2025 IEEE International Conference on Robotics and Automation (ICRA) | 979-8-3315-4139-2/25/$31.00 ©2025 IEEE | DOI: 10.1109/ICRA55743.2025.11128009

2025 IEEE International Conference on Robotics and Automation (ICRA)

May 19-23, 2025. Atlanta, USA

MAREF: Cooperative Multi-Agent Path Finding with Reinforcement
Learning and Frenet Lattice in Dynamic Environments

Tianyang Hu!, Zhen Zhang!, Chengrui Zhu', Gang Xu!, Yuchen Wu':3, Huifeng Wu?, Yong Liu!*

Abstract— Multi-agent path finding (MAPF) in dynamic and
complex environments is a highly challenging task. Recent
research has focused on the scalability of agent numbers or
the complexity of the environment. Usually, they disregard
the agents’ physical constraints or use a differential-driven
model. However, this approach fails to adequately capture the
kinematic and dynamic constraints of real-world vehicles, par-
ticularly those equipped with Ackermann steering. This paper
presents a novel algorithm named MARF that combines multi-
agent reinforcement learning (MARL) with a Frenet lattice
planner. The MARL foundation endows the algorithm with
enhanced generalization capabilities while preserving compu-
tational efficiency. By incorporating Frenet lattice trajectories
into the action space of the MARL framework, agents are
capable of generating smooth and feasible trajectories that
respect the kinematic and dynamic constraints. In addition,
we adopt a centralized training and decentralized execution
(CTDE) framework, where a network of shared value functions
enables efficient cooperation among agents during decision-
making. Simulation results and real-world experiments in dif-
ferent scenarios demonstrate that our method achieves superior
performance in terms of success rate, average speed, extra
distance of trajectory, and computing time.

I. INTRODUCTION

The application of multi-agent path finding has become in-
creasingly widespread, spanning fields such as warehousing,
drone swarms, and video games. As the number of agents
increases and environments become more complex, ensuring
collision avoidance while maintaining computational effi-
ciency remains a significant challenge.

Algorithms designed to address this problem can be
broadly categorized into two types: centralized planning and
distributed execution. Centralized approaches are typically
offline methods that require adequate knowledge of the states
of all agents and obstacles, with a central controller generat-
ing a unified solution. Some well-known algorithms in this
category include CBS [1], SIPP [2] and CL-MAPF [3].While
these methods can typically provide optimal solutions, they
struggle with dynamic obstacles due to their offline nature.
Additionally, as the number of agents increases, the compu-
tational complexity of centralized algorithms rises sharply,
resulting in a significant loss of efficiency. Another limitation
is that these algorithms only generate paths, rather than time-
dependent trajectories.

* Corresponding author. E-mail: yongliu@iipc.zju.edu.cn.

1 are with the Institute of Cyber-Systems and Control, Zhejiang Univer-
sity, Hangzhou 310027, China.

2 is with the Hangzhou Dianzi University, Hangzhou 310018, China.

3 is with the Polytechnic Institute of Zhejiang University, Hangzhou
310015, China.

This work was supported by National Natural Science Foundation of
China (No.U21A20484).

Fig. 1: The autonomous robots are performing navigation
tasks. The white lines represent candidate trajectories gen-
erated by the Frenet lattice planner. A specific trajectory is
selected based on our MARF algorithm. During navigation,
they demonstrate effective collaboration and obstacle avoid-
ance, enabling them to complete the task successfully.

In contrast, online distributed algorithms generally con-
sume fewer computational resources and exhibit superior
performance when handling dynamic obstacles. These al-
gorithms can be further divided into velocity-space-based
methods and RL-based methods. The most well-known
method among the former is the Velocity Obstacle (VO)
algorithm [4], which projects obstacles and other agents into
the velocity space to create velocity obstacles. Agents must
choose velocities outside these velocity obstacles to avoid
collisions. However, this approach can lead to local minima
when multiple agents are involved. To address this issue, the
Reciprocal Velocity Obstacle (RVO) algorithm [5] extends
the traditional VO approach by considering the reciprocal
nature of agent interactions, ensuring that each agent adjusts
its velocity to avoid collisions with others. However, RVO
incurs higher computational costs and is still susceptible to
local optima. Based on the RVO framework, the Optimal
Reciprocal Collision Avoidance (ORCA) algorithm [6] is
currently the most widely used. ORCA predicts the future
trajectories of other agents and solves a linear programming
problem to determine the optimal velocity, resulting in
smoother trajectories and improved computational efficiency.
Xu et al. [7] further incorporates vehicle posture constraints
into this framework, allowing the algorithm to be applied to
Ackermann steering robots.

Another major category of distributed algorithms is based
on deep reinforcement learning (DRL). Some DRL ap-

979-8-3315-4139-2/25/$31.00 ©2025 IEEE 12607

Authorized licensed use limited to: Zhejiang University. Downloaded on November 18,2025 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

proaches use grid maps, where a specific region of the map
is provided as observations, and discrete directions (e.g., up,
down, left, right) are used as the action space [8], [9], [10],
[11]. Other approaches utilize sensor data as observations
and employ a differential-driven robot. Chen et al. [12] uses
ORCA to generate trajectories as training data, in order to
restrict linear and angular velocities. Later, they [13] propose
a socially aware path generation rule to describe and imitate
human behaviors. Long et al. [14] introduces a hybrid strat-
egy that combines PID controller and RL, allowing robots
to complete tasks in large, complex environments. However,
these algorithms fail to directly generate feasible trajectories
that satisfy real-world Ackermann steering vehicles, which
require a minimum turning radius.

Inspired by Cola-HRL [15], we propose our MARF
(Multi-Agent path finding with Reinforcement learning and
Frenet lattice) algorithm. MARF generates trajectories that
meet acceleration and curvature requirements, thereby com-
plying with the Ackermann steering model, as shown in Fig.
2. Specifically, the main contributions of our work are as
follows:

1) We parameterize the Frenet lattice planner’s trajectories
as the action space of MARL, enabling the agent to meet the
kinematic and dynamic constraints of the Ackermann model.

2) By sharing the output of a value network across all
agents, we facilitate effective coordination among agents,
such as accelerating to overtake or decelerating to give way.

3) We conduct both simulations and real-world experi-
ments in various dynamic environments, demonstrating that
the proposed algorithm is robust and efficient.

II. PRELIMINARIES
A. Partially Observable Markov Decision Processes

In multi-agent systems, each agent has limited information
about the environment. Therefore, we employ a Partially
Observable Markov Decision Process (POMDP) to make
decisions in scenarios with partial observability. Formally,
a POMDP is defined by a tuple (M,S, 4,0, R, P,v). N
indicates the number of agents. S is the set of possible states
in the environment. A = A; x - -+ x A,, is the set of possible
actions that each agent can take. O = O; x - -- x O, is the
set of all observations available to each agent in the current
time step. R = ri(s,a) X --- X r,(s,a) is the set of reward
functions for all agents. P(s|s,a) is the state transition
function, which represents the probability of transitioning
from state s to state s’ after taking action a. v € [0,1) is
the discount factor that determines the importance of future
rewards. In practice, solving a POMDP involves finding a
policy 7 that maps observations to actions, maximizing the
expected cumulative reward over time.

B. Multi-Agent Proximal Policy Optimization (MAPPO)

The MAPPO algorithm [16] is a type of Actor-Critic
algorithm, which combines policy gradient methods with
value function approaches in RL. It simultaneously learns a
policy network (Actor) and a value function network (Critic).
The Actor network outputs the probability distribution of

__

1 \‘
E Critic Actor E
! i
H Loss i
5 MARL .
i Algorithm !
! i
! |
1 1
i Rewards States '
|

X ;
e [I \
! Q Observations Policy E
i < i
! \ td,v=(05,0.1,0.2) " !
PN : :
1 A\ 1 '
! L= Lattice '
E /3‘1\ +* \ Ca'ndlda'te Planner E
' “ \ \ Trajectories !
! | L ,‘ H
|

E \\ / Frenet ,
\ A /:
)

. |

Cartesian Trajectory |

|

,

H

Parallel i

|

Environments !

|

Speed & Steer i

|

1

/

Fig. 2: The framework of MARF. We employed MAPPO
[16] as the MARL algorithm. The policy network generates
a trajectory in Frenet coordinate system that adheres to the
kinematic constraints based on the limited observation space
of each agent. The robots autonomously navigate the envi-
ronment following this trajectory. Additionally, we utilized
parallel environments to accelerate the training process.

actions, while the Critic network provides an estimated value
of the state.

The MAPPO algorithm builds on the Actor-Critic frame-
work by using the importance sampling ratio and a clipping
function to constrain the difference between the new and
old policies. This approach maximizes the performance of
incremental policy updates by an approximation. The im-
portance sampling ratio represents the ratio of the probability
distribution of the new policy to that of the old one sampled
in the current state, which is defined as r;(0) = %
The clipping function is used to control the magnitude of
policy updates, preventing excessive differences between
the new and old policies, which is defined as L (f) =
min(ry(0) Ay, clip(ry(0),1 — €,1 + €)A,). Here, A, is the
advantage function, the clip function restricts the range of
values of the importance sampling ratio r;(#), and € is a
hyperparameter.

C. Frenet Lattice Planner

The lattice planner [17], [18], [19] is a forward search
algorithm that discretizes the agent’s configuration space
into grids and searches for the optimal path on these grids,
ensuring that the generated path fully satisfies the agent’s
kinematic and dynamic constraints. Typically, this algorithm
is applied to the Frenet coordinate system, where the lane
centerline serves as the reference line [20], [21].

12608

Authorized licensed use limited to: Zhejiang University. Downloaded on November 18,2025 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

6 1.0
5 reference line candidate trajectories
0.8
4 0.6
E3 2
> 5 0.4
1 0.2
0 : . . ; i ; 0.0
0 1 2 3 4 5 6 7
X (m)

Fig. 3: The candidate trajectories are evaluated based on vari-
ous metrics such as curvature, acceleration, and lateral offset.
Each trajectory is assigned a different cost, with lower-
cost trajectories indicating better adherence to kinematic and
dynamic constraints.

As shown in Fig. 3, the longitudinal axis in the Frenet
coordinate represents the distance traveled along a reference
road, while the lateral axis measures the deviation from the
reference line, making it ideal for representing curved paths.
By sampling the Frenet space, polynomial trajectories are
generated for both the lateral and longitudinal coordinates
over time. These trajectories are then combined to form all
candidate paths in the Cartesian coordinate system.

We model the agent as a nonholonomic system based on
the Ackermann steering model. This model is particularly
well-suited for real-world vehicles, where the steering mech-
anism limits lateral slip and prevents in-place turning. Taking
the center of the vehicle’s rear axle as the reference point,
the position and velocity in the world coordinate system are
defined as p = [pz, py|T and v = P = [v,, v,]7 respectively.
The vehicle’s kinematics are then defined as follows:

Pz = V COS @,

Dy = vsin @, (1)
. vtandy
§= 2

where (ps,p,) represents the vehicle position, ¢ is the

vehicle’s orientation, v = /v2 + x2 is the linear velocity,
L is the wheelbase (the distance between the front and rear

axes), and J; is the steering angle.

II1. METHODOLOGY

This section introduces the proposed MAPF algorithm. We
first detail the observation and action spaces, demonstrating
how the Frenet lattice planner is integrated into the MARL
framework. Following this, we introduce the design of the
reward function and the entire training process.

A. Observation space

The observation of each agent is divided into two parts, as
shown in Fig. 4. The first part o.g, refers to the ego states,
including its velocity, as well as the position and orientation
of the target relative to the agent. The second part 0gy
consists of information about the surrounding environment.
Mobile robots are typically equipped with various sensors,
such as LiDAR, to collect environmental data, which is then

Agent n
Critic
Agent 1
Agent 0 Actor
SN " Concatenate
eares
Ego agent agents or obstacles MLP
Ocgo Osur
l MLP l MLP }
Concatenate — ’
value
RNN
¥

Sampling

Fig. 4: Actor and Critic network. The input to the agent’s
policy network includes both its ego information and the
states of the five closest neighboring agents or obstacles. This
information is concatenated and processed through three dis-
tinct distribution networks to produce action spaces: ¢, d, v.
The input to the value network consists of the concatenated
Recurrent Neural Network (RNN) outputs from all agents’
policy networks, producing a shared value estimate.

transformed into a cost-map-like representation. Since real-
world sensors often experience diminishing accuracy with
increasing distance, we limit the agent’s observation range
to 5 meters. Specifically, the agent observes the positions and
velocities of the nearest five other agents or obstacles within
this range. If fewer than five are detected, the missing data is
padded with zeros. This approach ensures that the dimension
of observation space are not affected by the number of agents
or obstacles. In addition, all position and velocity data are
two-dimensional, so the total observation dimension amounts
to 25.

B. Action space

As shown in Fig. 2, the action space for each agent consists
of the parameters t,d, v, where t is the trajectory time, d
is the lateral offset, and v = s is the longitudinal velocity
in Frenet. Specifically, we use the straight line connecting
the agent’s current position and the target position as the
reference line. The longitudinal and lateral trajectories in
the Frenet coordinate system are modeled using a quintic
polynomial and a quartic polynomial, respectively. Boundary
conditions are applied to set the lateral velocity, lateral accel-
eration, and longitudinal acceleration to zero at the end of the
trajectory. Given that the agent’s current state is known, we
can establish (T,d(T),d(T),d(T) = (T;,d;,0.0,0.0)) and
(T, s(T),s(T) = (T3, 54,0.0)). By solving for the polyno-
mial coefficients and performing coordinate transformation,
we can obtain a trajectory in the Cartesian coordinate system.
The trajectory parameters are shown in Table 1.

12609

Authorized licensed use limited to: Zhejiang University. Downloaded on November 18,2025 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The action space corresponds to the parameters
of the lattice planner.

Parameter | Value
t(s) 0.5, 1.0, 1.5
d (m) -0.2, -0.1, 0, 0.1, 0.2
v (m/s) 0, 0.1, 0.2, 0.3

C. Reward function

The reward function has several components, with the goal
of guiding the agent to safely and efficiently move toward
its target while satisfying the given constraints. To avoid the
inefficiency caused by sparse rewards, the agent calculates
the following rewards at each time step.

-5 if collide with agents
—10 if collide with obstacles ,)

0 otherwise

Te =

where 7. is the penalty for collisions with other agents or
obstacles, which discourages unsafe behaviors. The penalty
for collisions with obstacles is set to be twice as high as that
for collisions with other agents. This ensures that the total
reward for both types of collisions is balanced so that they
are treated equally from the perspective of the ego vehicle.

0.2 if Rmaz <K:<2f€ma:v
: or |A| — |amaz| > 0.5
rE = —-0.5 if 2 Kmar < K< 4 Kmax , 3)
—1.0 ifdEme: <K
0 otherwise

where 7 is the penalty for violations of kinematic and
dynamic constraints, Km,qz,@ma, are curvature and accel-
eration limitations for the agent, and K, A are maximum
corresponding values in the current trajectory. Therefore,
dynamic constraints are enforced by limiting .4, while kine-
matic constraints are limited by C = 1/R,,;,, where R,
represents the minimum turning radius of agents.

T = _‘dego|7 (4)

where d.q4, is the ego agent’s lateral derivation from the
current reference line after executing an action, thus r;
discourages unnecessary lane changes.

rg =02 (||p2;o1 — Pgoatl| — Hngo — Pgoalll); (5)

where r, is the reward for approaching the target, and
Pegos Pgoal Tepresent the Cartesian coordinate of ego agent
and target. Additionally, a success reward R, is given if
the agent completes the task without any collisions and all
trajectories satisfy the kinematic and dynamic constraints.

5 if [Pego — Pyoat|| < 0.1
if [Pego — Pgoar|| < 0.1

where 0cg0,040a1 are the yaw angle in the Cartesian coordi-
nate system of the ego and the target, in radians. Therefore,
the final reward function is defined as:

r=rc+rr+r +re+ R (7)

D. Training Process

Many RL algorithms have been successfully applied to
the field of robotic navigation. In this work, we utilize
MAPPO as our MARL algorithm, which operates within a
centralized training and decentralized execution framework,
as shown in Fig 4. Specifically, each agent shares the
same policy network, with different observations producing
different trajectories. Additionally, all agents share a global
value network, meaning that each agent’s decisions will
influence the others, promoting consensus and cooperation
among the agents. Once the environment is initialized, the
expected step size for each trajectory is determined based
on the agents’ distances or required speeds. Episodes are
terminated if an agent either collides, exceeds the expected
step size, or successfully completes the task.

IV. EXPERIMENTS

In this section, we introduce the scenario configurations
and training parameters. And we compare our MARF with
CL-MAPF [3] and PCA [7] across various metrics in dif-
ferent environments. Finally, real-world experiments demon-
strate the robustness of our algorithm.

Algorithm 1 MAPPO with lattice planner

1: Initialize value network V,,(s;) and policy network mp;
2: repeat

3. // Collect data in parallel environments

4 Randomly reset environments;

5. for step=1,2,...,T do

6 for each agent i =1,2,..., N do

7 Sample lattice parameters from policy 7y

8 Collecting observation, action, reward {0}, af, r}
where t € [0, 7]

9: end for

10: break if all agents terminate;

11: Estimate advantages by GAE [22] flf} AB(LA)
Z?io('y)‘)lfsﬂrl;

12 end for

13: // Train policy network

14: Calculate policy loss: L(#) = E[LP(H) +
cS[mp](se)], where S[mg](s:)] is the entropy of the
policy;

15: Update policy parameters: 6 = 6 4+ «gV L(0);

16: // Train value network

17: Calculate value loss: L(w) = (Vo,(s¢) — Ay)2;

=<1
B 0 and [0cgo — Ogoar| < 0.5 © 18: Update value parameters: w = w + o, VL(w);
. 19: until algorithm converged
0 otherwise
12610

Authorized licensed use limited to: Zhejiang University. Downloaded on November 18,2025 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

* *t * #® * ~ *
’; 'r g S *‘ * » R - *\(r
| . e Ved L4 A .
"’/' . * (// N ol S B Aok
o \(r AN ke N\, e i N . o,) S \
N * g oo o \
- * . x " d e x* *
(a) Crossing (b) Circle (c) Random (a) Stagel (b) Stage2 (c) Stage3

Fig. 5: Three training scenarios. At each environment reset,
one of these scenarios is randomly selected. The agents’
target points are represented by stars of the same color as the
agent, while black circles indicate dynamic obstacles with a
random direction and speed.

A. Environments and training details

As shown in Fig. 5, we use a 10m x 10m map with five to
twenty agents and obstacles in the environment. The agents
are modeled as rectangular objects with a length of 0.3m and
a width of 0.2m. The radius of the obstacles is set to 0.1m.

We design several scenarios to train the agents’ policies. In
the crossing scenario (Fig. 5a), the start and target positions
of the agents are randomly distributed on opposite sides
of the map. Agents need to avoid dynamic obstacles by
accelerating, decelerating, or changing lanes. In the circle
scenario, each agent’s target is directly opposite its starting
point. This aims to emphasize collaboration among agents,
like detouring in the same direction. Random scenario is
designed to enhance the policy’s generalization to unknown
environments and prevent overfitting to the above two sce-
narios.

We adopt a curriculum learning approach [23] by dividing
the training process into three phases to accelerate the
convergence of the policy, as shown in Fig. 6. In the first
stage, we only use the rewards r. and r; to ensure that
agents sufficiently explore the action space, learn to avoid
dynamic obstacles, and establish a connection to the target
point. In the second stage, we introduce the reward ry,
which imposes kinematic and dynamic constraints on the
agents, building on their basic ability to follow a global
path. At this point, agents are capable of completing the task
successfully. In the third stage, we incorporate the rewards 74
and 7,4, guiding the agents to move quickly toward the target
while minimizing unnecessary lane changes. This helps avoid
inefficient detours and further improves the quality of the
trajectories.

We conduct offline training on a platform equipped with
an NVIDIA 4080 GPU and an Intel i7-13700K CPU, which
takes approximately 5 hours. Both the Recurrent Neural

TABLE II: Hyperparameters in MARL training

Parameter | Value | Parameter | Value

learning rate | 7e — 4 entropy ¢ 0.01

discount rate 0.99 GAE)\ 0.95
PPO epoch 2 clipping € 0.2
target KL 0.05

Fig. 6: Three stages of the training process. In (a), trajectories
fail to meet kinematic and dynamic constraints. In (b), agents
take a longer trajectory and move at a slower speed. In
contrast, (c) demonstrates high-quality trajectories.

Network (RNN) and Multi-Layer Perceptron (MLP) models
consist of two layers, each with 64 units. Other hyperparam-
eters are listed in Table II.

B. Simulation Results

We select CL-MAPF [3] and PCA [7] as baselines for
comparison. The former is an offline search-based algorithm,
while the latter is an online method. We conduct 100 trials
with varying numbers of agents and dynamic obstacles on
different map sizes, as shown in Table III.

A critical metric in MAPF tasks is success rate. As the
map size and numbers of agents increase, the success rates
of CL-MAPF and PCA decrease significantly, while MARF
maintains a degree of robustness. Despite being trained on
a 10m x 10m map, the reinforcement learning framework
allows MARF to generalize in different maps effectively.
Furthermore, the lattice planner enhances agent navigation
in complex environments by providing spatiotemporal tra-
jectories.

In terms of other metrics, CL-MAPEF, as a global path plan-
ner, does not account for time and velocity considerations. As
a result, average speed is not a relevant performance metric
for evaluating this algorithm. In contrast, MARF consistently
outperforms PCA in this regard.

Additional distance traveled is defined as 1 — dnin / dacts
where d,,,;,, is the shortest distance between the start and end
points, and d,.; represents the length of the actual executed
trajectory. CL-MAPF provides an optimal theoretical solu-
tion when no dynamic obstacles are present. However, when
dynamic obstacles are introduced, the pre-planned path may
may result in collisions. In contrast, PCA often results in
detours or deadlocks, especially in symmetric scenarios. By
incorporating reference line information through the lattice
planner, MARF directs agents along paths closer to their
goals.

Moreover, MARF requires significantly less computation
time. As the map size increases, CL-MAPF often exceeds the
maximum search time limit (90s), and PCA’s computation
time also increases linearly with environmental complex-
ity. In contrast, MARF consistently maintains an average
computation time below 3 ms, showcasing strong real-time
performance.

12611

Authorized licensed use limited to: Zhejiang University. Downloaded on November 18,2025 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Comparison of several metrics over different experiment settings.

Environment Settings Success Rate

Average Speed (m/s)

Extra Distance Computing Time (ms)

Map size Agents Obstacles CL-MAPF PCA Ours CL-MAPF PCA Ours CL-MAPF PCA Ours CL-MAPF PCA Ours
Smx5m 5 0 1.00 1.00 1.00 - 0.27 024 0.01 0.11 0.04 110 1143 118
Smx5m 5 5 0.58 1.00 1.00 - 0.17 0.21 0.16 024 0.18 582 1326 1.25
10mx 10m 10 10 0.23 092 1.00 - 0.19 0.25 0.18 034 013 1127 3025 186
10mx 10m 10 20 0.17 0.80 0.93 - 023 023 0.26 032 0.14 2136 36.09 1.82
20mx20m 20 20 0.00 0.77 0.98 - 025 029 - 049 0.36 - 7132 2.83
20mx20m 20 40 0.00 0.67 0.86 - 023 0.26 - 050 0.39 - 137.21 2.81

R/—\)

linear velocity (m/s)

robotO/vx
0.2 — robot1/vx
0.1
0.0

15
Time 1s)

0.4

0.2

0.0
-02 robot0/vw
oa —— robotl/vw

angular velocity (rad/s)

5 10 15 20 25 30
Time (s)

(d) ()

robot0/vx
021 — mbou/vx
01

Tlme (5)

linear velocity (m/s)

AN

—025 roboto/vw
—— robotl/vw

angular velocity (rad/s)
°
2
S

10 15 20 25 30 35
Time (s)

02 robot0/vX
— robotl/vx
0.1
0.0
15
Time (s)

0.2
0.0
0.2

robot0/vw
—— robotljvw

linear velocity (mis)

angular velocity (rad/s)

5 10 15_ 20 25 30
Time (s)

(2)

Fig. 7: Navigation tasks in the real world. (a) shows the trajectories of the robots moving from left to right in the crossing
scenarios. (b) displays the corresponding visualization panel, where the black circles represent the obstacles depicted in (a).
The arrows and colored circles indicate the positions and orientations of the robots, with their corresponding target points.
The bold lines above the arrows represent the lattice trajectory output by the policy network at current step. (c) presents the
linear and angular velocities of the two robots at the top of the scene. (d), (e) and (f), (g) are the visualization panels and

velocities in circle and random scenarios.

C. Real-world Experiments

In addition to simulation experiments, we also test MARF
in the real world. The size of the robots is consistent with
the settings in the simulation, with a maximum speed of 0.6
m/s, a maximum acceleration of 0.5 m/s2, and a minimum
turning radius of 0.35 meters. Each robot uses a Jetson Nano
for chassis control, operating on Ubuntu 20.04 and ROS
Noetic. A mid360 LiDAR is mounted on the robots, with
the PointLIO algorithm [24] used for localization, providing
the robots’ coordinates on the world map at a frequency of
10 Hz. Our algorithm is deployed on a laptop equipped with
an Intel Core i7-1165G7 processor, 16GB of RAM, and an
NVIDIA MX450 GPU. The laptop serves as the ROS master
node, and communicates with the robots via a local area
network (LAN) through a router.

The real-world experiment is conducted in a 4mx4m map
environment. We deploy five robots to validate the algorithm
across the three scenarios used in the simulation, as shown
in 7. Fig. 7a illustrates the robots’ motion trajectories in the
crossing scenario, one of the three evaluated scenarios. The
figures in the upper right (Fig. 7b, 7c), lower left (Fig. 7d,

7e), and lower right (Fig. 7f, 7g) represent the visualization
panels and speed metrics in crossing, circle and random
scenarios, respectively. In Fig. 7b, 7d and 7f, we can observe
that the robot trajectories are smooth, with no sharp turns.
Fig. 7c, 7e and 7g present the linear and angular velocities
for two randomly selected agents. Although fluctuations
in odometry feedback during the experiment caused some
deviations in the feedback data, the overall curves remained
smooth throughout the process.

V. CONCLUSIONS

In this paper, we propose a multi-agent path finding al-
gorithm based on reinforcement learning and lattice planner.
By parameterizing lattice planner in Frenet coordinate system
as the action space for MARL, we generate trajectories that
adhere to the Ackermann steering model. Training results
show that our policy allows agents to effectively avoid
dynamic obstacles and collaboratively complete navigation
tasks. Both simulation and real-world experiments demon-
strate the robustness and real-time performance of MARF. In
the future, we plan to explore more complex environments
with different shapes of obstacles.

12612
Authorized licensed use limited to: Zhejiang University. Downloaded on November 18,2025 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

[1]

[2

—

[3]

[4

=

[5]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

REFERENCES

G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant,
“Conflict-based search for optimal multi-agent pathfinding,”
Artificial Intelligence, vol. 219, pp. 40-66, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0004370214001386
M. Phillips and M. Likhachev, “Sipp: Safe interval path planning for
dynamic environments,” in 2011 IEEE international conference on
robotics and automation. 1EEE, 2011, pp. 5628-5635.

L. Wen, Y Liu, and H. Li, “Cl-mapf: Multi-agent
path finding for car-like robots with kinematic and
spatiotemporal constraints,” Robotics and Autonomous
Systems, vol. 150, p. 103997, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0921889021002530
P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The international journal of robotics re-
search, vol. 17, no. 7, pp. 760-772, 1998.

J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation, 2008, pp. 1928-1935.

J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics Research: The 14th Interna-
tional Symposium ISRR. Springer, 2011, pp. 3-19.

G. Xu, Y. Chen, J. Cao, D. Zhu, W. Liu, and Y. Liu, “Multivehicle
motion planning with posture constraints in real world,” IEEE/ASME
Transactions on Mechatronics, vol. 27, no. 4, pp. 2125-2133, 2022.
G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig,
and H. Choset, “Primal: Pathfinding via reinforcement and imitation
multi-agent learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2378-2385, 2019.

M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti, “Primals: Pathfind-
ing via reinforcement and imitation multi-agent learning - lifelong,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2666-2673,
2021.

Z. Liu, B. Chen, H. Zhou, G. Koushik, M. Hebert, and D. Zhao,
“Mapper: Multi-agent path planning with evolutionary reinforcement
learning in mixed dynamic environments,” in 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2020,
pp. 11748-11754.

Z. Ma, Y. Luo, and H. Ma, “Distributed heuristic multi-agent path
finding with communication,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), 2021, pp. 8699-8705.

Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 285-292.

Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 1343-1350.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

12613

Authorized licensed use limited to: Zhejiang University. Downloaded on November 18,2025 at 01:12:43 UTC from IEEE Xplore. Restrictions apply.

T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex
scenarios,” The International Journal of Robotics Research, vol. 39,
no. 7, pp. 856-892, 2020.

L. Gao, Z. Gu, C. Qiu, L. Lei, S. E. Li, S. Zheng, W. Jing, and J. Chen,
“Cola-hrl: Continuous-lattice hierarchical reinforcement learning for
autonomous driving,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022, pp. 13 143-13 150.

C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. M. Bayen, and Y. Wu, “The
surprising effectiveness of ppo in cooperative multi-agent games,” in
Neural Information Processing Systems, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:232092445

M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via
search in state lattices,” in International Symposium on Artificial
Intelligence, Robotics, and Automation in Space. Munich Germany,
2005, pp. 1-7.

T. M. Howard, C. J. Green, A. Kelly, and D. Ferguson, “State
space sampling of feasible motions for high-performance mobile
robot navigation in complex environments,” Journal of Field Robotics,
vol. 25, no. 6-7, pp. 325-345, 2008.

M. Pivtoraiko and A. Kelly, “Differentially constrained motion replan-
ning using state lattices with graduated fidelity,” in 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 1EEE,
2008, pp. 2611-2616.

J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast tra-
jectory planning in dynamic on-road driving scenarios,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2009, pp. 1879-1884.

M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenét frame,” in 2010
IEEE International Conference on Robotics and Automation, 2010,
pp. 987-993.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2016.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th Annual International Conference
on Machine Learning, ser. ICML ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 41-48. [Online].
Available: https://doi.org/10.1145/1553374.1553380

D. He, W. Xu, N. Chen, F. Kong, C. Yuan, and F. Zhang, “Point-lio:
Robust high-bandwidth light detection and ranging inertial odometry,”
Advanced Intelligent Systems, vol. 5, 07 2023.

