
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 6, JUNE 2025 10325

Hyperbolic Binary Neural Network
Jun Chen , Jingyang Xiang , Tianxin Huang , Xiangrui Zhao , and Yong Liu , Member, IEEE

Abstract— Binary neural network (BNN) converts
full-precision weights and activations into their extreme 1-bit
counterparts, making it particularly suitable for deployment on
lightweight mobile devices. While BNNs are typically formulated
as a constrained optimization problem and optimized in the
binarized space, general neural networks are formulated as
an unconstrained optimization problem and optimized in the
continuous space. This article introduces the hyperbolic BNN
(HBNN) by leveraging the framework of hyperbolic geometry to
optimize the constrained problem. Specifically, we transform the
constrained problem in hyperbolic space into an unconstrained
one in Euclidean space using the Riemannian exponential
map. On the other hand, we also propose the exponential
parametrization cluster (EPC) method, which, compared with
the Riemannian exponential map, shrinks the segment domain
based on a diffeomorphism. This approach increases the
probability of weight flips, thereby maximizing the information
gain in BNNs. Experimental results on CIFAR10, CIFAR100,
and ImageNet classification datasets with VGGsmall, ResNet18,
and ResNet34 models illustrate the superior performance of our
HBNN over state-of-the-art methods.

Index Terms— Binary neural network (BNN), deep learning,
hyperbolic geometry, model compression.

I. INTRODUCTION

DEEP neural networks (DNNs) have achieved remarkable
success in various computer vision fields, includ-

ing image classification [1], [2], object detection [3], [4],
semantic segmentation [5], [6], and more. However, the
massive parameters and computational complexity of DNNs,
which contribute to their success, limit their deployment on
lightweight mobile devices. To address this problem, various
compression methods are being proposed, with the main
approaches, including pruning [7], [8], [9], quantization [10],
[11], [12], [13], [14], and distillation [15].

In the context of resource-constrained and low-power
devices, quantization emerges as a more effective and universal
scheme compared with pruning [16]. Specifically, quantization
converts full-precision weights and activations into their low-
precision counterparts. In the extreme case, neural network

Received 1 March 2023; revised 17 January 2024 and 9 May 2024;
accepted 14 October 2024. Date of publication 31 October 2024; date of
current version 4 June 2025. This work was supported by the National Natural
Science Foundation of China under Grant 62103363. (Corresponding authors:
Jun Chen; Yong Liu.)

Jun Chen is with the National Special Education Resource Center for
Children with Autism, Zhejiang Normal University, Hangzhou 311231, China,
also with the Institute of Cyber-Systems and Control, Zhejiang University,
Hangzhou 310027, China, and also with the School of Computer Science
and Technology, Zhejiang Normal University, Jinhua 321004, China (e-mail:
junc@zju.edu.cn).

Jingyang Xiang, Tianxin Huang, Xiangrui Zhao, and Yong Liu are with
the Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou
310027, China (e-mail: yongliu@iipc.zju.edu.cn).

Digital Object Identifier 10.1109/TNNLS.2024.3485115

binarization restricts weights and activations to two possible
discrete values {−1,+1}, offering two advantages as follows:
1) a 32× reduction in memory compared with the correspond-
ing full-precision version and 2) the multiply-accumulation
operation can be replaced with the efficient XNOR and bit-
count operations.

Neural network binarization is typically formulated as a
constrained optimization problem with respect to the dataset
D = {xi , yi }

m
i=1 and the set of all possible binarized solutions

X ⊂ Rn

min
w∈X

L(w;D) :=
1
m

m∑
i=1

L(w; (xi , yi))

where w is an n dimensional weight vector and L represents
the loss function, such as cross-entropy loss. Using a mirror
descent framework [17], Ajanthan et al. [18] transformed the
constrained problem into an unconstrained one through a
mapping P : Rn

→ X , such that

min
w̃∈Rn

L(P(w̃);D).

Subsequently, P(w̃) ∈ X is gradually binarized to a discrete
set Bn

= {−1,+1}n during the training process, where P is
defined as a mirror map.

In BNNs, the norm of the binarized weight vector in
each layer is fixed and is solely determined by the dimen-
sion of the weight. In other words, the binarized weight
resides on a ball with a constant radius, forming a hyperbolic
space. In this article, we introduce a hyperbolic binary neural
network (HBNN) to formulate neural network binarization
as a optimization problem in the framework of hyperbolic
space. Specifically, we transform the constrained problem in
hyperbolic space into an unconstrained one in Euclidean space
using the Riemannian exponential map. This approach is more
conducive to optimizing BNNs than directly converting the
optimization problem from the constrained and binarized space
to the unconstrained and continuous space.

On the other hand, recent research [19] has demonstrated
that a high ratio of weight flips, where weight flips mean that
positive values turn to negative values and vice versa, can max-
imize the information gain to optimize BNNs’ performance.
In this context, we propose the exponential parametrization
cluster (EPC) (φF (·) : Rn

→ Dn
r) shown in Fig. 1. This

approach is a differentiable map from the tangent space (Rn)
to the hyperbolic space (Dn

r). In this case, the constrained
optimization problem in hyperbolic space is transformed into
an unconstrained one in Euclidean space

Original problem: min
w∈Dn

r

L(w;D)

Unconstrained problem: min
w̃∈Rn ,F∈Dn

r

L(φF (w̃);D) (1)

2162-237X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 17,2025 at 08:11:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6568-8801
https://orcid.org/0000-0001-5350-1528
https://orcid.org/0000-0003-3579-371X
https://orcid.org/0000-0002-0129-1933
https://orcid.org/0000-0003-4822-8939

10326 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 6, JUNE 2025

Fig. 1. EPC φF transforms a vector v into the mapped cluster φF (v)

using an original cluster F = {F1,F2, . . . ,Ft }, where F and φF (v) exist
in hyperbolic space, while v resides in Euclidean space. In contrast, the
Riemannian exponential map exp transforms a vector v into the mapped point
exp(v).

where the cluster F consists of a series of candidate points
{F1,F2, . . . ,Ft }. In comparison with the Riemannian expo-
nential map [20] exp(·), our proposed EPC extends the
mapping result from a single point to a cluster of points. Inher-
ently, the Riemannian exponential map exp(·) is equivalent to
φFi (·), where Fi is a candidate point from the cluster F .

The main contributions of this article are summarized in the
following three aspects.

1) We propose the HBNN by leveraging the framework
of hyperbolic geometry to optimize the constrained
problem. Specifically, we transform the constrained
problem in hyperbolic space into an unconstrained one
in Euclidean space using the Riemannian exponential
map.

2) We introduce the EPC, which, compared with the Rie-
mannian exponential map, shrinks the segment domain
on the basis of a diffeomorphism. This approach
increases the probability of weight flips, maximizing the
information gain in BNNs.

3) Experimental results on CIFAR10, CIFAR100, and Ima-
geNet classification datasets with VGGsmall, ResNet18,
and ResNet34 models illustrate the superior performance
of our HBNN over state-of-the-art methods.

II. RELATED WORK

A. Optimization on Manifolds

Many optimization methods on manifolds have Riemannian
analogs [21], [22]. Parametrization is an important technique
for converting problems with manifold constraints into uncon-
strained problems in Euclidean space. Helfrich et al. [23]
introduced orthogonal and unitary Cayley parametrizations,
which construct orthogonal weight matrices through a scaled
Cayley transform in recurrent neural networks. Lezcano-
Casado and Martinez-Rubio [24] introduced the orthogonal
exponential parametrization derived from Lie group theory
using the Riemannian exponential map. Casado [25] further

introduced dynamic parametrization as a gradient-based opti-
mization that combines the advantages of the Riemannian
exponential and Lie exponential.

B. Binarization Methods

The introduction of the nondifferentiable sign function in
neural network binarization leads to a performance drop. For
instance, XNOR [26] introduced accurate approximations by
binarizing not only the weights but also the intermediate
representations in DNNs. This approach aims to reduce the
quantization error between the full-precision weights and
their binarized counterparts. XNOR++ [27] further fused
the activation and weight scaling factors into a single factor,
improving overall performance. BiReal [28] addressed the
problem of infinite or zero gradients caused by the sign
function by propagating full-precision activations through
a parameter-free shortcut in each binarized convolution.
Proxy-BNN [29] introduced a proxy matrix to serve as the
basis for the latent parameter space, aiming to reduce the
quantization error of weights and restore the smoothness
of BNNs. Recently, IR-Net [30] proposed a balanced and
standardized binarization method in the forward pass, mini-
mizing the information loss by maximizing the information
entropy of binarized weights and minimizing the quantization
error. RBNN [19] analyzed the angle alignment between
full-precision weights and their binarized counterparts, high-
lighting that around 50% weight flips can maximize the
information gain. ReCU [31] employed the weight normal-
ization [32], [33] to revive “dead weights,” increasing the
probability of updating these weights in BNNs.

III. PRELIMINARIES

Here, we provide background knowledge on Riemannian
geometry and BNNs.

A. Riemannian Geometry

We briefly introduce the basic concepts of Riemannian
geometry, and for more in-depth propositions, see [34]
and [20].

1) Tangent Space: For an n-dimensional connected mani-
fold M, the tangent space at a point p ∈ M is defined as
TpM. This is a real vector space that can be described as
a high-dimensional generalization of a tangent plane. Also,
such a tangent space exists for all points p ∈ M. Thus,
the description of tangent spaces aligns with Euclidean space,
denoted as TpM ∼= Rn .

2) Riemannian Manifold: Riemannian manifolds are
endowed with a smooth metric gp : TpM × TpM→ R that
varies smoothly with p, enabling the construction of a distance
function dg :M ×M→ R. When describing a Riemannian
manifold, the Riemannian metric is inherently equipped by
default, denoted as (M, g).

3) Geodesics: In a complete Riemannian manifold,
a smooth path of minimal length between two points on M
is termed a geodesic. Mathematically, a geodesic is defined
as γp,v(t) : t ∈ [0, 1] → M, such that γp,v(0) = p
and γ ′p,v(0) = v for v ∈ TpM. Geodesics serve as the
generalization of straight lines in Euclidean space.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 17,2025 at 08:11:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HYPERBOLIC BINARY NEURAL NETWORK 10327

4) Exponential Map: The Riemannian exponential map,
denoted as exp : TpM→M, serves to map rays starting at
the origin in the tangent space TpM to geodesics on M. For a
given geodesic, the parameter t ranges from 0 to 1, resulting in
exp(tv) := γp,v(t). Specifically, the distance on the manifold
between a point p and the exponential map exp(v) is given
by dg(p, exp(v)) = ∥v∥g .

B. Binary Neural Network

Now, let us delve into the mechanism of BNNs and explore
how the binarization and gradients are computed.

1) Forward Pass: During the inference phase of a BNN,
the binarization function is expressed in a deterministic
form [26], [35]

xb
= sign(x) =

{
+1, if x ≥ 0
−1, otherwise

(2)

where x can represent either weights w or activations a.
2) Backward Pass: During backpropagation, the gradient

suffers from the problem of either infinite or zero when
propagating through the binarization function. To address this
problem, Hinton et al. [36] and Bengio et al. [37] proposed the
straight-through estimator. Consequently, this estimator of the
gradient with respect to binarized weights can be approximated
as follows:

∂L
∂w
=

∂L
∂wb
·
∂wb

∂w
,

∂wb

∂w
:=

{
1, if |w| ≤ 1
0, otherwise.

(3)

On the other hand, based on the polynomial function [28],
an estimator of the gradient with respect to binarized activa-
tions can be formulated as follows:

∂L
∂a
=

∂L
∂ab
·
∂ab

∂a
,

∂ab

∂a
:=


2+ 2a, if − 1 ≤ a < 0
2− 2a, if 0 ≤ a ≤ 1
0, otherwise.

(4)

3) Activation Function: In a BNN, the activation function,
such as ReLU, is avoided, because the binarized activation
values through ReLU would all become 1. Typically, Hardtanh
is applied instead.

IV. HYPERBOLIC BNN

A. Poincaré Ball

The hyperbolic space has several isometric models [38],
which are not only conformal to Euclidean space but also offer
powerful and meaningful geometrical representations [39].
We choose the Poincaré ball model, as suggested by the
previous works [40], [41]. By denoting an n-dimensional
Poincaré ball with radius 1/

√
r as Dn

r := {x ∈ Rn
| r∥x∥2 <

1}, the equipped hyperbolic metric is given by

gH
x = λ2

x gE , where λx :=
2

1− r∥x∥2 . (5)

Here, gE represents the Euclidean metric, i.e., the identity
matrix. For r > 0, Dn

r denotes the open ball (Poincaré ball).
When the radius r equals zero, the Poincaré ball Dn

r recovers

the Euclidean space, i.e., Dn
0 = Rn . Similarly, we can denote

an n-dimensional sphere with radius 1/
√

r as Sn
r := {x ∈ Rn

|

r∥x∥2
= 1}, expressed by the boundary of the Poincaré ball,

namely, ∂Dn
r .

B. Exponential Parametrization Cluster

Building upon (1), we aim to transform the constrained
optimization problem of binarization in hyperbolic space into
an unconstrained optimization problem in Euclidean space. For
a weight vector w̃ in Euclidean space, we can compute its EPC,
i.e., φF (w̃), which is composed of a series of weight vectors
{φF1(w̃), φF2(w̃), . . . , φFt (w̃)} in hyperbolic space.

Given a weight vector w̃ ∈ TpDn
r (
∼=Rn)\{0}, where p ∈ Dn

r ,
the EPC with a cluster F = {F1,F2, . . . ,Ft } ∈ Dn

r can be
expressed in the Poincaré ball with the radius 1/

√
r as follows:

φF (·) :=



F1 ⊕

(
tanh

(
√

r
λp∥ · ∥

2

)
·

√
r∥ · ∥

)
F2 ⊕

(
tanh

(
√

r
λp∥ · ∥

2

)
·

√
r∥ · ∥

)
...

Ft ⊕

(
tanh

(
√

r
λp∥ · ∥

2

)
·

√
r∥ · ∥

)


. (6)

Geometrically, the EPC starts with a cluster F and takes v as
the initial tangent vector on the geodesic. This vector satisfies
that the geodesic distance from the mapped cluster φF (v) to
the original cluster is ∥v∥g . It is important to note that the nota-
tion ⊕ used here follows the addition formalism for hyperbolic
geometry, differing from the traditional Euclidean geometry.
The nonassociative algebra for hyperbolic geometry can be
expressed in the framework of gyrovector spaces [42], [43].

Addition [39]: In the Poincaré ball, the addition of p and
q in Dn

r is defined as follows:

p ⊕ q :=

(
1+ 2r⟨p, q⟩ + r∥q∥2

)
p +

(
1− r∥p∥2

)
q

1+ 2r⟨p, q⟩ + r2∥p∥2∥q∥2 . (7)

Given that the Riemannian exponential map exp(·) is con-
strained by a point, the corresponding representations exp(w̃)

do not contribute to an increased probability of weight flips.
In contrast, our mapped cluster φF (w̃) provides more candi-
date representations by training a cluster F , thereby increasing
the probability of weight flips. We will theoretically elabo-
rate on the role of the EPC in weight flips in Section V.
An overview of our HBNN with the EPC is presented in Fig. 2.

Subsequently, we can formulate the unconstrained problem
for the weight vector, unifying (1) and (6), as follows:

min
w̃∈Rn

min
F∈Dn

r

L
(
{φF1(w̃), φF2(w̃), . . . , φFt (w̃)};D

)
. (8)

C. Backward Mode and Gradient Computation

In order to fully implement our HBNN in the deep learning
framework, it is crucial to efficiently compute gradients for the
problem stated in (8). During backpropagation, we first keep
the weight vector w̃ unchanged. Using a learning rate η > 0,

Authorized licensed use limited to: Zhejiang University. Downloaded on November 17,2025 at 08:11:28 UTC from IEEE Xplore. Restrictions apply.

10328 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 6, JUNE 2025

Fig. 2. Overview of our HBNN with the EPC. By training an original cluster F = {F1,F2, . . . ,Ft }, we map a weight vector w̃ into the mapped cluster
φF (w̃) = {φF1 (w̃), φF2 (w̃), . . . , φFt (w̃)}. Subsequently, we obtain an optimal exponential parametrization [let us assume φFi (·)] based on the mapped cluster.
Consequently, we continue to optimize the weight vector w̃ via φFi (·). Note that HBNN obtains the binarized weight vector via sign(φFi (w̃)).

we then update the cluster F in hyperbolic space

F ←



F1 ⊕−η ⊗
∂L
∂F1

F2 ⊕−η ⊗
∂L
∂F2

...

Ft ⊕−η ⊗
∂L
∂Ft


(9)

where the notation ⊗ represents the multiplication formalism
for hyperbolic geometry.

Multiplication [39]: In the Poincaré ball, the scalar multi-
plication of p ∈ Dn

r \{0} by c ∈ R is defined as follows:

c ⊗ p := (1/
√

r) tanh
(
c tanh−1(√r∥p∥

)) p
∥p∥

. (10)

Recall that the straight-through estimator ∂L/∂w =

∂L/∂ sign(w) holds when |w| ≤ 1 is satisfied, as indicated
by (3). In hyperbolic space, the weight vector w := φF (w̃) ∈

Dn
r naturally satisfies the constraint ∥w∥ < 1/

√
r . By slightly

modifying the bounds of the straight-through estimator (1→
1/
√

r), we can directly use ∂L/∂w = ∂L/∂ sign(w), which is
always guaranteed to hold.

Assuming that Fi is an optimal point (φFi (·) represents an
optimal exponential parametrization) obtained by updating (9),
we have

min
w̃∈Rn

L
(
φFi (w̃);D

)
. (11)

Following the straight-through estimator, we can compute
the gradients ∂L/∂w to update the weight vector in the
unconstrained Euclidean space:

w̃← w̃− η
∂L
∂w

φ′Fi
(w̃). (12)

Notably, the optimization of HBNN is an iterative process.
Initially, we update the EPC φF (·) to obtain the optimal expo-
nential parametrization φFi (·) while keeping the weight vector
w̃ fixed. Subsequently, we update the weight vector w̃ using
φFi (·). The training process is summarized in Algorithm 1.

Intuitively, we can map the weight vector from hyperbolic
space back to Euclidean space using the inverse of the optimal
exponential parametrization φFi (·). This mapping is a differen-
tiable, as confirmed by the algebraic identity φ−1

Fi
(φFi (v)) = v,

satisfying a closed formula.

V. METHOD ANALYSIS

A. Theoretical Analysis

In Riemannian geometry, the Riemannian exponential map
serves as a metric change. In this article, the EPC φF (·) applies
gradient descent to update the cluster F , which is an operation
equivalent to the Riemannian exponential map exp(·) with an
optimal metric change in hyperbolic space. This optimal metric
change is evaluated by comparing multiple changes of metric,
as opposed to a single change, in hyperbolic space.

Definition 1 (Diffeomorphism [38]): Given a complete
Riemannian manifold (M, g) and a point p ∈ M, the
exponential map φ with respect to the largest convex open
neighborhood of zero Xp ⊆ TpM is a diffeomorphism.

According to Definition 1, the EPC is a diffeomorphism
in the Poincaré ball Dn

r . This property ensures that the opti-
mization of parametrized weight vectors does not introduce
or eliminate local minima at the loss landscape. However, the
diffeomorphism ceases at the boundary of the Poincaré ball
∂Dn

r , i.e., the sphere Sn
r , potentially altering the local minima.

Therefore, the Poincaré ball Dn
r is a preferable choice over the

sphere Sn
r .

Authorized licensed use limited to: Zhejiang University. Downloaded on November 17,2025 at 08:11:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HYPERBOLIC BINARY NEURAL NETWORK 10329

Algorithm 1 Forward and Backward Propagation of HBNN
Require: A minibatch of data samples D = {xi , yi }

m
i=1, cur-

rent binary weight wb
k , latent full-precision unconstrained

weight w̃k , latent full-precision constrained weight wk , the
cluster F , and a learning rate η.

Ensure: Update w̃k and F .
1: {Forward propagation}
2: for k = 1 to l − 1 do
3: Compute the weight via an optimal exponential

parametrization: wk ← φFi (w̃k);
4: Binarize the weight: wb

k ← sign(wk);
5: Binarize the activation: ab

k−1 ← sign(ak−1);
6: Perform: ak ← XnorDotProduct(wb

k , ab
k−1);

7: Perform: ak ← BatchNorm(ak);
8: end for
9: {Backward propagation}

10: Optimize the unconstrained problem with Eq. (8);
11: Compute the gradient of the overall loss function, i.e., ∂L

∂a ,
∂L
∂w and ∂L

∂F , where the sign function can be handled
in Eq. (3) for the weight and Eq. (4) for activation;

12: {The parameter update}
13: Optimize the exponential parametrization cluster φF (·) in

Eq. (6) by updating the cluster in Eq. (9), then obtain
the optimal exponential parametrization φFi (·);

14: Update the weight using Eq. (12) based on the optimal
exponential parametrization φFi (·);

Definition 2 (Segment [44]): The segment domain segp is

segp =
{
v ∈ TpDn

r | exp(tv) : [0, 1] → Dn
r is a segment

}
which satisfies Dn

r = exp(segp).
For the Riemannian exponential map, Definition 2 indicates

that the segment domain segp is a closed star-shaped subset of
Rn . As for the EPC, we have Dn

r = φF1(seg∗p)∪φF2(seg∗p) · · ·∪
φFt (seg∗p). This implies that, in order to cover Dn

r , the required
segment seg∗p for the EPC is less than or equal to the required
segment segp for the Riemannian exponential map, i.e., seg∗p ⊆
segp. In practice, the EPC increases the probability of weight
flips by shrinking the segment domain, suggesting that weight
vectors in seg∗p can explore more efficiently than in segp.

B. Method Comparison and Explanation

1) HBNN Versus BNN: The improvement of HBNN over
the general BNN can be primarily attributed to the uncon-
strained optimization via the EPC. In backpropagation, HBNN
introduces additional computational overhead to the training
process. Considering (9) and (12), we update both F and w̃,
thereby increasing the number of trainable parameters. In the
inference phase, HBNN behaves similar to general BNNs,
because both w̃ and F contribute to binarized weight vectors
sign(w) = sign(φFi (w̃)) based on the optimal exponential
parametrization φFi . While general BNNs obtain binarized
weight vectors through sign(w̃), the representations of sign(w̃)

and sign(w) involve the same parameter size and OPs in
the inference phase. Therefore, HBNN does not introduce
additional computational overhead to the inference process.

TABLE I
TOP-1 CLASSIFICATION ACCURACY RESULTS ON CIFAR100

WITH RESNET18 WITH RESPECT TO DIFFERENT RADII r

Fig. 3. Weight flip rates of our HBNN and XNOR++ in different layers of
ResNet18.

2) HBNN Versus MD: The method of MD [18] presents
the mirror descent framework, mapping variables from the
unconstrained space to the quantized one, which proves ben-
eficial to BNN optimization. In contrast, HBNN provides the
Riemannian geometry framework, mapping variables from the
unconstrained space to hyperbolic space. From the perspective
of mapping, the mirror map of MD is set artificially, whereas
the EPC in HBNN is optimized via the derivative of the
loss function with respect to F . From the perspective of
optimization, the unconstrained problem of MD solely aims
at optimizing the weight vector. However, HBNN also takes
into account the optimization of the mapping itself, i.e., the
EPC. This dual optimization is advantageous for increasing
the probability of weight flips to maximize the information
gain.

VI. EXPERIMENTS

In this section, we conduct experiments to compare our
HBNN, trained from scratch, with the existing state-of-the-art
methods in classification tasks. We evaluate the performance
of the proposed method on CIFAR [45] and ImageNet [1]
datasets. All experiments are implemented on NVIDIA 3090Ti
using the PyTorch framework.

CIFAR Datasets: The CIFAR benchmarks consist of natural
color images with 32 × 32 pixels. There are two datasets:
CIFAR10 (C10) with images organized into ten classes and
CIFAR100 (C100) with images organized into 100 classes.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 17,2025 at 08:11:28 UTC from IEEE Xplore. Restrictions apply.

10330 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 6, JUNE 2025

Fig. 4. Validation accuracy curves of our HBNN, RBNN, and ReCU on the
CIFAR10 dataset with VGGsmall.

TABLE II
TOP-1 CLASSIFICATION ACCURACY RESULTS ON CIFAR10 AND

CIFAR100 DATASETS WITH RESNET18 AND VGGSMALL. W/A
DENOTES THE BIT WIDTH OF WEIGHTS/ACTIVATIONS

Each dataset comprises 50k training images and 10k test
images. We adopt a standard data augmentation scheme,
including random clipping and flipping, which is widely
used [46]. The images are normalized in preprocessing using
the means and standard deviations of channels.

ImageNet Dataset: The ImageNet benchmark consists of
1.2 million high-resolution natural images, with a valida-
tion set containing 50k images. These images are organized
into 1000 object categories for training and resized to
224 × 224 pixels before being fed into the network. Standard
data augmentation strategies, such as random clips and hor-
izontal flips [46], are applied. Single-crop evaluation results
are reported using Top-1 and Top-5 accuracies.

Experimental Setup: For CIFAR datasets, our HBNNs are
trained for a total of 600 epochs with a batch size of 256.

TABLE III
TOP-1 AND TOP-5 CLASSIFICATION ACCURACY RESULTS ON THE

IMAGENET DATASET WITH RESNET18 AND RESNET34. W/A
DENOTES THE BIT WIDTH OF WEIGHTS/ACTIVATIONS

We adopt the SGD optimizer with a momentum of 0.9 and a
weight decay of 5e-4. For the ImageNet dataset, our HBNN
is trained for a total of 250 epochs with a batch size of 512.
The same SGD optimizer settings are used, with a momentum
of 0.9 and a weight decay of 1e-4. Notably, we initialize
the learning rate at 0.1 and utilize the cosine learning rate
scheduler in CIFAR10/CIFAR100 and ImageNet.

A. Ablation Study

We conduct a series of ablation studies on CIFAR100
using the ResNet18 model. Leveraging two parameter spaces,
namely, HBNN for the Poincaré ball Dn

r and SBNN for
the sphere Sn

r , i.e., the boundary of the Poincaré ball ∂Dn
r ,

we adjust different radii r to determine the optimal radius by
evaluating classification accuracies at epoch 120. The mean
Top-1 accuracies (mean ± std) are presented in Table I.
Consequently, we determine r = 0.05 for the parameter space
Dn

r and r = 1 for the parameter space Sn
r , which will be used in

subsequent experiments. While the radius choice has a slight
impact, its effect is minimal when considering the variation in
results due to different random seeds. Thus, the radius can be
considered a robust parameter in our method.

Fig. 3 illustrates the weight flip rates of our HBNN and
XNOR++ in different layers of ResNet18 on CIFAR10.
As observed, HBNN results in approximately 50% weight flips
in each layer, demonstrating that the EPC effectively increases
the probability of weight flips.

B. Comparison With State-of-the-Art Methods

The validation curves for ResNet18 are presented in Fig. 4.
In comparison with RBNN [19] and ReCU [31] on CIFAR10,

Authorized licensed use limited to: Zhejiang University. Downloaded on November 17,2025 at 08:11:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HYPERBOLIC BINARY NEURAL NETWORK 10331

Fig. 5. 2-D visualization of the loss surfaces of ResNet18 on CIFAR10 dataset enables comparisons of the sharpness/flatness of different methods. The
sharpness of loss surfaces is indicated by the accompanying numbers, with the yellow area representing particularly large peaks. In comparison with XNOR++,
HBNN exhibits flatter loss surfaces.

Fig. 6. Latency comparison between HBNN and BNN during inference and
training phases.

TABLE IV
PARAMETER SIZE AND OPS IN RESNET MODELS

the validation accuracies of our HBNN show robust and stable
convergence throughout the training epochs.

We conduct a thorough evaluation of our method against
state-of-the-art methods, repeating each experiment five times
and reporting statistics from the last 10/5 epochs’ test accu-
racies for a fair comparison. As indicated in Table II, HBNN
consistently outperforms the existing SOTA methods. Notably,
our HBNN (with 1-bit weights and 1-bit activations) achieves
performance improvements exceeding 1.2% and 1.6% with the
VGGsmall architecture on CIFAR10 and CIFAR100, respec-
tively. For the 1/32 case, the instability in the training of SBNN
is noteworthy, possibly stemming from the EPC stopping a
diffeomorphism in the sphere Sn

r , based on our theoretical
analysis in Section V.

TABLE V
TOP-1 CLASSIFICATION ACCURACY RESULTS ON THE CIFAR10 DATASET

WITH RESNET18 AND VGGSMALL. W/A DENOTES THE BIT WIDTH
OF WEIGHTS/ACTIVATIONS

TABLE VI
TOP-1 AND TOP-5 CLASSIFICATION ACCURACY RESULTS ON THE

IMAGENET DATASET WITH RESNET18 AND RESNET34. W/A
DENOTES THE BIT WIDTH OF WEIGHTS/ACTIVATIONS

Table III highlights that HBNN consistently outperforms
the existing state-of-the-art methods in both Top-1 and Top-
5 accuracies. Specifically, our proposed method achieves a
0.8% improvement in Top-1 accuracy with the ResNet18 and
ResNet34 architectures compared with the ReCU method on
ImageNet.

C. Visualization

In addition, we provide a 2-D visualization of the loss
surfaces for both HBNN and XNOR++ in according with
previous work [58]. Analyzing Fig. 5, it becomes evident that
the loss surface of the full-precision model is smooth and
flat, a characteristic beneficial to training and representing

Authorized licensed use limited to: Zhejiang University. Downloaded on November 17,2025 at 08:11:28 UTC from IEEE Xplore. Restrictions apply.

10332 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 6, JUNE 2025

in neural networks. With the EPC, HBNN maintains the
property of diffeomorphism by not introducing or eliminating
local minima in the loss surfaces, in contrast to XNOR++.
Consequently, HBNN exhibits relatively flatter loss surfaces
than XNOR++, suggesting that the EPC contributes to more
effective optimization of BNNs.

D. Computational Complexity

Based on the analysis in Section V, HBNN introduces
additional computational overhead to the training process,
as it requires training weights and the EPC. Nevertheless,
during inference, HBNN behaves similar to general BNNs,
because both w̃ and F contribute to binarized weight vectors
sign(w) = sign(φFi (w̃)) based on the optimal exponential
parametrization φFi . While general BNNs obtain binarized
weight vectors through sign(w̃), the representations of sign(w̃)

and sign(w) involve the same parameter size and OPs in
the inference phase. Therefore, HBNN does not introduce
additional computational overhead to the inference process.

In Fig. 6, when comparing the latency of HBNN and
BNN in the inference and training phases, we observe that
the latency of HBNN is slightly higher than that of BNN
during the training process across different models, while their
inference latency remains consistent, thereby confirming our
previous analysis. Furthermore, we use the parameter size
and OPs following [56] for comparison with other methods.
As shown in Table IV, HBNN exhibits the same parameter
size and OPs as other methods in the inference phase, which
is significant for real-time applications.

E. Compatibility

We further evaluate the compatibility of HBNN to illustrate
the universality of our method. We integrate HBNN into
IR-Net and ReCU as a plug-and-play module, as presented
in Tables V and VI. The incorporation of HBNN into these
methods results in a noticeable performance improvement.

VII. CONCLUSION

This article introduces the optimization framework of
HBNN, which transforms a constrained problem in hyperbolic
space into an unconstrained one in Euclidean space using
the EPC. Through the analysis of the EPC, we have deter-
mined that it accelerates the exploration of weight vectors,
thereby increasing the probability of weight flips compared
to the Riemannian exponential map. Experimental results
demonstrate that HBNN achieves approximately 50% weight
flips, effectively optimizing BNNs to achieve state-of-the-
art performance. In the future, our focus will shift toward
further exploring the optimization of neural networks from
a geometrical perspective.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 25, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. pattern Recognit., 2016, pp. 779–788.

[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2961–2969.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[6] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1520–1528.

[7] X. Ding, X. Zhou, Y. Guo, J. Han, and J. Liu, “Global sparse momentum
SGD for pruning very deep neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019.

[8] M. Lin et al., “HRank: Filter pruning using high-rank feature map,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 1529–1538.

[9] S. Bai, J. Chen, X. Shen, Y. Qian, and Y. Liu, “Unified data-free
compression: Pruning and quantization without fine-tuning,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2023, pp. 5876–5885.

[10] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for
8-bit training of neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 31, 2018.

[11] K. Helwegen, J. Widdicombe, L. Geiger, Z. Liu, K.-T. Cheng, and
R. Nusselder, “Latent weights do not exist: Rethinking binarized neural
network optimization,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
2019.

[12] J. Chen, Y. Liu, H. Zhang, S. Hou, and J. Yang, “Propagating asymptotic-
estimated gradients for low bitwidth quantized neural networks,” IEEE
J. Sel. Top. Signal Process., vol. 14, no. 4, pp. 848–859, May 2020.

[13] J. Chen, H. Chen, M. Wang, G. Dai, I. W. Tsang, and Y. Liu, “Learning
discretized neural networks under Ricci flow,” 2023, arXiv:2302.03390.

[14] J. Chen, S. Bai, T. Huang, M. Wang, G. Tian, and Y. Liu, “Data-
free quantization via mixed-precision compensation without fine-tuning,”
Pattern Recognit., vol. 143, Nov. 2023, Art. no. 109780.

[15] Y. Liu, J. Chen, and Y. Liu, “DCCD: Reducing neural network redun-
dancy via distillation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35,
no. 7, pp. 10006–10017, Jul. 2024.

[16] J. Chen, L. Liu, Y. Liu, and X. Zeng, “A learning framework for n-bit
quantized neural networks toward FPGAs,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 3, pp. 1067–1081, Mar. 2021.

[17] S. Bubeck, “Convex optimization: Algorithms and complexity,” Found.
Trends Mach. Learn., vol. 8, nos. 3–4, pp. 231–357, 2015.

[18] T. Ajanthan, K. Gupta, P. Torr, R. Hartley, and P. Dokania, “Mirror
descent view for neural network quantization,” in Proc. Int. Conf. Artif.
Intell. Statist., Mar. 2021, pp. 2809–2817.

[19] M. Lin et al., “Rotated binary neural network,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 33, 2020, pp. 7474–7485.

[20] H. W. Guggenheimer, Differential Geometry. Courier Corporation, 2012.
[21] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on

Matrix Manifolds. Princeton, NJ, USA: Princeton Univ. Press, 2009.
[22] J. Chen, “Decentralized Riemannian conjugate gradient method on the

stiefel manifold,” in Proc. 12th Int. Conf. Learn. Represent., 2024.
[Online]. Available: https://openreview.net/forum?id=PQbFUMKLFp

[23] K. Helfrich, D. Willmott, and Q. Ye, “Orthogonal recurrent neural
networks with scaled Cayley transform,” in Proc. Int. Conf. Mach. Learn.
(PMLR), 2018, pp. 1969–1978.

[24] M. Lezcano-Casado and D. Martinez-Rubio, “Cheap orthogonal con-
straints in neural networks: A simple parametrization of the orthogonal
and unitary group,” in Proc. Int. Conf. Mach. Learn. (PMLR), 2019,
pp. 3794–3803.

[25] M. L. Casado, “Trivializations for gradient-based optimization on man-
ifolds,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019.

[26] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis. Springer, 2016, pp. 525–542.

[27] A. Bulat and G. Tzimiropoulos, “XNOR-Net++: Improved binary neural
networks,” 2019, arXiv:1909.13863.

[28] Z. Liu, W. Luo, B. Wu, X. Yang, W. Liu, and K.-T. Cheng, “Bi-Real
net: Binarizing deep network towards real-network performance,” Int.
J. Comput. Vis., vol. 128, no. 1, pp. 202–219, Jan. 2020.

[29] X. He et al., “ProxyBNN: Learning binarized neural networks via
proxy matrices,” in Proc. Eur. Conf. Comput. Vis. (ECCV). Springer,
Aug. 2020, pp. 223–241.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 17,2025 at 08:11:28 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HYPERBOLIC BINARY NEURAL NETWORK 10333

[30] H. Qin et al., “Forward and backward information retention for accurate
binary neural networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 2250–2259.

[31] Z. Xu et al., “ReCU: Reviving the dead weights in binary neural
networks,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., Oct. 2021,
pp. 5198–5208.

[32] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016.

[33] L. Huang, X. Liu, Y. Liu, B. Lang, and D. Tao, “Centered weight
normalization in accelerating training of deep neural networks,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2822–2830.

[34] P. Petersen, Riemannian Geometry (Graduate Texts in Mathematics).
Springer-Verlarg, 2006.

[35] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or −1,” 2016, arXiv:1602.02830.

[36] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning,” Coursera, Video Lectures, vol. 264, no. 1, pp. 2146–2153,
2012.

[37] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” 2013,
arXiv:1308.3432.

[38] J. W. Anderson, Hyperbolic Geometry. Springer, 2006.
[39] O. Ganea, G. Bécigneul, and T. Hofmann, “Hyperbolic neural networks,”

in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018.
[40] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical

representations,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017.
[41] O. Ganea, G. Bécigneul, and T. Hofmann, “Hyperbolic entailment cones

for learning hierarchical embeddings,” in Proc. Int. Conf. Mach. Learn.
(PMLR), 2018, pp. 1646–1655.

[42] A. A. Ungar, “Hyperbolic trigonometry and its application in the
Poincaré ball model of hyperbolic geometry,” Comput. Math. Appl.,
vol. 41, nos. 1–2, pp. 135–147, Jan. 2001.

[43] A. A. Ungar, “A gyrovector space approach to hyperbolic geometry,”
Synth. Lectures Math. Statist., vol. 1, no. 1, pp. 1–194, Jan. 2008.

[44] P. Petersen, Riemannian Geometry. Springer, 2016, pp. 1–39.
[45] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” Toronto, ON, Canada, 2009.
[46] W. Wang et al., “Accelerate CNNs from three dimensions: A compre-

hensive pruning framework,” in Proc. Int. Conf. Mach. Learn. (PMLR),
2021, pp. 10717–10726.

[47] Y. Shang, D. Xu, Z. Zong, L. Nie, and Y. Yan, “Network binarization
via contrastive learning,” 2022, arXiv:2207.02970.

[48] X.-M. Wu, D. Zheng, Z. Liu, and W.-S. Zheng, “Estimator meets
equilibrium perspective: A rectified straight through estimator for binary
neural networks training,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2023, pp. 17009–17018.

[49] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 28, 2015.

[50] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” 2016, arXiv:1606.06160.

[51] R. Ding, T.-W. Chin, Z. Liu, and D. Marculescu, “Regularizing acti-
vation distribution for training binarized deep networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 11408–11417.

[52] R. Gong et al., “Differentiable soft quantization: Bridging full-precision
and low-bit neural networks,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 4852–4861.

[53] Z. Yang et al., “Searching for low-bit weights in quantized neural
networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 4091–4102.

[54] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional
neural network,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017.

[55] Y. Xu, K. Han, C. Xu, Y. Tang, C. Xu, and Y. Wang, “Learning frequency
domain approximation for binary neural networks,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 34, 2021, pp. 25553–25565.

[56] S. Xu et al., “Resilient binary neural network,” in Proc. AAAI Conf.
Artif. Intell., 2023, vol. 37, no. 9, pp. 10620–10628.

[57] K. Han, Y. Wang, Y. Xu, C. Xu, E. Wu, and C. Xu, “Training binary
neural networks through learning with noisy supervision,” in Proc. Int.
Conf. Mach. Learn. (PMLR), 2020, pp. 4017–4026.

[58] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the
loss landscape of neural nets,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 31, 2018.

Jun Chen received the B.S. degree from the Depart-
ment of Mechanical and Electrical Engineering,
China Jiliang University, Hangzhou, China, in 2016,
and the M.S. degree in control engineering and
Ph.D. degree in control science and engineering from
Zhejiang University, Hangzhou, in 2020 and 2024,
respectively.

He is currently a Distinguished Professor at
Zhejiang Normal University, Jinhua, China. His
research interests include deep learning, model com-
pression, decentralized optimization, and manifold
optimization.

Jingyang Xiang received the B.S. degree in electri-
cal engineering and automation from Zhejiang Uni-
versity of Technology, Hangzhou, China, in 2022.
He is currently pursuing the M.S. degree with
the College of Control Science and Engineering,
Zhejiang University, Hangzhou.

His current research interests include efficient AI,
especially LLM quantization.

Tianxin Huang received the bachelor’s degree in
mechanical engineering from Xi’an Jiaotong Univer-
sity (XJTU), Xi’an, China, in 2017, and the doctor’s
degree from the April Lab, Zhejiang University,
Hangzhou, China, in 2023.

He is currently a Research Fellow (Postdoc) at the
National University of Singapore (NUS), School of
Computing, Singapore, focusing on 3-D computer
vision. His current research interests include but not
limited to 3-D reconstruction, neural rendering, 3-D
face reconstruction, and 3-D point cloud analysis.

Xiangrui Zhao received the B.S. degree from the
Huazhong University of Science and Technology,
Wuhan, China, in 2018, and the Ph.D. degree from
the Institute of Cyber Systems and Control, Zhejiang
University, Hangzhou, China, in 2023.

His current research interests include BEV percep-
tion and end-to-end autonomous driving.

Yong Liu (Member, IEEE) received the B.S.
degree in computer science and engineering and the
Ph.D. degree in computer science from Zhejiang
University, Hangzhou, China, in 2001 and 2007,
respectively.

He is currently a Professor with the Institute of
Cyber Systems and Control, Department of Con-
trol Science and Engineering, Zhejiang University.
He has published more than 30 research articles
in machine learning, computer vision, information
fusion, and robotics. His latest research interests

include machine learning, robotics vision, information processing, and
granular computing.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 17,2025 at 08:11:28 UTC from IEEE Xplore. Restrictions apply.

