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Abstract

Most of the existing blind image Super-Resolution (SR)
methods assume that the blur kernels are space-invariant.
However, the blur involved in real applications are usu-
ally space-variant due to object motion, out-of-focus, etc.,
resulting in severe performance drop of the advanced SR
methods. To address this problem, we firstly introduce two
new datasets with out-of-focus blur, i.e., NYUv2-BSR and
Cityscapes-BSR, to support further researches of blind SR
with space-variant blur. Based on the datasets, we design a
novel Cross-MOdal fuSion network (CMOS) that estimate
both blur and semantics simultaneously, which leads to im-
proved SR results. It involves a feature Grouping Interac-
tive Attention (GIA) module to make the two modalities in-
teract more effectively and avoid inconsistency. GIA can
also be used for the interaction of other features because
of the universality of its structure. Qualitative and quanti-
tative experiments compared with state-of-the-art methods
on above datasets and real-world images demonstrate the
superiority of our method, e.g., obtaining PSNR/SSIM by
+1.91↑/+0.0048↑ on NYUv2-BSR than MANet1.

1. Introduction
Blind image SR, with the aim of reconstructing High-

Resolution (HR) images from Low-Resolution (LR) images

with unknown degradations, has attracted great attention

due to its significance for practical use [2,5,6,12,15,22–24,

29]. Two degradation models, bicubic downsampling [35]

and traditional degradation [26,32], are usually used to gen-

erate LR images from HR images. The latter can be mod-

eled by:

y = (x
⊗

k) ↓s +n. (1)

It assumes the LR image y is obtained by first convolving

the HR image x with a blur kernel k, followed by a down-

*Equal contribution.
†Corresponding author.
1https://github.com/ByChelsea/CMOS.git

LR KernelGAN DCLS CMOS (Ours) GT

Figure 1. SR results of KernelGAN [1], DCLS [28] and the pro-

posed CMOS on a space-variant blurred LR image. For Kernel-

GAN and DCLS, patches are blurry in the first row and have arti-

facts in the second row, while CMOS performs well in both cases.

sampling operation with scale factor s and an addition of

noise n. On top of that, some works [38, 48] propose more

complex and realistic degradation models, which also as-

sume that blur is space-invariant. However, in real-world

applications, blur usually changes spatially due to factors

such as out-of-focus and object motion, so that the mis-

matches will greatly degrade the performance of existing

SR methods. Fig. 1 gives an example when the LR image

suffers from space-variant blur. Since both KernelGAN [1]

and DCLS [28] estimate only one blur kernel for an image,

there are a lot of mismatches. In the first row of Fig. 1,

where the kernel estimated by the two methods are sharper

than the real one of the patch, SR results are over smoothing

and high frequency textures are significantly blurred. In the

second row, where the kernels estimated are smoother than

the correct one, SR results show ringing artifacts caused by

over-enhancing high-frequency edges. This phenomenon il-

lustrates that mismatch of blur will significantly affect SR

results, leading to unnatural outputs. In this paper, we fo-

cus on the space-variant blur estimation to ensure that the

estimated kernel is correct for each pixel in the images.

A few recent works [15,23,43] have taken space-variant

blur into account. Among them, MANet [23] is the most

representative model, which assumes that blur is space-

invariant within a small patch. Based on this, MANet uses a

moderate receptive field to keep the locality of degradations.

However, there are still two critical issues. 1) Because there
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Figure 2. A condition in which blur and semantic information are

inconsistent. This image comes from our dataset NYUv2-BSR.

is no available dataset containing space-variant blur in SR

field, MANet is trained on space-invariant images, resulting

in blur deviation of the training and testing phase. 2) Even

limiting the size of the receptive field, the estimation results

are still poor at the boundaries of different kernels, leading

to mean value prediction of space-variant blur.

To address the aforementioned challenges, we first in-

troduce a new degradation method and propose two corre-

sponding datasets, i.e., NYUv2-BSR and Cityscapes-BSR

to support relevant researches of space-variant blur in the

SR domain. As a preliminary exploration, out-of-focus blur

is studied as an example in this paper and it is generated

according to the depth of the objects using the method pro-

posed in [19]. Besides, we also add some space-invariant

blur into the datasets so that the models trained on them can

cope with both spatially variant and invariant situations.

Furthermore, to improve the performance at the bound-

aries of different blur regions, we present a novel model

named Cross-MOdal fuSion network (CMOS). Our intu-

ition is that the sharp semantic edges are usually aligned

with out-of-focus blur boundaries and it can help to distin-

guish different blur amounts. This raises a critical concern

that how to effectively introduce semantics into the process.

Specifically, we firstly predict blur and semantics simulta-

neously instead of using the semantics as an extra input,

which not only avoids using extra information during test

phase, but also enables non-blind SR methods to recover

finer textures with the two modalities. Secondly, to enhance

accuracy at the blur boundaries, we conduct interaction be-

tween the semantic and blur features for complementary in-

formation learning inspired by multi-task learning [36, 42].

However, in some cases these two modalities are inconsis-

tent. As shown in Fig. 2, the wall and the picture on it are

completely different in the semantic map, with clear bound-

aries. But the depth of them are almost the same, so the blur

amounts depending on depth are also very similar. In this

case, not only can the two modalities fail to use common

features, but they can also negatively influence each other.

Besides, since we add some space-invariant blurred images

with uniform blur maps in the datasets, it will also greatly

increase the inconsistency.

Motivated by these observations, we propose a feature

Grouping Interactive Attention (GIA) module to help the

interaction of the two modalities. GIA has two parallel

streams: one operating along the spatial dimension and the

other along the channel dimension. Both streams employ

group interactions to process the input features and make

adjustments. Moreover, GIA has an upsampling layer based

on the flow field [21] to support inputs of different resolu-

tions. Its universal structure allows it to be used for more

than just interactions between the two modalities.

The main contributions of this work are as follows:

• To support researches on space-variant blur in the

field of SR, we introduce a new degradation model of

out-of-focus blur and propose two new datasets, i.e.,

NYUv2-BSR and Cityscapes-BSR.

• We design a novel model called CMOS for estimating

space-variant blur, which leverages extra semantic in-

formation to improve the accuracy of blur prediction.

The proposed GIA module is used to make the two

modalities interact effectively. Note that GIA is uni-

versal and can be used between any two features.

• Combined with existing non-blind SR models, CMOS

can estimate both space-variant and space-invariant

blur and achieve SOTA SR performance in both cases.

2. Related Work
2.1. Degradation Model

SR methods give rise to poor performance if the as-

sumed degradation deviates from those in reality. Many

works [4, 45, 49] use the traditional model (Eq. 1) to gen-

erate their training data. Compared to bicubic downsam-

pling [40, 50], although traditional model has taken more

factors into account, it is still too simple to simulate real

degradation. Consequently, Real-ESRGAN [38] proposes

a flexible high-order degradation model by applying tradi-

tional model repeatedly, while BSRGAN [48] adjusts the

degradation order of the traditional model and use randomly

shuffled blur, downsampling and noise. Liang et al. [23]

go a step further to simulate space-variant blur by dividing

images into patches and applying different kernels. Unfor-

tunately, it cannot well simulate the real situations. As a

result, to support relevant researches, we introduce space-

variant out-of-focus blur into SR, and propose two corre-

sponding datasets, i.e., NYUv2-BSR and Cityscapes-BSR.

2.2. Kernel Estimation

One of the mainstream methods of blind SR is to esti-

mate degradation first and then use it as prior information

for non-blind SR. KernelGAN [1] proposes to learn a ker-

nel from the internal distribution of image patches, while

IKC [6] uses an iterative correction scheme to learn the PCA

features of kernels. Luo et al. [28] transfer blur estimation

into LR space and learn kernel weights instead of kernel it-

self. However, these methods only estimate a unique kernel,
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Figure 3. Original RGB images, the generated out-of-focus images and blur maps. The changes from dark to light in blur maps indicate

that the corresponding out-of-focus image changes from clear to blur. The first three columns are images from NYUv2-BSR, and the last

three columns are images from Cityscapes-BSR.

thus the performance will be significantly reduced on space-

variant situations. Accordingly, KOALAnet [15] proposes

to learn specific kernels for each pixel, and MANet [23] de-

signs a network with moderate receptive field to adapt to

the locality of degradation. However, they still have limi-

tations, such as the moderate receptive field might limit the

capacity of the model. By contrast, with the help of seman-

tic information, our CMOS can predict space-variant blur

effectively and accurately.

2.3. Non-blind SR

Non-blind SR aims to restore images with known degra-

dations. Early non-blind SR methods [13, 14, 18, 25] are

based on bicubic downsampling, which struggle to general-

ize to images with more complex degradations. To address

this problem, SRMD [49] first proposes to stretch the blur

and noise to the size of LR images, and take the concate-

nated images and degradation maps as input to restore the

HR counterparts. Following SRMD, SFTMD [6] uses SFT

layer [39] to combine the stretching degradation maps in-

stead of simply concatenation, while UDVD [44] employs

per-pixel dynamic convolution to more effectively deal with

variational degradations across images. Besides, zero-shot

methods [11, 32, 34] have also been investigated in non-

blind SR with multiple degradations. What is noteworthy is

that our CMOS can be easily combined with most non-blind

SR methods to achieve excellent blind SR performance.

3. The Proposed Datasets
To support researches on space-variant blur, we pro-

pose two novel datasets, NYUv2-BSR and Cityscapes-

BSR, where BSR stands for Blind image SR. To the best

of our knowledge, we are the first to introduce out-of-focus,

one of the most common space-variant blur in real world,

into blind image SR. Out-of-focus is caused by differences

in depth. Every point that is not in the plane of focus corre-

Dataset
NYUv2-BSR Cityscapes-BSR

VA IVA Total VA IVA Total

Train 636 159 795 2380 595 2975

Val - - - 400 100 500

Test 524 130 654 1220 305 1525

Table 1. Details of NYUv2-BSR and Cityscapes-BSR. VA and

IVA represents the number of images with space-variant out-of-

focus blur and space-invariant blur respectively.

sponds to a Circle Of Confusion (COC) in image plane. The

blur can be simulated by isotropic Gaussian kernels with

standard deviation σ related to the diameters of COCs [17],

which can be calculated using thin lens model [30]. We em-

ploy the method proposed in [19] to blur the images and the

ground truth blur map is constructed by σ of each pixel.

As mentioned above, we need depth-color image pairs

to generate images with out-of-focus blur. Thus, we se-

lect NYUv2 [33] and Cityscapes [3] as original datasets.

NYUv2 is an indoor dataset. It contains 1449 pairs of RGB

and depth images, in which 795 pairs are used for train-

ing and the rest 654 for testing. Cityscapes is an outdoor

dataset and the fine-annotated part consists of training, vali-

dation and test sets containing 2975, 500, and 1525 images,

respectively. Since the depth maps in Cityscapes contain in-

valid measurements, which are not conducive to the genera-

tion of out-of-focus images, we use CREStereo [20], a deep

learning-based stereo matching method, to generate dispar-

ity maps and calculate the corresponding depth maps based

on the camera parameters. Fig. 3 shows the original RGB

images of NYUv2 and Cityscapes, as well as the generated

out-of-focus images and corresponding blur maps.

In terms of parameters of the isotropic Gaussian kernels,

the kernel width range is set to [0.0, 5.0] and [0.0, 15.0] for

NYUv2 and Cityscapes, respectively. The kernel size is

fixed to 21 × 21 and 61 × 61, and the downsampling scale
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Figure 4. Architecture of CMOS and GIA. (a) Given an LR image, CMOS outputs the estimated blur map B and semantic map S
simultaneously in the HR space. (b) GIA has two parallel streams to effectively interact features in both spatial and channel dimensions.

It includes a flow-based upsample module to support inputs with different resolutions. If the input resolutions are the same, a feature

alignment will also be performed through the learned flow field.

factor is set to 4. Besides, 1/4 of the images are blurred

by space-invariant kernels, so that the models trained on

the datasets are not limited by the space-variant situations.

Tab. 1 shows the details. In addition, to ensure the adequacy

and fairness of experiments, we created five test groups for

each dataset, in which each group had a different 1/4 of the

images blurred by space-invariant kernels.

4. Method
As stated before, sharp semantic edges can increase the

accuracy of space-variant blur estimation near the bound-

aries. Motivated by this, we propose a Cross-MOdal fuSion

network (CMOS) to predict both blur and semantic maps

simultaneously by mutual supervision of them.

4.1. Overview

Inspired by [36], CMOS is a multi-scale network, which

consists of three main stages, as shown in Fig. 4. In the

first stage, a fully convolutional encoder capable of gener-

ating multi-scale features is used to extract deep features{
F 0,F 1, · · · ,F n

}
. In the next stage, for each scale i, we

apply two task-specific heads, headib and headi
s, to predict

initial blur and semantic features F i
blur and F i

seg . Then, we

use a proposed GIAi
m module to achieve effective informa-

tion interaction between the two modalities to obtain more

accurate features F̂
i

blur and F̂
i

seg in a mutually supervised

manner, formulated as:

F i
blur = headib(F

i
b), (2)

F i
seg = headis(F

i
s), (3)

F̂
i

blur, F̂
i

seg = GIAi
m(F i

blur,F
i
seg), (4)

where F i
b and F i

s denotes the input of the task-specific

heads. To make better use of the multi-scale information,

we use GIAi
b and GIAi

s to fuse the adjacent low-scale fea-

tures, so the input of the heads can be written as:

F 0
b = F 0

s = F 0, (5)

F i
b = Sum(GIAi

b(F
i, F̂

i−1

blur)), (6)

F i
s = Sum(GIAi

s(F
i, F̂

i−1

seg )), (7)

where Sum(·) represents for adding outputs of the modules.

At the highest resolution n, the task-specific features are fed

into two convolution layers to generate auxiliary blur and

semantic maps for additional supervision, which is benefi-

cial to further improve the accuracy of the final prediction.

The last stage consists n + 1 GIAi
l modules to get the

final features F i
B and F i

S of each scale as:

F i
B ,F

i
S = GIAi

l(F
i
blur,F

i
seg). (8)

These features are then concated and convolved to obtain

the prediction of blur and semantic maps. In this way, we

can build a shorter way for each scale to the supervision and

further facilitate the interaction between blur and semantics.

Besides, since blur is done in the HR space, we upsample

the outputs using bi-linear interpolation by scale factor s.

4.2. Grouping Interactive Attention Module

GIA is designed to help blur and semantics interact more

effectively and avoid inconsistency. Besides, it can also be

used for other features because of the universal structure.

GIA involves two parallel streams operating on spatial and

channel dimensions, and it can handle inputs of different

resolutions by using a flow-based upsample module [21].

Spatial Grouping Feature Interaction. The input features

may be similar on most patches, but different on some. As

shown in Fig. 2, the picture hanging on the wall brings dif-

ference between the blur and semantic maps. As a result,
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we propose to adjust the spatial weight map in the general

spatial attention [7, 46, 47] mechanism to take advantage of

similar information and avoid inconsistencies.

In the top half of Fig. 4 (b), each input is first passed

through a convolution layer and divided into windows de-

noted by F j
w. These windows are then further processed by

another convolution layer before being fed into the feature

interaction module (last part of Sec. 4.2). The spatial ad-

justing weight map M j
a ∈ R

1×H×W can be obtained by a

1 × 1 convolution layer after the interaction. Additionally,

each input has its own spatial weight map M j
o ∈ R

1×H×W

extracted from the windows by another 1 × 1 convolution

layer directly. Thus, the outputs F j corresponding to the

two inputs can be expressed as:

F j = Mul(F j
w,Add(M j

o, αM
j
a)), j = 1, 2, (9)

where α is a learnable parameter. Finally, windows are re-

stored as features and final output is obtained by smoothing

out possible seams with a layer of 3× 3 convolution.

Channel Grouping Feature Interaction. As spatial fea-

ture interaction concentrates on local details, we further

introduce channel grouping feature interaction to calibrate

global information inspired by [8]. Firstly, we transfer the

input F j
in to channel-wised attention vector Aj

o ∈ R
C by

applying global average pooling and an MLP layer. Then,

the vectors are fed into a feature interaction module, and

two adjusting attention vectors Aj
a ∈ R

C integrating the

two features are obtained through another MLP layer. Sim-

ilar to the spatial one, the final outputs can be obtained by:

F j = Mul(F j
in,Add(Aj

o, βA
j
a)), j = 1, 2 (10)

where β is a learnable parameter. Since global information

is important for both blur [31] and semantic estimation [27],

feature interaction of channel dimension is also essential.

Feature Group Interaction. This module is designed to

interact spatial or channel features in groups. For spatial

interaction, the input size is C × H × W . We regard

the features of each pixel as a group, and the size of the

grouped features is N × D, where N = HW , D = C.

For channel interaction, the input size is C. It will be di-

vided into N groups with length D, where C = ND. In

this way, both spatial and channel inputs can be represented

as Gi ∈ R
N×D, i = 1, 2 after grouping, where i represents

two different inputs. Then, we use inner product for feature

interaction and get the interactive feature F fuse ∈ R
N×N ,

F fuse = G1G2
T . (11)

After that, for spatial interaction, one of the output can be

obtained by reshaping F fuse to H ×W ×N , and the other

can be obtained by reshaping F fuse to N × H × W . For

channel interaction, the two final outputs are the same and

can be both obtained by simply flatten F fuse.

4.3. Loss Function

We use the mean absolute error (MAE) for blur estima-

tion and the cross-entropy (CE) loss for semantic segmen-

tation. As shown in Fig. 4 (a), the auxiliary loss L1 and loss

L3 are both MAE, while the auxiliary loss L2 and loss L4

are both CE, specifically:

L1 = L3 =
1

H ×W

H∑

i=1

W∑

j=1

‖Bi,j − B̂i,j‖1 (12)

L2 = L4 = − 1

H ×W

H∑

i=1

W∑

j=1

C∑

c=1

Sc
i,j log(Ŝ

c

i,j) (13)

where B̂i,j and Bi,j denote the estimated blur map and

the corresponding ground-truth at position (i, j). Similarly,

Ŝ
c

ij and Sc
ij represent the estimated semantic map and the

ground-truth at position (i, j) of the c-th category. C is the

number of object categories, and H,W are the height and

width of the maps. We do not adopt a particular loss weigh-

ing strategy, but simply sum the losses together,

L = L1 + L2 + L3 + L4 (14)

5. Experiments
5.1. Experimental Setup

Settings of CMOS. We select HRNet [37] as our backbone

and change the stride of the first two convolutions to 1. This

translates to 4 scales of the input LR images (1, 1/4, 1/8,

1/16). The task-specific heads are implemented as two basic

residual blocks [9]. As for semantic segmentation, we use

the official 40 classes for NYUv2-BSR and 19 classes for

Cityscapes-BSR. All our experiments are conducted with

the pre-trained ImageNet weights.

Settings of Non-Blind SR. For non-blind SR, we use

RRDB-SFT proposed in [23]. To feed both blur and se-

mantics into it, we use a GIA module. Finally, we fine-

tune RRDB-SFT on blur and semantic maps estimated by

CMOS. The loss between SR and HR images is also MAE.

Implementation Details. The image sizes are selected as

640× 480 for both NYUv2-BSR and Cityscapes-BSR. We

augment the training data by scaling with a randomly se-

lected ratio in {1, 1.2, 1.5} and the blur values are divided

by the ratio. We also flip the training samples with a pos-

sibility of 0.5. Adam optimizer [16] with β1 = 0.9 and

β2 = 0.99 is used to train the model for 700 epochs, with

a batch size of 8. The learning rate is initialized as 0.0001

and a cosine learning rate schedule with 10 warm-up epochs

is adopted. Implemented with PyTorch, it takes about 28

hours to train CMOS on an RTX 3090 GPU.

Evaluation Metrics. For blur estimation, we use PSNR

and SSIM [41]. For semantic segmentation, we use mIoU.

For the final SR images generated by RRDB-SFT with the
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Method Group1 Group2 Group3 Group4 Group5 Avg.

KernelGAN [1] 23.10/0.7430 23.13/0.7439 23.18/0.7449 23.16/0.7449 23.18/0.7461 23.15/0.7446

KOALAnet [15] 27.69/0.8773 27.73/0.8768 27.60/0.8734 27.73/0.8754 27.74/0.8760 27.70/0.8758

DCLS [28] 27.89/0.8799 27.94/0.8798 27.82/0.8760 27.91/0.8768 27.89/0.8781 27.89/0.8781

DAN [10] 27.90/0.8809 27.98/0.8808 27.83/0.8771 27.91/0.8775 27.88/0.8791 27.90/0.8791

MANet [23] 30.16/0.9117 30.20/0.9111 30.07/0.9095 30.07/0.9099 30.10/0.9107 30.12/0.9106

CMOS(ours) 32.09/0.9168 32.08/0.9159 31.99/0.9145 31.96/0.9147 32.01/0.9153 32.03/0.9154

Upper Bound 33.80/0.9309 33.78/0.9303 33.69/0.9290 33.73/0.9301 33.74/0.9298 33.75/0.9300

Table 2. Average PSNR/SSIM of different methods for spatially variant blind SR on NYUv2-BSR. Avg. represents the average results on

the 5 test groups. The best and second best results are highlighted in red and blue colors, respectively.

Method Group1 Group2 Group3 Group4 Group5 Avg.

KernelGAN [1] 28.96/0.8461 29.02/0.8475 28.88/0.8464 28.96/0.8468 28.99/0.8477 28.96/0.8469

KOALAnet [15] 32.40/0.9173 32.45/0.9177 32.29/0.9149 32.38/0.9166 32.40/0.9166 32.38/0.9166

DCLS [28] 32.41/0.9174 32.46/0.9176 32.28/0.9151 32.44/0.9168 32.38/0.9166 32.39/0.9167

DAN [10] 32.33/0.9162 32.38/0.9165 32.21/0.9140 32.36/0.9156 32.30/0.9155 32.32/0.9156

MANet [23] 34.24/0.9293 34.29/0.9294 34.16/0.9273 34.27/0.9288 34.27/0.9285 34.25/0.9287

CMOS(ours) 35.58/0.9388 35.61/0.9389 35.50/0.9373 35.60/0.9385 35.60/0.9381 35.58/0.9383

Table 3. Average PSNR/SSIM of different methods for spatially variant blind SR on Cityscapes-BSR. Avg. represents the average results

on the 5 test groups. Note that, there is no official ground truth semantic maps for the test sets of Cityscapes [3], so the upper bound is not

available here. The best and second best results are highlighted in red and blue colors, respectively.

Datasets PSNR ↑ SSIM ↑
IVA 19.50 0.6840

NYUv2-BSR 30.12 0.9106

Table 4. Importance of using space-variant blur for training. IVA

stands for the NYUv2 dataset with only space-invariant blur.

blur and semantic maps estimated by CMOS, we compare

PSNR/SSIM on the Y channel of YCbCr space.

5.2. Comparison with the State-of-the-Arts

We compare CMOS with existing blind SR models:

KernelGAN [1], KOALAnet [15], DCLS [28], DAN [10],

MANet [23] and the upper bound model (RRDB-SFT given

ground-truth blur and semantic maps). We retrained all the

comparison methods on NYUv2-BSR and Cityscapes-BSR

using their official implementations and settings. Kernel-

GAN is an unsupervised method which trained solely on

the LR image at test time. DCLS and DAN are end-to-

end methods for space-invariant blur, while KOALAnet and

MANet are two-stage methods for space-variant blur. Since

we use the non-blind SR model proposed in MANet (i.e.

RRDB-SFT), we apply same settings to ensure the fairness.

Quantitative comparison. As shown in Tab. 2 and Tab. 3,

CMOS leads to the best performance for different test

groups in both the two proposed datasets. Notably, methods

that estimate only one blur kernel for an image (i.e., Kernel-

GAN, DCLS, and DAN) all suffer from severe performance

drop when the real kernels are spatially variant. Although

KOALAnet estimates different kernels for different image

pixels, it does not include any special handling for space-

variant properties and also produces unfavorable results.

MANet takes the locality of blur into account, so it performs

relatively better. By contrast, the proposed model CMOS

effectively utilizes semantic information to help with spa-

tially variant blur estimation and non-blind SR, outperform-

ing MANet by large margins.

Qualitative comparison. We present several representative

visual samples in Fig. 5. It can be observed that our CMOS

outperforms previous approaches in both removing blur and

avoiding artifacts. Other methods may either produce ring-

ing artifacts (especially KernelGAN), or fail to restore tex-

ture details, leading the patches still blurry.

5.3. Ablation Study

All the experiments in this section use NYUv2-BSR for

training, and the metrics (i.e. PSNR, SSIM and mIoU) refer

to the mean value across the 5 test sets (Sec. 3).

Importance of Using Space-Variant Blur for Training.
According to [23], because of the moderate receptive field,

MANet can handle spatially variant cases even if it is

trained on spatially invariant blurred images. But we be-

lieve that it is necessary to use the images containing space-

variant blur for training. To prove it, we trained two MANet
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Figure 5. Qualitative comparisons between different SR methods on spatially variant blur (out-of-focus). The first two pictures are from

NYUv2-BSR and the last two are from Cityscapes-BSR. (Please zoom in for better view.)

Method PSNR ↑ SSIM ↑ mIoU ↑
Ours w/o GIA 23.21 0.8312 32.15

Ours w/ F 23.42 0.8314 33.04

Ours w/ F+C 24.24 0.8336 36.25
Ours w/ F+C+S (GIA) 24.52 0.8340 35.61

Table 5. Effectiveness of GIA. Note that these are the intermediate

results, and PSNR/SSIM refer to the blur maps rather than the final

SR mages. mIoU evaluates the effect of semantic estimation.

models: one on the proposed NYUv2-BSR dataset, and the

other on the space-invariant blurred images generated from

the NYUv2 dataset. The comparison results are shown in

the Tab. 4. Apparently, training on spatially variant blurred

images can increase PSNR and SSIM of SR images dra-

matically by 10.62 dB ↑ and 0.2266 ↑, respectively. This

indicates that maintaining consistency in image blur types

during the training and testing phases is crucial.

Effectiveness of GIA Module. We take out the compo-

nents, i.e., flow-based upsampling (F), channel interaction

(C) and spatial interaction (S), of GIA to verify validity.

We record the best PSNR and mIoU models individually.

As shown in Tab. 5, using only flow-based upsampling im-

proves the results slightly, and when combined with channel

interaction, the performance can be significantly enhanced.

Furthermore, utilizing all three components, i.e., the com-

plete GIA module, can yield even greater improvements.

Effectiveness of Semantic Information in SR. In order to

illustrate that the semantic information is conducive to SR,

we ablate it and only input blur maps into RRDB-SFT. It

is worth noting that we use the ground truth blur and se-

mantic maps here. As shown in Tab. 6, adding semantic

maps improves the PSNR (+0.34 dB ↑) and SSIM (+0.0022

↑) of the final SR results. We hold the opinion that seman-

tic information may allow the network to take advantage of

textural features of related objects it has learned about, and

sharp semantic edges may also be helpful in SR.

Effectiveness of Multi-task Learning (MTL). To demon-

strate the effectiveness of MTL, firstly, we make separate

predictions for blur and semantic maps and compared them

1657

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 06:09:35 UTC from IEEE Xplore.  Restrictions apply. 



OursDCLSLR KernelGAN KOALAnet MANetDANThe whole image

Figure 6. Visual results on real-world images for scale factor 4. The first picture of the indoor scene uses the model trained on NYUv2-

BSR, and the second picture of the outdoor scene uses the model trained on Cityscapes-BSR. (Please zoom in for better view.)

Method PSNR ↑ SSIM ↑
RRDB-SFT w/o semseg 33.41 0.9278

RRDB-SFT w/ semseg 33.75 0.9300

Table 6. Importance of using semantic information in SR. The

ground-truth blur and semantic maps are used in this experiment.

Method
Intermediate Results SR Results

PSNR/SSIM ↑ mIoU ↑ PSNR/SSIM ↑
Single Task 24.58/0.8393 33.95 30.75/0.9134

CMOS (Ours) 24.52/0.8340 35.61 32.03/0.9154

Table 7. Effectiveness of MTL. PSNR/SSIM and mIoU of the

intermediate results refer to the blur maps and the semantic maps.

with the CMOS results. Secondly, We compare the SR re-

sults achieved by solely utilizing the estimated blur maps

versus employing both the estimated blur and semantic

maps. As shown in Tab. 7, joint estimation improves the re-

sults of semantic segmentation (mIoU +1.66↑), albeit with

a slight decrease in the performance of blur estimation. But

in general, MTL can improve the PSNR/SSIM of the final

SR results by +1.28↑/+0.002↑, which proves that semantics

is useful to the overall SR process.

Importance of the Auxiliary Supervision. We ablate the

auxiliary supervision in CMOS to see if it is necessary for

our framework. As shown in Tab. 8, without the auxiliary

supervision in the multi-scale structure, although there is a

slightly increase in SSIM, PSNR and mIoU droped by 0.38

↓ and 0.24% ↓, respectively. Therefore, auxiliary supervi-

Methods PSNR ↑ SSIM ↑ mIoU ↑
CMOS w/o AS 24.14 0.8347 35.37

CMOS w/ AS 24.52 0.8340 35.61

Table 8. Importance of the auxiliary supervision (AS) in CMOS.

sion can improve the performance of CMOS on the whole.

5.4. Experiments on Real-Wrold SR

As there is no ground-truth for real images, we only

compare visual results of different methods. As shown in

Fig. 6, similar to the results on our datasets, KernelGAN

still generate ringing artifacts, especially in the ourdoor

scene. DAN, DCLS and KOALAnet all produce blurry re-

sults, while MANet performs slightly better. In compari-

sion, CMOS can produce realistic and natural textures, and

the results are the clearest.

6. Conclusion

In this paper, we introduce out-of-focus blur to SR and

propose two new datasets: NYUv2-BSR and Cityscapes-

BSR. Besides, we further propose a novel model CMOS to

estimate the blur and semantic maps simultaneously. By

incorporating semantics, we can restore finer SR results.

GIA modules is used to achieve effective feature interaction

in both spatial and channel dimensions. Extensive experi-

ments on proposed datasets and real-world images demon-

strate that our model can achieve SOTA performance in

blind SR when integrated with existing non-blind models.
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