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a b s t r a c t 

Neural network quantization is a very promising solution in the field of model compression, but its result- 

ing accuracy highly depends on a training/fine-tuning process and requires the original data. This not only 

brings heavy computation and time costs but also is not conducive to privacy and sensitive information 

protection. Therefore, a few recent works are starting to focus on data-free quantization. However, data- 

free quantization does not perform well while dealing with ultra-low precision quantization. Although 

researchers utilize generative methods of synthetic data to address this problem partially, data synthe- 

sis needs to take a lot of computation and time. In this paper, we propose a data-free mixed-precision 

compensation (DF-MPC) method to recover the performance of an ultra-low precision quantized model 

without any data and fine-tuning process. By assuming the quantized error caused by a low-precision 

quantized layer can be restored via the reconstruction of a high-precision quantized layer, we mathemat- 

ically formulate the reconstruction loss between the pre-trained full-precision model and its layer-wise 

mixed-precision quantized model. Based on our formulation, we theoretically deduce the closed-form so- 

lution by minimizing the reconstruction loss of the feature maps. Since DF-MPC does not require any 

original/synthetic data, it is a more efficient method to approximate the full-precision model. Experimen- 

tally, our DF-MPC is able to achieve higher accuracy for an ultra-low precision quantized model compared 

to the recent methods without any data and fine-tuning process. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

In order to realize the deployment of deep neural networks 

n resource-constrained lightweight devices, a series of remark- 

ble neural network compression techniques are gradually de- 

eloping, including low-rank factorization [1] , parameter and fil- 

ers pruning [2–5] , quantization [6–9] and knowledge distillation 

10–13] . Among these neural network compression techniques, 

uantization is viewed as a more suitable scheme for hardware ac- 

eleration [14,15] than pruning and knowledge distillation. In this 

ense, this paper will focus on quantization. 

Quantization can be divided into data-driven quantization and 

ata-free quantization [16–19] according to whether it depends 

n the data. And data-driven quantization can be further sub- 
∗ Corresponding authors. 
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ivided into quantization-aware training [7,14,20,21] and post- 

raining quantization [22–24] according to whether it depends on 

raining/fine-tuning. However, the original training data is not al- 

ays easily accessible, especially for privacy, security, and deploy- 

ent in the field. Therefore, data-free quantization is a vital re- 

earch direction to achieve a low-precision model without any 

riginal data and training. 

The accuracy drop of data-free quantization is particularly dra- 

atic when focusing on the ultra-low precision model. Thus, re- 

earchers are starting to utilize generative methods [17,25,26] to 

enerate synthetic samples that resemble the distribution of the 

riginal dataset and achieve high accuracy. However, generative 

ethods need to cost a lot of computation and time to synthesize 

ata, which conflicts with the concept of data-free. 

In this paper, we abandon the idea of data synthesis and re- 

tore the quantized error caused by the ultra-low precision quan- 

ization from the perspective of compensation. Inspired by a few 

orks [27–29] , we propose a data-free mixed-precision compensa- 

ion (DF-MPC) method to achieve higher accuracy for an ultra-low 

recision quantization without any data and fine-tuning process, as 
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Fig. 1. The overview of our DF-MPC method, where the filter in the lth layer is quantized to low-bitwidth and the filter in the (l + 1) th layer is quantized to high-bitwidth. 

The output of (l + 1) th convolutional layer can be restored by multiplying the compensation coefficient with respect to the input channel of the high-bitwidth filter, which is 

equivalent to multiplying the compensation coefficient with respect to the output channel of the low-bitwidth filter. Note that the reconstruction loss is the output difference 

of (l + 1) th layer from the pre-trained full-precision model and its layer-wise mixed-precision quantized model. 
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epicted in Fig. 1 . In summary, we make three main contributions, 

s shown below: 

• In two adjacent layers of a neural network, we assume that the 

quantized error caused by a low-precision quantized layer can 

be restored via the reconstruction of a high-precision quantized 

layer. Specifically, we quantize the weights in one layer into low 

precision values (e.g., 2-bit) and then recover the performance 

by reconstructing relatively higher precision (e.g., 6-bit) weights 

in the next layer. The layer-wise mixed-precision compensation 

assumption is described in Section 4.1 . 
• Based on the mixed-precision compensation assumption, we 

mathematically formulate the reconstruction loss between 

the pre-trained full-precision model and its mixed-precision 

quantized model. Without any fine-tuning process and origi- 

nal/synthetic data, we can achieve layer-wise mixed-precision 

quantization (e.g., 2/6-bit) only relying on our compensation 

method. The reconstruction loss is formulated in Section 4.2 . 
• Based on the reconstruction loss, we theoretically deduce the 

closed-form solution by minimizing the reconstruction loss 

of the feature maps to restore the quantized error caused 

by the low precision weight. The global minimum is solved 

in Section 4.3 . Furthermore, we verify the effectiveness of 

our compensation method through experiments on multi- 

ple datasets (CIFAR10, CIFAR100, and ImageNet) with multi- 

ple network structures (ResNet, DenseNet121, VGG16, and Mo- 

bileNetV2). 

. Related work 

Quantization is a kind of model compression method, which ac- 

elerates the forward inference phase by converting a full-precision 

odel to a low-precision model (with respect to weights or acti- 

ations). Whether the low-precision model needs any data or fine- 

uning, quantization can continue to be subdivided into the follow- 

ng three classes. 
2 
.1. Quantization-aware training (QAT) 

Since the low-precision representations of weights and acti- 

ations will cause an accuracy drop, quantization-aware train- 

ng (QAT) aims to reduce the accuracy drop by retraining or 

ne-tuning the low-precision with training/validation data [14,20] . 

specially for the ultra-low precision (e.g., binary [7,21] and 

ernary [30,31] ), QAT can also obtain a satisfactory quantized 

odel. 

However, the training process for QAT is computationally ex- 

ensive and time-consuming. Specifically, the training time and 

emory of QAT far exceed full precision model training due to 

imulating quantization operators [32] . On the other hand, in some 

rivate or secure situations, the original training/validation data is 

ot easy to access. 

.2. Post-training quantization (PTQ) 

Post-training quantization (PTQ) aims to obtain an accurate 

ow-precision model without any fine-tuning process. Therefore, 

TQ requires relatively less computation and time consump- 

ion than QAT. Specifically, Banner et al. [22] proposed the 

-bit post-training quantization method that introduces a per- 

hannel allocation and bias-correction, and approximates the 

ptimal clipping value analytically from the distribution of 

he tensor. Zhao et al. [23] proposed outlier channel splitting 

hat requires no additional training and works on commodity 

ardware. Nagel et al. [24] found a good solution to the per- 

ayer weight-rounding mechanism via a continuous relaxation, 

ut this method still requires a small amount of unlabelled 

ata. 

Since QAT is fully trained on the entire training data, PTQ’s per- 

ormance tends to be inferior to QAT’s regardless of the bit width 

uantization, which is also the bottleneck of PTQ. And compared 

o QAT, PTQ is also still not completely free from the original data 

ependence. 
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.3. Data-free quantization (DFQ) 

Compared to QAT and PTQ, data-free quantization (DFQ) re- 

uires neither training/validation data nor fine-tuning/training pro- 

ess. In particular, Nagel et al. [16] could greatly recover the accu- 

acy of low-precision models by applying weight equalization and 

ias correction. However, it suffers a huge accuracy drop while the 

it width is less than 6-bit. Cai et al. [17] utilized synthetic data to

chieve mixed-precision quantization, but it is also difficult to deal 

ith the accuracy drop below 4-bit. 

Recently, researches on DFQ seem to turn to data sampling 

nd generation. Zhang et al. [18] proposed a sample generation 

ethod that enhances the diversity of data by slacking the align- 

ent of feature statistics in the BN layer and designing a layerwise 

nhancement. Choi et al. [19] proposed a method that uses su- 

erposed latent embeddings to generate synthetic boundary sup- 

orting samples, and confirmed that samples near the bound- 

ry can improve the performance of a low-precision model. Al- 

hough DFQ based on data synthesis does not use the original 

raining/validation data, it costs a lot of computation and time to 

ynthesize the data. 

. Problem formulation of data-free quantization 

In this section, we present the problem of data-free quantiza- 

ion with the corresponding full-precision pre-trained model. 

.1. Background and notations 

Given a neural network model with L layers, we denote W 

l ∈ 

 

o×i ×k ×k and A 

l−1 ∈ R 

i ×w ×h as the weight in the lth layer and acti- 

ation in the (l − 1) th layer, where o represents the size of output 

hannels, i represents the size of input channels, k × k is the size 

f kernel filters and w × h is the size of activation maps. Then we

btain the feature maps X 

l ∈ R 

o×w ×h 

 

l = W 

l 
� A 

l−1 , (1) 

here � is the standard convolution operation. By introducing the 

ctivation function f and a batch normalization BN , we can finally 

utput the activation map based on the feature map 

 

l = f 
(
BN 

(
X 

l 
))

. (2) 

Subsequently, we consider the ternary weight tensor in the lth 

ayer that consists of three quantized values {−1 , 0 , +1 } and a scal-

ng factor αl 

ˆ 
 

l = 

⎧ ⎨ 

⎩ 

+1 , if W 

l > �l 

0 , if 
∣∣W 

l 
∣∣ ≤ �l 

−1 , if W 

l < −�l 

. (3) 

ased on Ternary Weight Networks [30] , we can obtain the opti- 

ized layer-wise values of the threshold �l and the scaling factor 
l 

�l = 0 . 7 E 

(∣∣W 

l 
∣∣)

αl = E 

j ∈ { j | W 

l ( j ) | > �l } 
(∣∣W 

l ( j) 
∣∣). (4) 

ince the layer-wise scaling factor αl can be absorbed into a batch 

ormalization, we can omit αl and use Eq. (3) to represent the 

ernary weight tensor directly. 

The new feature map 

ˆ X 

l will deviate from the original feature 

ap X 

l when we consider the quantization of the weight tensor, 

esulting in a rapid accuracy drop of the neural network without 

ne-tuning, i.e., 

ˆ 
 

l = 

ˆ W 

l 
� A 

l−1 � = X 

l . (5) 
3 
.2. Problem statement 

Therefore, we consider reconstructing the weight tensor in the 

ext layer to compensate the feature map in the next layer such 

hat we can recover the accuracy of the low-precision model. Note 

hat we choose a relatively high-precision quantization for the 

eight tensor of the next layer ˜ W 

l+1 because it is required to com- 

ensate the quantized error caused by ˆ W 

l as much as possible. 

nd we can apply the uniform quantization with k -bit based on 

oReFa-Net [20] 

 Q (·) = 

2 

2 

k − 1 

round 

[ 
(2 

k − 1) 
( ·

2 max | · | + 

1 

2 

)] 
− 1 . (6) 

imilarly, we omit the layer-wise scaling factor max | · | as it can 

e absorbed into a batch normalization. And we need to make the 

econstruction loss between the new feature map and the original 

eature map as small as possible. 

By introducing the coefficient vector c = [ c 1 , c 2 , . . . , c i ] 
T ≥ 0

hose each component corresponds each input channel of the 

eight tensor in the (l + 1) th layer, we give the jth channel of re-

onstructed weight tensor as follows: 

˜ 
 

l+1 
j 

= c j · k Q 

(
W 

l+1 
j 

)
. (7) 

e hope to find an optimal c such that the reconstructed feature 

ap 

˜ X 

l+1 
t is close to the original feature map X 

l+1 
t , i.e., 

˜ 
 

l+1 
t = 

˜ W 

l+1 
t, j 

� ˆ A 

l 
j + 

i ∑ 

m =1 ,m � = j 
W 

l+1 
t,m 

� A 

l 
m 

≈ X 

l+1 
t = 

i ∑ 

m =1 

W 

l+1 
t,m 

� A 

l 
m 

. (8) 

here the shapes of the weight and activation tensors are o × i ×
 × k and i × w × h , respectively. As a result, ˜ X 

l+1 
t and X 

l+1 
t indicate

he tth output channel of the feature map. Note that when we use 

he same notation j or m to indicate the channel of the weight 

nd activation, it means that their dimensions are the same and 

orrespond to each other in the computation. 

Consequently, our problem aims to find a coefficient vector c 

o minimize the reconstruction loss based on a full-precision pre- 

rained model W without any training process and data, i.e., 

in 

c 

o ∑ 

t=1 

‖ 

˜ X 

l+1 
t − X 

l+1 
t ‖ 

2 
2 , (9) 

ote that we apply the mixed-precision quantization, i.e., one layer 

ow-bitwidth (ternary) and one layer high-bitwidth that is used for 

ompensation. The mixed-precision structures of some main deep 

eural networks are shown in Fig. 2 . 

Although we consider restoring the quantized error for the 

ernary values, our method is not limited to the ternary case, but 

s also applicable to higher precision case (even the same as the 

recision of the quantized filter). For example, we have different 

ixed-precisions, such as 2/6-bit, 3/6-bit, 6/6-bit etc. Note that in 

his paper, we use the ternary filter just to distinguish it from the 

uantized filter. 

. Proposed method of mixed-precision compensation 

In this section, we theoretically give the layer-wise mixed- 

recision compensation assumption for the reconstruction loss of 

q. (9) . According to this assumption, we present our data-free 
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Fig. 2. The layer-wise mixed-precision structures of some main deep neural networks. (a): a building block for ResNet18/ResNet34. (b): a bottleneck block for 

ResNet50/ResNet101. (c): a dense block for DenseNet. (d): a building block for deep neural networks. 
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ixed-precision compensation method to recover the accuracy of 

he low-precision neural network. 

.1. Compensation assumption 

In order to minimize Eq. (9) without any data and fine-tuning 

rocess, we assume that the quantized error of each filter with 

ow-bitwidth can be partly compensated by reconstructing filters 

ith high-bitwidth in the next layer. Then we further assume that 

he reconstructed filter consists of a linear combination of the 

igh-bitwidth filters and the coefficient value, which is defined as 

q. (7) . 

ssumption 1. In order to minimize Eq. (9) with a data-free ver- 

ion, we propose a one-to-one channel-wise compensation as- 

umption that the quantized error caused by the low-bitwidth 

uantization of each channel of the filter can be compensated by 

he high-bitwidth quantization of the corresponding channel of the 

lter in the next layer. 

Without loss of generality, let the filter of the lth layer be quan- 

ized to low-bitwidth (ternary) such that the tth channel of the 

econstruction loss in the (l + 1) th layer can be represented as 

˜ 
 

l+1 
t − X 

l+1 
t = 

˜ W 

l+1 
t, j 

� ˆ A 

l 
j 
− W 

l+1 
t, j 

� A 

l 
j 

 c j · k Q 

(
W 

l+1 
t, j 

)
� ˆ A 

l 
j 
− W 

l+1 
t, j 

� A 

l 
j 

 c j ·
(

k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
� ˆ A 

l 
j 
+ c j · W 

l+1 
t, j 

� ˆ A 

l 
j 
− W 

l+1 
t, j 

� A 

l 
j 

 c j ·
(

k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
� ˆ A 

l 
j 
+ W 

l+1 
t, j 

� (c j · ˆ A 

l 
j 
− A 

l 
j 
) . 

(10) 

ote that the lth output channel size of A and W is equal to the

l + 1) th input channel size of W . For brevity, we first omit the ac-

ivation function f and a batch normalization BN . Then the equa- 

ions ˆ A 

l 
j 
= 

ˆ X 

l 
j 

and A 

l 
j 
= X 

l 
j 

hold. By introducing the two formulas 

ˆ A 

l 
j 
= 

ˆ X 

l 
j 
= 

∑ i 
m =1 

ˆ W 

l 
j,m 

� A 

l−1 
m 

A 

l 
j 
= X 

l 
j 
= 

∑ i 
m =1 W 

l 
j,m 

� A 

l−1 
m 

. 
(11) 

heorem 1. If there is no batch normalization and activation func- 

ion between a feature map and its activation map based on Eq. 
4 
10) and (11) , the reconstruction loss in the tth channel can be for- 

ulated as follows: 

˜ 
 

l+1 
t − X 

l+1 
t = c j ·

(
k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
�

( 

i ∑ 

m =1 

ˆ W 

l 
j,m 

� A 

l−1 
m 

) 

+ W 

l+1 
t, j 

�

[ 

i ∑ 

m =1 

(
c j · ˆ W 

l 
j,m 

− W 

l 
j,m 

)
� A 

l−1 
m 

] 

. (12) 

roof. See Appendix 4.4 . �

For the term 

(
k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
of the above equation, 

ts value is determined. Since k Q 

(
W 

l+1 
t, j 

)
has a relatively high- 

itwidth, the value of this item is actually very small. When con- 

idering minimizing ‖ ˜ X 

l+1 
t − X 

l+1 
t ‖ , for the first row, we have a 

mall constraint on c j , i.e., a regularization term ‖ c ‖ . 
On the other hand, for the second row of the above equation, 

e can minimize the term ‖ ∑ i 
m =1 

(
c j · ˆ W 

l 
j,m 

− W 

l 
j,m 

)
� A 

l−1 
m 

‖ be- 

ause the term W 

l+1 
t, j 

comes from the full-precision pre-trained 

odel that is invariable. 

In summary, we prioritize minimizing the equation 

 

i ∑ 

m =1 

(
c j · ˆ W 

l 
j,m 

− W 

l 
j,m 

)
� A 

l−1 
m 

‖ 

2 
2 , (13) 

ince ‖ c j ‖ is less restrictive than the above equation. 

.2. Data-free compensation 

We now introduce a batch normalization BN with two statistics 

scale γ and shift β) and two trainable quantities (mean μ and 

ariance σ 2 ) [33] . By omitting the activation function f , we have 

he following two equations: 

ˆ A 

l 
j 
= BN 

(
ˆ X 

l 
j 

)
= ˆ γ j 

ˆ X l 
j 
− ˆ μ j 

ˆ σ j 
+ 

ˆ β j 

A 

l 
j 
= BN 

(
X 

l 
j 

)
= γ j 

X l 
j 
−μ j 

σ j 
+ β j . 

(14) 

emma 1. If there is only batch normalization between a feature map 

nd its activation map based on Eqs. (10) and (14) , the reconstruction 
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oss in the tth channel can be formulated as follows: 

˜ X 

l+1 
t − X 

l+1 
t 

= c j ·
(

k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
� ˆ A 

l 
j + W 

l+1 
t, j 

� (c j · ˆ A 

l 
j − A 

l 
j ) , (15) 

here 

 j · ˆ A 

l 
j − A 

l 
j = 

i ∑ 

m =1 

( 

c j ̂  γ j · ˆ W 

l 
j,m 

ˆ σ j 

−
γ j · W 

l 
j,m 

σ j 

) 

� A 

l−1 
m 

+ 

(
γ j 

σ j 

μ j −
c j ̂  γ j 

ˆ σ j 

ˆ μ j 

)
+ (c j ˆ β j − β j ) . (16) 

roof. See Appendix 4.4 . �

In order to minimize the reconstruction loss 
∑ o 

t=1 ‖ ˜ X 

l+1 
t −

 

l+1 
t ‖ 2 

2 
, we analyse that most of this loss actually come from the 

erm ‖ c j · ˆ A 

l 
j 
− A 

l 
j 
‖ 2 

2 
based on Eq. (10) . For the expansion of this

erm, it is actually the above equation. And the summation term 

ccupies a large proportion of Eq. (16) , which can be represented 

s: 

in 

c j 
‖ 

( 

c j ̂  γ j · ˆ W 

l 
j 

ˆ σ j 

−
γ j · W 

l 
j 

σ j 

) 

� A 

l−1 ‖ 

2 
2 . (17) 

ince A 

l−1 cannot be accessed without data, we can only minimize 

he other part of the above equation, i.e., 

in 

c j 
‖ 

( 

c j ̂  γ j · ˆ W 

l 
j 

ˆ σ j 

−
γ j · W 

l 
j 

σ j 

) 

‖ 

2 
2 . (18) 

Furthermore, we also introduce the activation function to con- 

ider the complete compensation process, i.e., ˆ A 

l 
j 
= f ( BN ( ˆ X 

l 
j 
)) and 

 

l 
j 
= f ( BN (X 

l 
j 
)) . Note that the activation function is generally 

eLU . 

emma 2. If there are both batch normalization and a ReLU function 

etween a feature map and its activation map, the reconstruction loss 

s the same as in Lemma 1 where the upper bound of c j · ˆ A 

l 
j 
− A 

l 
j 

is

iven by Eq. (16) , i.e., 

 c j · ˆ A 

l 
j − A 

l 
j | ≤ | c j · BN ( ˆ X 

l 
j ) − BN (X 

l 
j ) | (19) 

roof. See Appendix 4.4 . �

For brevity, let us use some variable substitution based on 

q. (16) : 
 

 

 

� = 

c j ̂ γ j · ˆ W 

l 
j 

ˆ σ j 
− γ j ·W 

l 
j 

σ j 

� = 

(
γ j 

σ j 
μ j − c j ̂ γ j 

ˆ σ j 
ˆ μ j 

)
+ (c j ˆ β j − β j ) 

. (20) 

onsequently, the reconstruction loss of Eq. (19) , we need to min- 

mize is 

 c j · ˆ A 

l 
j − A 

l 
j ‖ 

2 
2 = ‖ � � A 

l−1 + �‖ 

2 
2 . (21) 

Recall that the final reconstruction loss ‖ ˜ X 

l+1 
t − X 

l+1 
t ‖ 2 2 also 

equires minimizing the term ‖ c j ·
(

k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
‖ 2 2 in ad- 

ition to minimizing ‖ c j · ˆ A 

l 
j 
− A 

l 
j 
‖ 2 

2 
. Therefore, we introduce a 

egularization term ‖ c ‖ 2 
2 

for the purpose of restricting the term 

 c j ·
(

k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
‖ 2 

2 
. And we can give the data-free com- 

ensation loss function to minimize the final reconstruction loss 

 = ‖ �‖ 

2 
2 + λ1 ‖ �‖ 

2 
2 + λ2 ‖ c ‖ 

2 
2 , (22) 

here λ and λ are the regularization coefficients. 
1 2 

5 
.3. Method implementation 

First of all, we need to make some clarifications about our pro- 

osed method. On the one hand, the coefficient vector c is defined 

very two layers, whose size is equal to the output channel of the 

th layer and the input channel of the (l + 1) th layer. Note that

he two channel sizes are matched. On the other hand, for the 

igh-bitwidth compensation, we can achieve parallel computation 

f each input channel of ˜ W 

l+1 
j 

, and different channels will not af- 

ect each other. In other words, we can get ˜ W 

l+1 directly. 

Based on the above analysis, we define w and 

ˆ w as the matri- 

es with respect to the input channel of W 

l 
j 

and 

ˆ W 

l 
j 
, respectively. 

ollowing Eq. (22) , then the data-free compensation loss function 

an be rewritten as 

 (c ) = 

(
c · ˆ γ · ˆ w 

ˆ σ
− γ ·w 

σ

)	 (
c · ˆ γ · ˆ w 

ˆ σ
− γ ·w 

σ

)
+ λ2 c 

	 c 

 λ1 

[ 
c ·

(
ˆ β − ˆ γ · ˆ μ

ˆ σ

)
−

(
β − γ ·μ

σ

)] 	 [ 
c ·

(
ˆ β − ˆ γ · ˆ μ

ˆ σ

)
−

(
β − γ ·μ

σ

)] 
. 

(23) 

y taking the derivative of the loss function with respect to c , we

ave 

∂L (c ) 
∂c 

= −2 

(
ˆ γ · ˆ w 

ˆ σ

)	 (
γ ·w 

σ

)
+ 2 

(
ˆ γ · ˆ w 

ˆ σ

)	 (
ˆ γ · ˆ w 

ˆ σ

)
· c + 2 λ2 c 

2 λ1 

(
ˆ β − ˆ γ · ˆ μ

ˆ σ

)	 (
β − γ ·μ

σ

)
+ 2 λ1 

(
ˆ β − ˆ γ · ˆ μ

ˆ σ

)	 (
ˆ β − ˆ γ · ˆ μ

ˆ σ

)
· c . 

(24) 

urthermore, we have the second derivative of the loss function 

∂ 2 L (c ) 

∂ c ∂ c 	 
= 2 

(
ˆ γ · ˆ w 

ˆ σ

)	 (
ˆ γ · ˆ w 

ˆ σ

)
+ 2 

( 

λ1 

(
ˆ β − ˆ γ · ˆ μ

ˆ σ

)2 

+ λ2 

) 

I . (25) 

Consequently, the loss function is a convex function because 
∂ 2 L (c ) 
∂ c ∂ c 	 is positive definite. For brevity, let us use some variable sub- 

titution: 
 

 

 

ˆ X = 

(
ˆ γ · ˆ w 

ˆ σ

)
, X = 

(
γ ·w 

σ

)
, 

ˆ y = 

(
ˆ β − ˆ γ · ˆ μ

ˆ σ

)
, y = 

(
β − γ ·μ

σ

)
, 

(26) 

nd we can deduce the global minimum when 

∂L (c ) 
∂c 

= 0 , i.e., 

 = 

[
ˆ X 

	 ˆ X + λ1 ̂  y 2 I + λ2 I 
]−1 [

ˆ X 

	 X + λ1 ̂  y 	 y I 
]
. (27) 

n general, we keep the two trainable parameters constant, i.e., 

ˆ = γ and ˆ β = β , which is consistent with the pre-trained full- 

recision model [17] . And we can complete the solution by re- 

alibrating the two statistics ˆ μ and ˆ σ . 

For the forward inference, the solved c can be combined into 

and β such that Eq. (7) can be fully quantized. In conclusion, 

e present the whole procedure of our data-free mixed-precision 

ompensation method in Algorithm 1 . 

.4. Appendix and proof 

roof of Theorem 1. 

˜ 
 

l+1 
t − X 

l+1 
t 

 c j ·
(

k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
� ˆ A 

l 
j 
+ W 

l+1 
t, j 

� (c j · ˆ A 

l 
j 
− A 

l 
j 
) 

 c j ·
(

k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
�

(∑ i 
m =1 

ˆ W 

l 
j,m 

� A 

l−1 
m 

)
 W 

l+1 
t, j 

�

[
c j ·

∑ i 
m =1 

ˆ W 

l 
j,m 

� A 

l−1 
m 

− ∑ i 
m =1 W 

l 
j,m 

� A 

l−1 
m 

]
 c j ·

(
k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
�

(∑ i 
m =1 

ˆ W 

l 
j,m 

� A 

l−1 
m 

)
 W 

l+1 
t, j 

�

[∑ i 
m =1 

(
c j · ˆ W 

l 
j,m 

− W 

l 
j,m 

)
� A 

l−1 
m 

]
. 
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Algorithm 1 Data-free mixed-precision compensation method. 

Input: Pre-trained full-precision model [ W 

1 , . . . , W 

L ] . 

Output: Mixed low-precision model [ . . . , ˜ W 

l−1 , ˆ W 

l , ˜ W 

l+1 , ˆ W 

l+2 , . . . ] . 

1: for each two layers n ∈ [1 , L/ 2] do 

2: At odd layer l = 2 n − 1 , ternary weight filter ˆ W 

2 n −1 based 

on Eq. (3); 

3: for each input channel j ∈ [1 , i ] do 

4: Compute the coefficient c j ← arg min ‖ �‖ 2 
2 

+ λ1 ‖ �‖ 2 
2 

+ 

λ2 ‖ c j ‖ 2 2 based on Eq. (20) and Eq. (22); 

5: At even layer l = 2 n , quantized weight filter ˜ W 

2 n 
j 

= c j ·
k Q 

(
W 

2 n 
j 

)
based on Eq. (6) and Eq. (7); 

6: end for 

7: end for 

P

o

X
=
=

=

C

w

c

=
=

=  

P

A

|
=
=

=

=

w

5

F

w

c

Table 1 

Top-1 classification accuracy results on CIFAR10 

dataset with ResNet18, ResNet56, and VGG16. FP32 

denotes the full-precision weights. MP2/6 denotes 

the layer-wise 2 bit and 6 bit mixed-precision 

weights. 

Model Method FP32 (%) MP2/6 (%) 

ResNet18 Original 92.61 10.78 

DF-MPC 92.61 89.12 

ResNet56 Original 93.88 38.03 

DF-MPC 93.88 91.05 

VGG16 Original 93.70 10.00 

DF-MPC 93.70 90.48 

Table 2 

Top-1 classification accuracy results on CIFAR100 

dataset with ResNet18 and VGG16. FP32 denotes the 

full-precision weights. MP2/6 denotes the layer-wise 

2 bit and 6 bit mixed-precision weights. 

Model Method FP32 (%) MP2/6 (%) 

ResNet18 Original 73.62 1.05 

DF-MPC 73.62 64.90 

VGG16 Original 70.09 3.80 

DF-MPC 70.09 64.95 
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6

roof of Lemma 1. Since the proposed method does not depend 

n a fine-tuning process, we substitute Eq. (14) into Eq. (10) 

˜ 
 

l+1 
t − X 

l+1 
t 

 c j ·
(

k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
� ˆ A 

l 
j 
+ W 

l+1 
t, j 

� (c j · ˆ A 

l 
j 
− A 

l 
j 
) 

 c j ·
(

k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
� ˆ A 

l 
j 

+ W 

l+1 
t, j 

�

[ 
c j ·

(
ˆ γ j 

ˆ X l 
j 
− ˆ μ j 

ˆ σ j 
+ 

ˆ β j 

)
− γ j 

X l 
j 
−μ j 

σ j 
+ β j 

] 
 c j ·

(
k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
� ˆ A 

l 
j 

+ W 

l+1 
t, j 

�

[ (
c j ̂ γ j 

ˆ σ j 

ˆ X 

l 
j 
− γ j 

σ j 
X 

l 
j 

)
−

(
c j ̂ γ j 

ˆ σ j 
ˆ μ j − γ j 

σ j 
μ j 

)
+ (c j ˆ β j − β j ) 

] 
. 

onsidering the second term of the above equation, we combine 

ith Eq. (11) to give 

 j · ˆ A 

l 
j 
− A 

l 
j 

 

(
c j ̂ γ j 

ˆ σ j 

ˆ X 

l 
j 
− γ j 

σ j 
X 

l 
j 

)
−

(
c j ̂ γ j 

ˆ σ j 
ˆ μ j − γ j 

σ j 
μ j 

)
+ (c j ˆ β j − β j ) 

 

(
c j ̂ γ j 

ˆ σ j 

∑ i 
m =1 

ˆ W 

l 
j,m 

� A 

l−1 
m 

− γ j 

σ j 

∑ i 
m =1 W 

l 
j,m 

� A 

l−1 
m 

)
−
(

c j ̂ γ j 

ˆ σ j 
ˆ μ j − γ j 

σ j 
μ j 

)
+ (c j ˆ β j − β j ) 

 

∑ i 
m =1 

(
c j ̂ γ j · ˆ W 

l 
j,m 

ˆ σ j 
− γ j ·W 

l 
j,m 

σ j 

)
� A 

l−1 
m 

+ 

(
γ j 

σ j 
μ j − c j ̂ γ j 

ˆ σ j 
ˆ μ j 

)
+ (c j ˆ β j −β j ) .

�

roof of Lemma 2. In this case, the reconstruction loss of | c j ·
ˆ 
 

l 
j 
− A 

l 
j 
| can be formulated as follow 

 c j · ˆ A 

l 
j 
− A 

l 
j 
| 

 | c j · max ( BN ( ˆ X 

l 
j 
) , 0) − max ( BN (X 

l 
j 
) , 0) | 

 

∣∣∣c j BN ( ̂  X l 
j 
)+ | BN ( ̂  X l 

j 
) | 

2 
− BN (X l 

j 
)+ | BN (X l 

j 
) | 

2 

∣∣∣
 

∣∣∣ c j ·BN ( ̂  X l 
j 
) −BN (X l 

j 
) 

2 
+ 

c j ·| BN ( ̂  X l 
j 
) |−| BN (X l 

j 
) | 

2 

∣∣∣
 

∣∣∣ c j ·BN ( ̂  X l 
j 
) −BN (X l 

j 
) 

2 
+ 

| c j ·BN ( ̂  X l 
j 
) |−| BN (X l 

j 
) | 

2 

∣∣∣
≤ 1 

2 

∣∣c j · BN ( ˆ X 

l 
j 
) − BN (X 

l 
j 
) 
∣∣ + 

1 
2 

∣∣∣∣c j · BN ( ˆ X 

l 
j 
) | − | BN (X 

l 
j 
) 
∣∣∣∣

≤
∣∣c j · BN ( ˆ X 

l 
j 
) − BN (X 

l 
j 
) 
∣∣, 

here we have c j · | BN ( ˆ X 

l 
j 
) | = | c j · BN ( ˆ X 

l 
j 
) | as c j ≥ 0 . �

. Experiments 

In this section, we evaluate our method on CI- 

AR10/CIFAR100 [34] and ImageNet [35] datasets, which are 

ell-known datasets for evaluating the performance on the image 

lassification. 
6 
Dataset CIFAR10/CIFAR100 datasets consist of 50k training sets 

nd 10k validation sets, which are natural color images with 

2 × 32 for small-scale experiments. CIFAR10 dataset is organized 

nto 10 classes and CIFAR100 dataset into 100 classes, respectively. 

mageNet dataset consists of 1.2 million training sets and 50k val- 

dation sets, which are high-resolution natural images for large- 

cale experiments. These images are organized into 10 0 0 cate- 

ories. 

Model We choose ResNet [36] (including ResNet18, ResNet50, 

esNet56, ResNet101), DenseNet121 [37] , VGG16 [38] and Mo- 

ileNetV2 [39] for evaluation. All the model and pre-trained 

ull-precision weights are from pytorchcv library https://pypi.org/ 

roject/pytorchcv/ . 

Setting We implement our method using PyTorch [40] and run 

he experiments using GTX 1080Ti. 

.1. Ablation study on CIFAR 

We first conduct a series of ablation studies on CIFAR datasets 

o investigate the effect of components of the proposed DF-MPC 

cheme. We evaluate our method on MP2/6 weights and FP32 ac- 

ivations. 

Based on Eq. (27) , our method has two regularization coeffi- 

ients λ1 and λ2 that affect the effect of compensation directly. 

pecifically, we adjust these two hyper-parameters to find the op- 

imal solution, as shown in Fig. 3 . On the one hand, as λ1 varies

rom 0.1 to 0.5, the final accuracy of the quantized model increase 

teadily. But it suffers a significant drop when λ1 is set to 0.6. 

n the other hand, the final performance is mainly on the de- 

line when λ2 varies from 0 to 0.01. In summary, the compensa- 

ion combination of λ1 = 0 . 5 and λ2 = 0 is the optimal solution for

esNet56 on CIFAR10 dataset. 

For λ2 = 0 , we also verify from this ablation study that the con- 

traint ‖ c ‖ 2 
2 

in Eq. (22) does not work, which is consistent with our

heoretical analysis, i.e., the term 

(
k Q 

(
W 

l+1 
t, j 

)
− W 

l+1 
t, j 

)
has very lit- 

le effect. For λ1 = 0 . 5 , we know that in order of importance, ‖ �‖ 2 
2 

s greater than ‖ �‖ 2 2 . 

Tables 1 and 2 show the performance before and after com- 

ensation on CIFAR10 and CIFAR100 datasets, respectively. If the 

ull-precision model is quantized to a mixed-precision of 2-bit and 

-bit directly, its accuracy will become no different from random 

https://pypi.org/project/pytorchcv/
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Fig. 3. The accuracy comparison of different λ1 and λ2 values in Eq. (27) . On CIFAR10 with ResNet56, λ1 and λ2 vary from 0.1 to 0.6 and from 0 to 0.01, respectively. 

Fig. 4. The 6-bit quantized weight distribution before and after compensation on CIFAR10 dataset. The mean of the compensated weight distribution is closer to zero. 
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nitialization. However, after our compensation method, the same 

uantization mode will result in a fully usable quantized model 

ith great accuracy improvement. Experimentally, this also proves 

he effectiveness of our DF-MPC. 

.2. Experiments on ImageNet 

We evaluate our method on ImageNet dataset for the large- 

cale image classification task, and compare the performance with 

ther data-free quantization methods over various models. Here, 

DFQ [25] and GZNQ [42] are the generative methods and they 

till utilize synthetic data to complete the quantization. 

Tables 3 and 4 compare the performance with previous meth- 

ds, such as OCS [23] , DFQ [16] , and OMSE [41] . For 2-bit, our

F-MPC uses the ternary representation based on Eq. (3) . For 3- 

it and 6-bit, our DF-MPC uses the quantized representation based 
7 
n Eq. (6) . Based on layer-wise mixed-precision compensation, 

e achieve higher accuracy at the smaller model size. In partic- 

lar, our method with 3/6-bit outperforms DFQ [16] with 6-bit 

y 0.16% on ResNet18. And our method with 6-bit outperforms 

FQ [16] with 8-bit by 0.09% on MobileNetV2. Note that our 6-bit 

cheme actually implies 6/6-bit mixed-precision quantization. 

DF-MPC vs. ZeroQ The generative methods need to cost a lot 

f computation and time due to data synthesis. For example, Ze- 

oQ [17] of ResNet18 takes 12 s on an 8-V100 system. In contrast, 

F-MPC of ResNet18 takes only 2 s on a single GTX 1080 Ti, or can

ven run on CPU only, which makes the deployment of quantized 

odels convenient and fast. 

DF-MPC vs. DFQ DFQ [16] and DF-MPC have some common 

deas. DFQ also considers the relation between the output channel 

n the lth layer and the input channel in the (l + 1) th layer. Specif-

cally, DFQ scales the cross-layer factor to equalize the weight ten- 
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Fig. 5. The loss surfaces of the mixed-precision ResNet56 before and after compensation on CIFAR10 dataset, which reflects the sharpness/flatness of different quantized 

weights. 

Table 3 

Top-1 classification accuracy results on ImageNet dataset with ResNet. 

Model Method W-bit Size (MB) Top-1 Acc (%) 

ResNet18 Full-precision 32 44.59 71.47 

OMSE [41] 4 5.58 64.03 

GZNQ [42] 4 5.58 64.50 

DFQ [16] 6 8.36 66.30 

DF-MPC 2/6 5.48 66.46 

ResNet50 Full-precision 32 97.49 76.12 

OCS [23] 4 12.28 69.30 

OMSE [41] 4 12.28 70.06 

DF-MPC 2/6 10.55 71.20 

ResNet101 Full-precision 32 170.41 77.31 

OMSE [41] 4 21.30 71.49 

DF-MPC 2/6 18.36 72.59 

Table 4 

Top-1 classification accuracy results on ImageNet dataset with DenseNet121 

and MobileNetV2. 

Model Method W-bit Size (MB) Top-1 Acc (%) 

DenseNet121 Full-precision 32 31.92 74.36 

OCS [23] 4 4.09 63.00 

OMSE [41] 4 4.09 64.40 

DF-MPC 3/6 3.39 70.02 

MobileNetV2 Full-precision 32 13.37 73.03 

GDFQ [25] 6 2.50 70.98 

GZNQ [42] 6 2.50 71.12 

DFQ [16] 8 3.34 71.20 

DF-MPC 6 2.50 71.29 
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or channel ranges. However, DF-MPC scales the cross-layer factor 

o minimize the output difference of feature maps in the (l + 1) th

ayer between the pre-trained full-precision model and its layer- 

ise mixed-precision quantized model. Theoretically, our method 

uarantees the minimal quantized error of the layer-wise mixed- 

recision model. 

.3. Visualization 

Figure 4 shows the quantized weight distribution before and af- 

er compensation in two different layers of ResNet18. After our DF- 

PC method, the mean of the 6-bit quantized weight distribution 

pproaches zero. Moreover, based on the previous work [43] , we 

how the loss surfaces before and after compensation. By analyzing 

ig. 5 , we find that the loss landscape of the quantized model be-

ore compensation is sharp, which shows no noticeable convexity. 

n the contrary, the loss landscape of the quantized model after 

ompensation is smooth and flat, and shows noticeable convexity, 

hich is consistent with the pre-trained full-precision model. 
8 
. Conclusion 

This paper proposed the problem of recovering the accuracy of 

n ultra-low precision model without any data and fine-tuning, 

hich only relies on the pre-trained full-precision model. By as- 

uming the quantized error caused by a low-precision quantized 

ayer can be restored via the reconstruction of a high-precision 

uantized layer, we mathematically formulated the reconstruction 

oss of the feature maps between the pre-trained full-precision 

odel and its mixed-precision quantized model. Based on our for- 

ulation, we designed a data-free mixed-precision compensation 

ethod along with its closed-form solution. 

Since no original/synthetic data is used, we can not access the 

eature maps, which leads to our method being slightly worse than 

enerative methods with synthetic data. Our future work would 

xtend an expert neural network to estimate the feature maps in 

he reconstruction loss, which further recovers the performance of 

he quantized model. 
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