell
extracts the initial features for completion, and the state features
for the Encode cell in the next recurrent level. The Recover Cells
recover the initial features by further aggregating the informa-
tion from the incomplete models and return the final features for
the FDC. The designations of the Encode Cell and Recover Cell
are presented in Fig. 3.

Encode Cell: We design the Encode cell to extract an ini-
tial feature F, from the input points, which is parameter-shared
between the different levels to reduce the parameters. State
features F are extracted to record the current recurrent level
and help the Encode cell adaptively focus on different regions
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Fig. 3. (a) and (b) denote the structures of the Encode Cell and Recover Cell,
respectively. P and F; are the input point set and input state feature, while
F and I, are the state feature for the next level and the recovered feature that
generates the completion results. Fy is the initial feature extracted by the Encode
Cell.

of the input point clouds. In an Encode cell, the state fea-
tures acquired from the former Encode cell are concatenated
with points and fed into MLPs to produce the state features
Fs for the next Encode cell and the output features F. for
completion.

Recover Cell: The features F, directly extracted by the En-
code Cells are not sufficient for completion due to the lack of
information in the original model. Under this condition, Recover
Cells are adopted to further aggregate the information from the
incomplete model to complete the features extracted by the En-
code Cells. In a Recover Cell, input features F, from the Encode
Cell are concatenated with the input points again and fed to the
MLPs to obtain the recovered features F;..

B. Forward Dense Completion

Forward Dense Completion (FDC) includes an Initialize Cell
and Decode cells, which generate completed point clouds based
on the extracted features from the RFE. The Initialize Cell gen-
erates an initial model in the first level, while Decode cells lift
the model to higher resolutions in later levels.

Initialize Cell: We design the Initialize Cell to create a basic
structure of the completion result. Generating points directly by
a fully connected network or FoldingNet [50] may be a com-
monly used alternative. It is flexible but greatly limited by the
effectiveness of a network, it has difficulty in constructing com-
plex shapes.

The structure of the Initialize Cell is presented in Fig. 4. To
acquire more accurate basic shapes, we introduce the contour of
the original incomplete model by adding sampled points from
the incomplete model. Half of the contour points P, are acquired
from the sampled points P, and the others are directly gener-
ated with networks. Direct sampling seeds may be not stable
enough to provide complete contours. Therefore, we introduce
input features Fj to predict the offsets for each sampled point
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clouds and the extracted feature from RFE, respectively. Ps is sampled from P,
which is adjusted and combined into the initialized completed points P, with
generated results from Fj. F), includes state features for P,.
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Fig. 5. Structure of the Decode cell. Input points P and state features S are

lifted to K times larger output points P, and state features S, based on the
guidance of the extracted feature F;.

in P, by the MLPs to refine their positions. Contour points pro-
duced from the sampled points are restricted by the shape of the
original incomplete model, which means that other points need
to be generated to fill up missing parts. The fully connected net-
work has a satisfactory performance, generating missing parts
not covered by the incomplete model. In this work, we fuse
the outputs grown from the sampled points and fully connected
networks to produce an initial completed contour F,. State fea-
tures I, are generated with fully connected networks to hold the
structural information in the current recurrent level.

Decode cell: A Decode cell is designed to learn a parameter-
shared transformation from lower resolution completion results
P to K times larger P,, as shown in Fig. 5, which is achieved by
predicting K offsets for each point from the last level. As we use
multiple parameter-shared Decode cells in the whole pipeline,
as shown in Fig. 2, we need the state features to record the state
and level of the current Decode cell. Input features F; extracted
from the Encode and Recover Cell are adopted to introduce
the information from the original point clouds. K parameter-
separate MLPs are used for the prediction of the output state
features .S, while a fully connected network is adopted to predict
the offsets for output points P,. K is set as 16 for this work.
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Fig. 6.  Structure of the Adamerge module. The neighbors of the generated
results Py in the partial point clouds P; are denoted as P,,. Py, P; and P, are
used together to predict a displacement field Vj, including an offset for each
generated point in Py with network-based operations g(-) and f(-).

C. Raw Shape Protection

Raw shape protection (RSP) is responsible for the preser-
vation of the original details, which is achieved with multiple
Adamerge modules by adaptively merging the generated com-
pletion results from the FDC with partial inputs.

Adamerge module: The Adamerge module is proposed to in-
troduce the details from the original partial inputs to the com-
pletion results generated by the FDC, which works by driving
the points toward their nearest neighbors in the incomplete in-
put point clouds. The driving distance is adaptively controlled
with a network. The operation of the Adamerge module can be
described as follows:

dis= _min_ [z -yl M
P, = {z|min ||z — yll2,Vy € P,z € P;} 2)
o= f(g(Py, Py), Py, Py) 3)
Vo= (P~ Py) @)
P=P+V,, (5)

o is predicted by the networks according to the generated results
P, and partial input P; to adjust the displacement field V,,. Each
point in P, will adaptively acquire a separate value for the driv-
ing distance. The specific structure of Adamerge is presented in
Fig. 6.

D. Loss Function

Basic multilevel loss: We add the losses of the different out-
puts together to acquire the basic multilevel loss. There are
two commonly used loss functions to measure the differences
between two point clouds: Chamfer Distance (CD) and Earth
Mover Distance (EMD) [51]. Their basic forms are shown as
follows:

1 1 .
Lcp(S1,52) = 3 (w; ;2152 lz —yll2

5907

|S - Z mln |z — y||2> (6)

i, a7 5l tolh. )

where 57 and Ss are two point sets. ¢ is a bijection between
S1 and Ss. CD works mainly on the contours of the models,
which may lead to a nonuniform result. We propose the Sam-
pling Chamfer distance (SCD) to improve uniformity. It can be

described as
1
Lscp(S1,52) = N Z
SiEDhSéEDQ

while D1 = RD(S1,N), Dy = RD(S2, N). RD(S, N) means
randomly dividing the point set S into N isometric sets. [ is
defined as the number of recurrent levels with low resolutions
less than 10000 points, while & is the number of recurrent levels.
l and h are set as 2 and 3 in this work. In our work, we apply
EMD to the outputs of the first level. Due to the high calculation
cost of EMD on dense point clouds, we use SCD and CD for our
high-resolution outputs in the second and third levels. Finally,
the basic multilevel loss can be described as
l h
> Leup, +Y (Lscp, + Lep,). )

i=1 j=l

Lemp(S1,52) =

Lep(ST,S85),  (®)

Lpy =

Balanced Expansion Constraint: A balanced expansion con-
straint is used to prevent the points predicted by the Decode
Cells from going too far from the centers. It will ensure a De-
code cell generates continuous local shapes instead of discrete
points in the 3D space. However, constraining distances from the
centers directly is too ambiguous because the gradient is zero
only when the generated points coincide with the corresponding
centers. This will inevitably impact the network performance.
In this circumstance, we propose the balanced expansion con-
straint, which can be described as

1
Loe == Yoz =@ (0
| |:1:€S',f:S~>§
1
E(Lpc) ~ — in ||z — yl|2, (11)
|SO‘ o 165
Z:BEC ZReLU(ﬁEc—e*E(ﬁEC)), (12)

where S and S are the inputs and outputs of the Decode Cell,
respectively, and Sy and Sl; are their ground truths. We con-
sider that the expansion distances are related to the differences
between the two different resolution models. We estimate the ex-
pectation of the expansion distances by Equation 11 while using
it as an additional item to balance the expansion constraint. In
this way, the gradient can be zero when the expansion distances
are small enough, eliminating the disturbance to the network.
The influence of an additional item can be adjusted by e.
Merge range constraint: The merge range constraint is used
to restrain the search radii of Adamerge by constraining o in
Eq. (3), Section III-C. Smaller merge ranges will increase the
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weights of the generated points in the completion results, while
bigger ranges increase the weights of the original partial shapes.
¢ is a parameter guided by the annealing strategy. It will decrease
gradually as the iterations increase. In this way, the merge range
is small, to pay more attention to the generated results at the
beginning of the iterations, and large, to introduce more infor-
mation from the original incomplete models at the later period
of iterations. The merge range constraint can be formulated as

13)

Overall loss: With a balanced expansion constraint and a
merge range constraint for each recurrent level, the overall loss
is the weighted sum of the mentioned losses as follows:

Lyr=Ex o3

n—1

L=wiLpy +ws ZEBEC + ws ZEMRJ7

=1 7j=1

(14)

where n is defined as the number of recurrent levels and wq, wo
and ws are the weights for different constraints.

IV. EXPERIMENTS
A. Dataset and Implementation Details

ShapeNet: ShapeNet [46] for completion contains 30974
models from 8 categories, which is provided by PCN [10].
Ground truth models contain 16384 points uniformly sampled
on surfaces of mesh models. Partial point clouds are generated
by back-projecting 2.5D depth images into 3D. For fair compar-
isons, we follow same train/val/test splits as PCN [10].

KITTI: To further test our network, we evaluate it on the
real-world scans from KITTI [52]. Cars are acquired with the
ground truth object bounding boxes from each frame. The test
set includes 2401 partial point clouds labeled as cars.

Implementation details: We adopt the train split of ShapeNet
to conduct end-to-end training for ARFNet. w, we and ws are
set as 1.0, 0.05 and 1.0, respectively. ¢ is set as 0.01 before
20 epochs and 0.001 after, which limits the merge range more
at the beginning of the iterations to pay more attention to the
generated results, and less at the later period to introduce more
information from the original incomplete models. We train our
models using the Adam optimizer [53] with an initial learning
rate 5e~* (decayed by 0.5 every 7 epochs) and a batch size of
32. It will converge after approximately 33 epochs.

Metrics: In our work, we adopt the Chamfer Distance (CD)
mentioned in Section III-D as a global metric for completion
performance. However, the output models may be changed con-
siderably and lose the details of the incomplete models during
completion while maintaining relatively small global errors. An
example is shown in Fig. 8. The CD metric of the distorted result
on the left is even smaller than the well-performing result on the
right, while its fidelity error (FD) [10] is approximately 3 times
larger. In terms of this problem, we use the FD as a supplemen-
tary evaluation for the distortions. It is defined as the average
distance from each point in the input to its nearest neighbor in
the output, which can be shown as

|S P Z min [z —ylo, (15

(Sl7 SQ
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where S; and S, are input and output point clouds, respectively.
As there is no complete ground truth model for KITTI, the FD
and minimal matching distance (MMD) are used together to
evaluate the completion performance. MMD is defined as the
minimum CD between the output and all the car point clouds
from ShapeNet. It measures how much the completed output
resembles a typical car.

B. Comparison on ShapeNet

In this section, we qualitatively and quantitatively compare
our work on ShapeNet with the state-of-the-art point cloud com-
pletion methods. The test data include two parts: data containing
8 known categories of models that are the same as the training
data, and data containing 8 novel categories of models that are
different from the training data. The quantitative comparisons
are presented in Tables I and III. The bold and underlined values
are the best and second-best values, respectively.

We can see that our RFNet achieves the best performances
on both the known and novel category models, while our pro-
posed approach, ARFNet, can further improve the completion
performances. Although CRN also performs well on known cat-
egories of ShapeNet, it needs a mean shape prior feature from a
pretrained network for each category, which is slightly difficult
because the categories of the models cannot always be known
before completion.

In addition, our network improves considerably on FD, which
means our work can make fewer distortions during the comple-
tion process and preserve the original shapes better than the other
methods.

To intuitively compare the completion results, we choose
some models from the test data to make the qualitative com-
parison. As shown in Fig. 7, FC, Folding, PCN and TopNet
create good global shapes while losing most of the details from
the incomplete model. MSN, GRNet and CRN can preserve the
details to some extent, while they still suffer from obvious distor-
tions. Although NSFA can keep the details much better than the
other methods, its local feature aggregation operations greatly
increase the computational cost. In addition, it may mistake some
discontinuous regions as details and have difficulty complet-
ing the models with large and concentrated missing parts, such
as the airplane wings and sofa body in the second and fourth
rows. Our work can preserve details with fewer distortions and
clearer textures, and also has low computational costs, as dis-
cussed in Section IV-H. As presented in the third row of Fig. 7,
our RFNet may overfocus on the shape defects and produce in-
correct completion details. The reason is that RFNet controls the
merge range between the generated point clouds and the partial
inputs with a group of learned parameters, which means that
the merge range would be the same for all the points and mod-
els at the inference phase. Hence, some points might be overly
merged to the defect areas when the merge range is too large
for the model. In this work, ARFNet overcomes this problem
by adaptively predicting the different merge ranges according
to the model shapes with the use of networks, as illustrated in
Section III-C.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:24:29 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: ADAPTIVE RECURRENT FORWARD NETWORK FOR DENSE POINT CLOUD COMPLETION 5909

TABLE I
QUANTITATIVE COMPARISONS ON KNOWN CATEGORIES OF SHAPENET WITH THE METRICS MULTIPLIED BY 103

Method Metric | airplane  cabinet car chair lamp sofa table  vessel  Average

FC [10] CD 5.69 11.02 8.77 1098  11.13  11.75 9.32 9.72 9.79
FD 5.49 9.27 10.10  9.86 10.39 8.89 9.64 8.53 9.02
Folding [10] CD 5.96 10.83 9.27 1124 12.17 11.63 9.45 10.02 10.07
FD 6.60 8.89 1142 1043 1198 9.25 10.16  10.02 9.85

PCN [10] CD 5.50 10.63 8.69 10.99 1133 11.67 8.59 9.66 9.63
FD 5.14 7.28 9.47 7.99 8.75 7.27 8.05 7.44 7.67

TopNet [14] CD 5.85 10.78 8.84 10.80 11.15 1141 8.79 9.17 9.60
FD 7.97 12.44 10.76 13,50 1394 1232 1215  10.63 11.71

MSN [47] CD 5.60 11.90 10.70  10.60 10.70  11.80 8.71 9.48 9.96
FD 3.22 6.42 6.19 4.96 3.65 6.04 5.38 4.57 5.05

CRN [19] CD 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51
FD 2.80 4.89 7.20 4.06 4.15 3.83 4.05 3.63 4.33

CD 6.44 10.39 9.45 9.41 7.96 10.50 8.44 8.04 8.83

GRNet [11] FD 3.70 6.55 7.77 5.30 4.50 4.90 5.88 3.93 5.32
CD 5.22 10.51 9.00 9.33 8.26 10.74  7.78 7.66 8.55

NSFA [20] FD 3.37 4.94 7.42 4.11 3.57 4.17 3.99 3.44 4.38
CD 491 9.98 8.66 9.14 7.16 10.45 7.45 7.28 8.13

RNtBA ] FD | 198 349 696 283 302 295 286 275 335
Ours CD 4.86 10.02 8.75 9.02 6.93 10.26  7.26 7.35 8.10
FD 1.86 3.28 5.78 2.19 2.28 2.23 2.73 2.23 2.82

Input PCN NSFA RFNet Ours GT

Fig. 7. Qualitative comparisons with state-of-the-art methods on ShapeNet. There is no result for CRN on novel category models because there is no known
shape prior feature for them.
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Fig. 8. Comparisons of CD and FD multiplied by 103.

TABLE II
QUANTITATIVE COMPARISONS ON CAR CATEGORY OF KITTI

Method FC |Folding| PCN |TopNet| GRNet|RFNet| Ours
FD 0.0331 0.0361 {0.0308 | 0.0335|0.0192 |0.0258|0.0184
MMD ||0.0148| 0.0146 [0.0158| 0.0151 | 0.0374 | 0.0146 | 0.0149
FD+MMD |/ 0.0479 | 0.0507 | 0.0466| 0.0486 | 0.0557 | 0.0404 [ 0.0333

C. Comparison on Kitti

We evaluate our network with the car category of real-world
scans from KITTI. Our network is trained on ShapeNet for ap-
proximately 0.08M iterations (10 epochs) in this section, without
any fine-tuning on other datasets. The quantitative and qualita-
tive results are presented in Table IT and Fig. 9, respectively. We
can see that our network (ARFNet) achieves the lowest FD and
a comparable MMD, which can recover fine car shapes from
quite sparse and incomplete point clouds, as illustrated in Fig. 9.
Although GRNet also obtains a relatively low FD, it also has the
largest MMD on KITTI, which means that GRNet pays more at-
tention to reconstructing the incomplete models instead of com-
pleting them, as shown in Fig. 9. To make a trade-off between
FD and MMD, we add them together to conduct an overall eval-
uation. Our ARFNet performs much better on the overall evalu-
ation, which means our work can outperform former methods to
complete the shapes while keeping more details. This confirms
the great robustness of ARFNet on unseen real scans.

D. Visualization of the Entire Working Pipeline

The max pooling operation used in an Encode Cell or Recover
Cell is actually a selection of key points that achieve the maxi-
mum value in multiple feature dimensions. As shown in Fig. 10,
we visualize the key points selected by the Encode cells and
Recover Cell in the RFE to observe the regions focused at each
recurrence level. The coarse completion results are concatenated
with the original inputs as “partial completed models” for the
next levels. We can see that points selected by the Encode Cells
gradually move to the missing parts as the recurrent level in-
creases, which proves that our network is capable of extracting
features to adaptively complete the missing parts. In addition,
the key points selected by the Recover Cells are around those
generated by the Encode Cells, which indicates that the Recover

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

Cell learns to aggregate information from input point clouds
based on the output features of the Encode Cells. We can also
find that the FDC generates completion results with attractive
overall contours, while the Adamerge module introduces more
accurate local details and textures from the original incomplete
models, as illustrated by the circled regions.

E. Points Grown From Seeds in the FDC

In the FDC, an Initialize Cell generates an initial sparse model
by the combination of the fully connected network output and
refined sampled points, which is lifted to higher resolutions with
Decode cells. In this section, we visualize the points grown from
these two parts at different levels to observe the generation pro-
cess of the FDC. As demonstrated in Fig. 11, points grown from
sampled points form a contour for the original incomplete parts,
while points grown from the fully connected network output fill
up the missing parts of the models. These two parts are expanded
and combined together to make up the final output.

F. Robustness for Occlusion

In real-world applications, missing points, also known as oc-
clusions, may introduce extra noise to the data and harm comple-
tion. To further study the robustness of our method against miss-
ing points, we conduct experiments by occluding inputs with a
%p occlusion following PCN [10] and CRN [19], as demon-
strated in Fig. 12. We can see that our method performs best
both in CD and FD under multiple occlusion ratios, which con-
firms that our network is more robust against occlusions than the
former methods. Our ARFNet has obvious improvements over
our RFNet, which confirms that controlling the merge ranges
adaptively can truly improve the completion performance and
robustness, as discussed in Section I'V-B.

G. Discussion of the Adamerge Module.

Adamerge actually works by learning to drive the points gen-
erated by the Decode Cell to original incomplete point clouds.
It is not only a module that forces output models close to input
but also a derivable method to fuse partial and output models.
In this section, we discuss the adoption of Adamerge.

Differences between mix and Adamerge: Mix is an easy
method to merge the incomplete input and generated output
points. We conduct a comparison in Fig. 13 to observe the dif-
ferent performances between the direct mix and the merge. We
can see that the direct mix operation may cover the details in the
original model, while Adamerge can preserve details by appro-
priately driving output points to the input shape.

Differences between constraints and Adamerge: Adding FD
loss defined in Eq. (15) to the loss function can also force the
generated points from the completion network toward the input
of incomplete point clouds. To distinguish the effects of adding
constraints and using Adamerge, we conduct a comparison in
Fig. 14. We can see that the constraint enforcing the output to
input cannot preserve the details as well as Adamerge.
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TABLE III
QUANTITATIVE COMPARISONS ON NOVEL CATEGORIES OF SHAPENET WITH METRICS MULTIPLIED BY 108

Method Metric Similiar Dissimiliar
bus bed  bookshelf bench Average | guitar motor skateboard pistol Average
FC [10] CD 90.82 21.23 15.12 10.81 14.20 992 14.56 12.00 14.97 12.90
FD 7.87 13.54 10.53 8.88 10.20 926 11.97 7.77 13.86 10.72
Folding [10] CD 10.58 19.08 14.88 10.55 13.80 9.06 15.56 11.91 13.13 12.40
FD 8.14 13.32 10.39 9.43 10.32 9.30 14.49 7.49 12.96 11.06
PCN [10] CD 9.46 21.63 14.79 11.02 14.20 10.40 1475 12.04 14.23 12.90
FD 6.41 10.63 8.52 7.58 8.28 8.61 11.48 6.56 10.70 9.34
TopNet [14] CD 931 20.38 14.12 10.16 13.40 9.88 14.30 9.26 12.86 11.50
FD 993 15.37 12.69 11.08 12.27 10.11  14.52 9.63 15.42 12.42
MSN [47] CD 11.60 24.10 16.20 10.80 15.67 10.40  15.50 11.70 1420  13.95
FD 540  6.27 6.45 5.00 5.78 240 439 4.00 2.87 3.42
GRNet [11] CD 11.50 22.42 14.91 11.47 15.08 8.88 11.83 11.30 13.27 11.32
FD 492 597 6.22 5.38 5.62 4.04 451 3.73 3.55 6.79
NSFA [20] CD 924  17.30 12.63 9.76 12.23 8.72  10.56 8.68 11.03 9.75
FD 3.86 4.84 4.78 3.82 4.33 330 3.80 2.88 3.54 3.38
RENet [54] CD 8.98 19.20 12.91 9.79 12.72 7.59  10.88 8.66 9.74 9.22
FD | 242 435 3.79 2.84 335 | 1.89 499 1.48 290 282
Ours CD 9.09 17.54 12.40 9.56 12.15 6.81 10.65 9.27 9.74 9.12
FD 2.09 325 3.28 2.49 2.78 0.78  3.53 1.29 1.98 1.88
Input FC Folding GRNet PCN TopNet RFNet Ours

Fig. 9.

Differences between postprocessing and Adamerge: To ex-
plore the necessity of the learning-based operation, we also com-
pare the performances between the learning-based Adamerge
and the manually controlling driving strategy in this section. As
the Adamerge module works by learning to drive points to their
nearest neighbor in the partial point cloud, manually controlling
the driving procedure seems to be another alternative. Let N and
D denote the number of generated points and their distances to
the nearest neighbors in the partial inputs. We choose the p; x N
points closest to the partial input and move them p, x D towards
their nearest neighbors in the partial point cloud to observe the
feasibility of manual control. As shown in Table IV, the hor-
izontal and vertical axes denote p; and ps, respectively. The
network without a merge or any processing obtains 8.96/6.44,
as shown in the fifth row of Table VII. We can see that manually
controlling the results under multiple settings is quite inferior
to Adamerge. It demonstrates that it is difficult to manually find

Qualitative comparisons with other methods on Kitti. We can see that our method has strong ability to recover car shapes from quite incomplete scans.

TABLE IV
COMPARISONS WITH POST PROCESSING ON CD/FD

How far (p2) 0.3 0.5 0.7
How many (p1) CD/FD CD/FD CD/FD
0.3 10.74/6.00 | 10.62/4.57 | 10.63/3.38
0.5 10.42/5.68 | 10.24/4.07 | 10.29/2.70
0.7 10.29/5.58 | 10.21/3.89 | 10.52/2.45

exact appropriate settings, while Adamerge can avoid the man-
ual setting by learning the merge ranges to decide which points
need to be merged and how far they should be driven.

H. Comparison of Network Efficiency

In this section, we compare the model size, memory cost, time
cost and training requirements. The time and memory costs are
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Fig. 10.  (a) and (b) show the areas of the Encode cell and Recover Cell in RFE,

where the black points denote the selected key points. (c) generated completion
results by the Initialize Cell and Decode cell in FDC. (d) merged completion
results by the Adamerge module in RSP.
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Fig. 11.  Visualization of the FDC. (a) and (b) denote points grown from the

generated and sampled points in the different levels, respectively.
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Fig. 12.  Quantitative comparison for the occluded point clouds under different

occlusion ratios.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

e -

Fig. 13.  Quantitative comparison between mix and Adamerge.
GT Ours 0.5 x enforcing loss 0.1 x enforcing loss
i
|
Fig. 14.  Qualitative comparison between constraints and Adamerge.

TABLE V
MODEL S1ZE COMPARISON

Method
Parameters (M)
Model Size (MB)

PCN TopNet MSN GRNet CRN NSFA RFNet Ours
6.85 996 29.00 76.77 5.14 5.60 3.82 3.43
823 79.8 116.0 292.6 619 66.0 50.1 46.0

TABLE VI
MODEL EFFICIENCY COMPARISON

Method Inference Training requirements
Time(ms) Memory(MB)|Batch Iter (M) Memory(GB)
PCN 6.68 973 32 0.3 11
TopNet || 5.09 732 32 0.23 11
MSN 20.16 1417 160  0.23 8x11
GRNet || 5.92 1719 32 1.09 2x11
CRN 9.22 973 32 0.27 11
NSFA || 104.80 973 8 0.67 11
RFNet 9.00 710 32 0.23 11
Ours 7.96 689 32 0.21 11
TABLE VII
ABLATION STUDY FOR THE PROPOSED MODULES
Enc SCD BEC Rec Mer | CD FD CD*
v - - - - 9.35 6.86 9.69
v v - - - 9.27 6.58 9.81
v v - - v 823 275 8.70
v v v - - 926 6.59 9.72
v v v v - 896 644 945
v v v v v 810 2.68 845

evaluated on an Nvidia 2080ti GPU with a 2.9 GHz i5-9400
CPU. As illustrated in Table V, we can see that our network has
the fewest parameters and the smallest model size since we share
the parameters between some relatively complex modules. As
presented in Table VI, our network also has comparable time
costs and the lowest memory costs. Although GRNet is faster, it
requires more than 2 times more memory than ours. This con-
firms that the basic recurrent forward structure is an effective
lightweight framework. Additional works can be further devel-
oped based on our work.
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TABLE VIII
ABLATION STUDY FOR PARAMETER-SHARED LINKAGES
Enc* Dec* Rec Raw || CD FD Para (M)
v - - - 8.15 2.84 441
- v - - 8.12 3.36 4.81
- - v - 8.12 2.78 3.04
- - - v || 810 2.82 3.43

Moreover, our work has a relatively low training requirement.
Although hardly any other work pays attention to this, it is ac-
tually important for model applications in different scenarios.
The comparison of training requirements with several comple-
tion networks is reported in Table VI. Note that our network only
needs 11 GB to train. It will take only approximately 0.08M it-
erations to converge to a result better than the former networks,
as discussed in Section IV-I, and 0.21M iterations to the best
result in 1 d, which is much faster than the other methods.

1. Ablation Study

Effects of the proposed modules: In this section, we evaluate
the effects of different modules. The experiments are conducted
on known category models of ShapeNet by removing the mod-
ules and retraining the network. We use CD and FD to evaluate
the completion results, as illustrated in Table VII. Enc, SCD,
BEC, Rec and Mer denote the Encode cell, Sampling Cham-
fer Distance, balanced expansion constraint, Recover Cell and
Adamerge, respectively. CD* means CD measured at 0.08M it-
erations to compare the convergence efficiency. We can see that
the full network with all modules works the best. Removing
any component decreases the performance, which indicates that
each component makes a contribution. Adamerge contributes
the most to reducing the error. Although other modules help
relatively less, they can improve the final performance and ac-
celerate convergence, which helps achieve a much smaller CD*.

Effection of parameter-shared operations: To further confirm
the rationality of the parameter-shared linkages, we conduct an
ablation study on them by adding or removing the linkages be-
tween modules. The results are presented in Table VIII. * and
underline denote removing and adding parameter-shared link-
ages between modules, respectively. We can see that our method
with no changing linkages is mostly the best. Although shar-
ing parameters between the Recover Cell reduces FD and pa-
rameters, it creates relatively weak overall shapes and higher
CD. Itis an interesting phenomenon, indicating that appropriate
parameter-shared linkages to learn a common pattern, such as
transformation from lower to higher resolutions, can improve
the network performance.

Influence of the recurrence level: In this section, we explore
the influence of the recurrence level on the completion perfor-
mance. By adjusting the number of output points in the Initialize
Cell, we attempt to complete the original model with 1, 2 and
3 levels. Note that we do not test a recurrent level of more than
3 points because the resolution of the Initialize Cell needs to be
4 points or less under this condition, which cannot provide an
available initial shape. The results are presented in Table IX. We
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TABLE IX
INFLUENCE OF THE RECURRENT LEVEL

Level 1 2 3
CD 9.13 8.15 8.10
FD 1.87 2.41 2.82

Ours GT

Fig. 15. Failure cases of ARFNet.

can see that the CD increases and FD decreases as the recurrence
level increases, which means that the network focuses more on
the overall performance and weakens the fidelity. We adopt 3
recurrent levels in this work.

J. Limitation and Failure Cases

In this section, we discuss the limitation of ARFNet. A few
failure cases are presented in Fig. 15. We can see that some
textures from the missing regions of the partial input are also
introduced to the completed results. This condition may come
from the limitations of the Adamerge module. Although the
Adamerge module can adaptively adjust the merge range for
each point to avoid a lot of noise following Section III-C, it
may sometimes regard noise as a part of the original shape de-
tails. More reasonable network structures can be designed in the
Adamerge module to help it better distinguish the details from
the noise in future works.

V. CONCLUSION

In this paper, we propose an adaptive recurrent forward net-
work for dense point cloud completion (ARFNet), which is orga-
nized into multiple recurrent levels. The output model from the
former level will be concatenated with the incomplete model and
fed to the latter level as a “partial incomplete model”. The work
consists of three parts: RFE, FDC and RSP. The RFE extracts
multiple global features for completion at different resolutions,
and the FDC generates completed point clouds from coarse to
fine. The RSP is used to introduce details from the original in-
complete models to the generated outputs. Specifically, we pro-
pose the Adamerge module to adaptively drive points toward
the original points. In addition, we share parameters between
some complex modules to greatly reduce the parameter quan-
tities and model size. We also propose a Sampling Chamfer
Distance and a balanced expansion constraint to better capture
the shape differences and improve the completion performances
in the multilevel structure. Experiments on ShapeNet and KITTI
indicate that ARFNet can achieve state-of-the-art performances
with a lower cost than the existing methods. The limitations of
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ARFNet lies in the operation of the Adamerge module, which
may sometimes regard noise from partial inputs as shape details
and introduce them to the completed results. We will attempt to
overcome this problem by improving the network structures in
the Adamerge module in future works. In addition, completing
large-scale scene data might also be an interesting task, which
is a current challenge for the existing completion networks. We
will also further explore the application of ARFNet to scenes.
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