ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 979-8-3503-6874-1/25/$31.00 ©2025 IEEE | DOI: 10.1109/ICASSP49660.2025.10888042

OARecon: Object-Aware Viewpoint Augmentation for Indoor
Compositional Reconstruction

Yuanyuan Ding®, Yiming Fei?, Jiandang Yang', Xiaobin Wei®, Jiajun Lv!:*, Yong Liu'-*
! Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, China
2 College of Computer Science and Technology, Zhejiang University, Hangzhou, China
3 WASU Media & Network Co.Ltd., Hangzhou, China

Abstract—Real-world scenes likely involve repetitive objects indicating
that the reconstruction of the target object can be supplemented by the
views of other identical objects. However, traditional 3D reconstruction
methods do not take this a priori knowledge into account and fail to
make full use of the available information. In this paper, we propose an
object-aware viewpoint augmentation scheme for indoor compositional
reconstruction. Within this scheme, a viewpoint supplementation strategy
based on signed distance function and neural radiance fields is proposed
to fully leverage the information from repetitive objects such that
the occlusion problem is suppressed. Moreover, this scheme introduces
monocular uncertainty priors and regional smoothness constraints to
enhance the reconstruction accuracy of slender and thin structures
and the smoothness of occluded background, respectively. Experimental
results considering both synthetic and real-world scenes demonstrate that
our method effectively improves the reconstruction quality of repetitive
objects and background.

Index Terms—signed distance function, neural radiance fields, object-
aware indoor reconstruction

[. INTRODUCTION

Emerging neural implicit representation rendering methods have
demonstrated considerable results in novel view synthesis [1] and
3D reconstruction [2], [3] recently. Neural Radiance Fields (NeRF)
encode scene properties into a Multi-Layer Perceptron (MLP) via
volumetric rendering, training the scene’s volumetric radiance field by
minimizing the difference between rendered images and real images
[1]. However, due to the lack of direct geometric supervision, while
these methods can implicitly learn 2D geometry during training,
they perform poorly in extracting 3D meshes. To address this, some
approaches [4]-[6] have been proposed to learn continuous Signed
Distance Function (SDF) and color, enabling better reconstruction
of complex 3D geometry. Some studies have provided additional
information that aids in contextual understanding and scene naviga-
tion [7]-[9], thereby facilitating the learning of object-composed 3D
scene representations from visible light images and semantic masks.
However, these methods perform poorly in reconstructing the geom-
etry of individual objects due to the insufficient view information
included in the limited dataset. Additionally, the background often
lacks smoothness in occluded areas, which means that even though
the object is decoupled from the background, it still cannot fully
support downstream scene editing applications.

ObjSDF++ [10] proposed an object-compositional NeRF 3D re-
construction model that encodes object semantics into neural implicit
representations. This model not only renders RGB images from the
SDF network but also generates 2D semantic maps. By calculating
the opacity of each point along the light ray, it effectively identifies
objects and their occlusion relationships, resulting in cleaner separa-
tions. However, this occlusion recognition is limited to visible areas.
Even with multi-view images, parts of objects that are occluded or
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not visible due to sparse viewpoints, such as the seat under a table
or the legs of a table behind a sofa, remain difficult to reconstruct.
Therefore, additional strategies like object-guided assistance are
required to help the network fully utilize known information.

In real-world scenes, different views of repetitive identical objects
can provide supplementary information for the reconstruction of
each of them. Following this idea, we can even reconstruct the
occluded parts of repetitive objects with the same data setting. By
leveraging these repetitions, the number of effective views used for
the reconstruction of the same object increases. Considering the high-
quality demands of downstream applications such as scene editing,
additional issues need to be addressed to overcome the limitations
of the current viewpoint supplementation based method: (i) for thin
or slender structures, even with abundant viewpoint information,
traditional reconstruction methods struggle to ensure reconstruction
accuracy; (ii) the geometric smoothness of occluded backgrounds is
difficult to guarantee in traditional reconstruction methods.

To address the aforementioned issues, we propose using pose trans-
formations and virtual camera setups for complementary viewpoints
of repetitive objects, incorporating monocular uncertainty priors and
regional smoothness constraints to enhance the reconstruction accu-
racy of slender and thin structures and the smoothness of the occluded
background, respectively [11], [12]. Based on the above analysis,
we propose an editable indoor scene reconstruction enhancement
scheme named Object-Aware Viewpoint Augmentation for Indoor
Compositional Reconstruction (OARecon), aiming to improve the
accuracy of indoor scene reconstruction while enabling flexible
editing capabilities. The main contributions can be summarized as
follows:

o By using pose transformations and virtual camera setups, we
propose a method mapping from a single-view multi-object
scene to a multi-view single-object setup, leveraging repetitive
objects to learn geometry more accurately without additional
data.

« An indoor compositional reconstruction scheme emphasizing on
the reconstruction quality of both objects and background is
proposed.

II. METHODOLOGY

A. Background

The key to learning neural implicit representations from multi-
view images lies in volumetric rendering techniques [13]. For a ray
r(t) = o+t-d, volumetric rendering calculates the target pixel color
based on the scene density o(¢) and the scene radiance c(t) at each
3D point along the ray

Clr) = / " Tt)o(e(t)e(r(t)) dt. (1)
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Fig. 1. Overview of OARecon. In this work, we propose a multi-view augmentation approach for repetitive objects in indoor scenes. For repetitive objects,

Semantic guidance generates multi-instance patches and virtual camera views Ecom (4,1),. ..
e The Geometry MLP (SDF MLP) outputs the SDF to represent object geometry. For all objects

reference, and information from others optimizes Sy,

,€cam (i,m) for image Z(i). One instance is selected as a

and the overall scene, we render semantics and appearance, optimizing the MLP network through volume rendering. Monocular uncertainty values Uy and Uy
constrain the monocular prior for accurate, disentangled reconstruction. For the background Objg, We perform patch rendering and regularize the geometric

smoothness of unobserved regions using L.

where ¢, and t; represent the near and far boundaries of the
ray, respectively, and the scene transmittance function T'(t) =
exp (— f:n o(r(v)) dv)
through the scene.

In implicit surface volumetric rendering based on the SDF, the
geometry of the scene is represented by the SDF value s(x) at each
spatial point x, which describes the distance from point x to the
nearest surface. In practice, the SDF function is implemented via a
MLP network f. The appearance of the scene, such as the view-
dependent color c, is defined by another MLP network g

quantifies the energy loss as light passes

f:x€R’— (s € R f € R¥??)

- 2
g: (xeR’ neR’deS’ feR”) s ceR’ @

where f represents a geometry feature vector, n is the normal at point
x, d is the viewing direction.

Following [5], we replaced NeRF’s volumetric density o with the
SDF MLP output.

By combining semantic logits and object masks, we achieve
composite reconstruction of multiple objects. To simplify the process,
we treat the background as a separate object, similar to the approach
in [10], and adopt the same network structure. In a scene with k
objects, including n identical repetitive objects, the SDF MLP f(+)
generates k SDF values S; at each point, where j = 0 represents
the background and j = 1,2,...,k represents distinct objects (as
shown in Fig. 1). The n repetitive objects are optimized through a
dedicated repetitive object optimization network. The scene’s SDF
is Sq = min(S1, S2, ..., Sk), used for ray sampling and volumetric
rendering Eq. (1).

Additionally, the opacity of each object O.p; is computed through
volumetric rendering, with the supervision of scene transmittance and
instance segmentation masks, enabling opacity rendering to capture
occlusion relationships.

Outir) = [ Y T ®ow Goe () dt. 5

n

1,... 3)

During training, opacity is obtained via volumetric rendering, and
the cross-entropy loss applied to the opacity is backpropagated to the
SDF values, facilitating the learning of composite geometry.

B. Multi-View Complementation for Repetitive Objects

While approximate occlusion-aware methods can effectively seg-
ment objects, in indoor scenes, the occlusion between objects often
makes the reconstruction of unseen parts difficult. Moreover, for
individual objects, the input from multi-view scenes is often sparse,
leading to suboptimal reconstruction. As shown in Fig. 1, one
effective method to address these issues is to use all views of other
identical objects as information sources for the target object.

Given an RGB image Z(4) captured by a camera with pose
&am (1), there are n identical objects with poses Toni(1), . . ., Toni(n).
Taking one of the objects as reference Obj_ref, the relative pose
transformation of the other objects with respect to Obj_ref is given
by

Trelative (]) = Tobj_ref o (Tobj (])) - s 4

where o is matrix multiplication for pose composition.

To ensure that the camera’s viewpoint remains consistent when
capturing other objects from a new position compared to when it
captured the reference object, we need to generate the virtual camera
pose based on the pose transformation between the reference object
and the supplementary object. The virtual camera pose &cqm (4,7) can
be calculated using the following equation:

Ecam(@j) = Trelative(j) o fcam (Z) 5)

The next step is to aggregate the information from repetitive objects
to recover their 3D structure. We combine semantic information
with raycasting to determine which object’s coordinates to use, and
generate the corresponding virtual camera poses Eam(Z). Similar to
the Scene SDF MLP, we parameterize the Objs SDF MLP. The key
difference is that we model the geometry of the objects in local object
space to ensure shape consistency across instances. Additionally,
the geometry of repetitive objects is optimized within the repeated
object optimization network to ensure accurate reconstruction of other
instances.

To effectively guide the learning of each object’s surface in the
scene, we use instance segmentation masks to supervise object opac-
ity. In the repetitive object optimization network, all objects in the
scene, including the background, are treated as a single instantiated
object and input into the semantic MLP, except for the repetitive

i=12,...,n

i=1,2,...,n.
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objects. However, the occlusion-aware opacity rendering struggles
with floating artifacts in unseen regions. Consider SDF properties:
for a point x inside an object ¢, S¢(x)<0, while for other objects,
S;i(x) > |Se(x)| where j = 1,2,...,k and j # t. Therefore, the
following loss function is considered:

k
Las =Ep | Y max (0, Sa(x) — S;(x))| - (6)
j=1

C. Slender Structure and Background Optimization

[14] has demonstrated that monocular geometric priors play a
crucial role in indoor scenes. In practice, it has been observed that
although the pre-trained model Omnidata [15] provides monocular
priors, the results are not always entirely accurate, especially when
restoring the slender structures of objects, where monocular priors are
often more important than color supervision. As pointed out in [11],
if the monocular prior from a certain viewpoint significantly differs
from other viewpoints, it is likely inaccurate. Therefore, this paper
models the uncertainty of the prior as a view-dependent network
representation and estimates the uncertainty values of depth and
normal through volumetric rendering

g:(x,n,d,f) — (c,uq € Ryu, € Rs), @)

Depth uncertainty is handled using a masked depth loss function
based on the Laplace distribution, which masks areas with high
uncertainty in the monocular priors

[ Dprea — D]
lw+el
Similar to the depth loss, the normal priors are transformed into

the world coordinate system and undergo uncertainty regularization
computation

Lwmpepn = log(Ug + €) + 3

2
||]\']P"ed — N||2) . (9)

jwl +€
In Eq. (8) and Eq. (9), Uy and U,, are the predicted uncertainties,
the subscript pred represents the network’s predicted values, D and
N are the pseudo-GT for depth and normal obtained from the pre-
trained network, respectively, € is a small value (e.g. 1e—8) to prevent
division by zero errors. When U < 7, w = U, otherwise the gradients
of lD"fi;‘D | and ( HN"E’@?‘M )2 corresponding to w are detached from
the computation graph of PyTorch.

In indoor scenes, occluded parts of the background are invisible in
all images, leading to points behind the rays that cannot be directly
optimized, resulting in random holes and artifacts [12]. Since it is
impossible to obtain the true values of the occluded areas, we perform
smoothing of the rendered depth and normal on the background
surface by randomly sampling a P x P patch region in the given
image. Along the rays in the patch, the depth and normal estimates are
computed using only the background SDF. These estimates are then
converted into semantic information, leaving only the background
and other class mask estimates.

The depth and normal smoothing loss Ly is based on the same
principle and together form the background smoothing loss.

For example, the formula for the background smoothing loss based
on the rendered depth is as follows

Lnormal = 10g(|Un| + 6) + (

3 P-1-2¢

L) =37 3 M(rmn) © (|AsD(rmm. 2]

+ )Ayb(rm,n,Qd)D .30

where A,D and Ayﬁ represent the depth differences between
neighboring pixels, d controls the patch spacing for applying smooth-
ness, and m, n denote the pixel indices within the patch. The mask
estimation M is used to filter out non-background regions through
Hadamard product ®.

D. Training Objective Details

Based on the method from [14], we incorporated depth and
normal consistency loss, as well as the approximate occlusion-aware
constraints from [10] to improve the geometric structure and object
separation. Additionally, the SDF network is regularized with the
Eikonal term Lg [16].

The instance mask Mg, for the repetitive object viewpoint supple-
mentation network contains only two categories: repetitive instances
and background. Therefore, the loss function for this network is
defined as

Lobjs = Lego + Lyi_awp + AaLp + AnLx + M Le + AoLais.  (11)

To improve the reconstruction of other objects in the scene, the
loss function for the scene composition network is defined with the
inclusion of monocular prior uncertainty and background smoothness
constraints, as follows

Lscene = Legb + Lm + AvpLyvip + A NLyn + A1 LE

+A2Lais + AbsLos- (12)

III. EXPERIMENTS
A. Experimental Setup

Datasets. We conducted experiments on two datasets: 1) Replica
[17]: A synthetic dataset that depicts realistic indoor scenes and
provides precise camera poses and clear object mask information. In
the experiments, we used 4 scenes from this dataset, each containing
multiple repetitive chairs; 2) ScanNet [18]: A widely used real-world
dataset that has been extensively applied in previous works [10], [19]-
[21].

Metrics. For the evaluation of reconstruction performance, this
paper reports Chamfer Distance and F-score on the Replica dataset,
following the methods from [10], [22]. The evaluation metrics are
divided into two categories: repetitive objects and the overall scene.
In the ScanNet dataset, we specifically observe the reconstruction
performance of slender structures and background.

Baseline. We primarily compare with ObjSDF++ [10], which is the
SOTA for this task.

B. Implementation Details

The method in this paper is implemented by PyTorch, using the
Adam optimizer with a learning rate of 5e—4, the same as the
baseline. A total of 200k iterations were performed, applying an error-
bounded sampling algorithm, with 1024 rays sampled per iteration.
The method runs on a single 24G 3090Ti GPU. The SDF MLP
consists of two layers of 256-channel neural networks, with weight
initialization following the approach in [5], [6], [10]. For the loss
functions mentioned in Eq. (11) and Eq. (12), set the weight of
RGB reconstruction and Mask loss as 1, Ay = Aqg = A5 = 0.1
in our experiments. For other loss terms, we set Ay = 0.1, A2 = 0.5,
Ad = 0.1, Ay, = 0.05, Aysp = 0.006, Ayrx = 0.0025, Aps = 0.01,
and P of patch’s size is set as 32 from [12]. The color prediction
part consists of four layers of 256-channel networks. Geometric
initialization adopts the method from [14], which initializes the
reconstruction as a unit sphere.
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Fig. 2. Visual effect comparison on Replica and Scannet. (a) OARecon utilizes the complementary viewpoint information from repetitive chairs to improve
the reconstruction quality of each chair such that the occlusion problem has been alleviated. (b) OARecon adopts monocular uncertainty priors such that
the slender and thin structures can be reconstructed while ObjSDF++ fails to reconstruct them. (c) The use of regional smoothness constraints improves the

smoothness of occluded background.

TABLE I
THE QUANTITATIVE AVERAGE RESULTS FROM REPLICA SCENES EVALUATED ON REPETITIVE OBJECT RECONSTRUCTION.

Replica-Category Method Repeated Object Reconstruction Average
F-Score F-Score Chamfer-L1
Scan3-Chair ObjSDF++ 92.07 / 87.92 / 76.68 / 81.01 / 66.83 / 46.26 / 44.31 / 54.17 68.66 0.06185
Ours 89.61 /76.48 / 80.23 / 68.80 / 74.78 / 74.10 / 73.07 / 66.71 7547 0.03782
Scan6-Chair ObjSDF++ 39.63 /79.61 /75.47 / 84.07 69.6 0.062
Ours 78.45 / 83.23 / 80.08 / 86.03 81.85 0.03001
Scan7-Chair ObjSDF++ 92.70 / 76.65 / 85.20 / 93.01 / 64.31 / 44.28 / 37.88 / 85.32 72.52 0.06145
Ours 88.09 / 91.46 / 88.02 / 96.62 / 93.22 / 89.14 / 86.12 / 81.16 89.23 0.02418
Scan8-Chair ObjSDF++ 61.90 / 61.06 / 60.22 / 63.87 / 61.48 / 55.20 / 59.34 / 57.89 60.12 0.08075
Ours 66.81 / 69.79 / 72.17 / 66.93 / 68.61 / 66.84 / 72.83 / 71.91 69.49 0.04478

C. Performance Comparison

As shown in Fig. 2, OARecon scheme outperforms the ObjSDF++
method in the reconstruction quality of repetitive objects, slender
objects and occluded background.

Additionally, we developed a quantitative evaluation method for
each decoupled object in the scene (including the background).
TABLE. I provides corresponding quantitative results for different
objects from different datasets. Chamfer-L1 and F-score represent
the results for the reconstruction of occluded background regions
and fully complete objects, where Chamfer-L1 = w

To conclude, the OARecon scheme enhances the reconstruction of
repetitive objects, occluded background, and slender structures for
indoor scenes, whether in synthetic or real-world data sets, and its
quantitative reconstruction metrics outperform ObjSDF++ in most
cases.

IV. CONCLUSION

In this paper, a viewpoint supplementation strategy for repetitive
objects in indoor scenes is proposed to improve the reconstruction
accuracy of each repetitive object, which may be occluded. Building
on this, considering the needs of downstream applications such as
scene editing, monocular uncertainty priors and regional smoothness
constraints are adopted to improve the reconstruction of slender
structures and occluded backgrounds, respectively. Based on this
design, our scheme named OARecon tackles the challenges of large-
scale indoor scene reconstruction tasks. Experiments on the Replica
and ScanNet benchmark data sets demonstrate the superiority of our
method. In the future, we will consider using generative models to
complete the view information of objects that are completely unseen
in the dataset to further improve the reconstruction quality. In the
future, we plan to integrate object pose estimation into the network,
enabling simultaneous pose estimation during reconstruction.
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