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Abstract— Unmanned surface vehicles (USVs) are
important intelligent equipment that can accomplish
various tasks on open area marine. During operation,
environmental perception and obstacle avoidance is of
vital significance to its autonomy. In this paper, we
propose a novel USV equipped with fused perception
and obstacle avoidance module that contains robust
perception, localization and effective obstacle avoidance
strategy. The new module is named Three-Dimensional
Perception Module (PMTD), which utilizes camera and
LiDAR to integrate multi-dimensional environmental
information. It is able to detect, identify and track
target objects in the process of autonomous travel.
The localization precision achieves a centimeter-level
with GPS and IMU devices. Meanwhile, the obstacle
avoidance strategy allows the USV to efficiently keep
away from static and dynamic floating objects in
water areas. Through real-world experiments, we show
that with the help of the proposed module, the USV
can complete stable and autonomous operation and
obstacles avoidance path planning even without any
manual intervention. This indicates the strong ability
of the module in autonomous driving for USVs.

I. INTRODUCTION

In conditions of complex water area and uncer-

tain climate, artificial exploration or searching is

commonly inefficient and even dangerous. As such,

unmanned surface vehicles (USVs) are attracting

much more attention in recent years [1], [8] due

to the increasing demands on open-area marine for

different tasks, such as environmental monitoring,

good transportation, military reconnaissance, and etc.

It faces more challenges than ground vehicles mainly

because of the influence by water tides as well as
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high similarity of surrounding environment in water

areas. Robust environmental perception and obstacle

modules are required to ensure stable operation for

USVs in real-world scenes.

With the development of various sensor, data

transmission, and image processing technologies, there

has been a continuous improvement in localization

accuracy, especially for unmanned ground vehicles. In

the ground-based unmanned systems, the target objects

are usually described by a collection of 3D points, and

then camera and LiDAR are used to detect and track

small objects like pedestrians and vehicles [10]. For

example, Chen et al. [4] propose a vehicle detection,

tracking and classification system based on road edge

objects. Zhang et al. [15] combine the data of stereo

camera and LiDAR for vehicle detection. For this

method, Random Hypersurface Model (RHM) [2] is

employed to extract object shape parameters based on

visual detection.

By far, there has been very few methods for

environmental perception and obstacle avoidance in

the field of USVs. Zhan et al. [14] propose an

online learning method to detect in unknown water

areas through Convolutional Neural Networks (CNNs).

Wang et al. [13] further propose a multi-sensor-based

urban waterway autonomous system to show the

joint performance of localization, perception, planning

and control. It is able to detect static and dynamic

obstacles, but suffers from the detection accuracy with

only one single laser.

Based on noisy stereo camera data, a real-time

algorithm for detecting and tracking dynamic objects

is proposed in [5]. The SSD [7] network with Mo-

bileNet [6] backbone is employed to perform object

detection in the image. However, the accuracy and

speed of above method is limited and not enough for

real applications. In this paper, we replace it with

YOLOv4 [3] for better performance.

This article proposes a complete perception and

obstacle avoidance system for unmanned surface

vehicles. Based on the fusion of laser and camera, we
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raise a real-time method that identifies target, with the

capacity of decimeter-level positioning and detection

of obstacles within close range. The 3D perception

module can effectively identify boats, vessels, buoys,

and other objects, ensuring that unmanned ships

generate reasonable obstacle avoidance strategies

during autonomous navigation. The main contributions

are listed as follows.

• We propose a novel USV that has better au-

tonomous perception and obstacle avoidance

capabilities in water environments.

• We design a 2D-3D fused perception module

(PMTD) based on camera and laser, showing

high accuracy in positioning, obstacle detection

and target recognition.

• We have conducted real-world experiments to

verify the effectiveness of the whole system.

II. HARDWARE OVERVIEW

As a common practice, the proposed unmanned

surface vehicle contains a set of modules, including

the V-shaped hull structure, positioning and communi-

cation, obstacle detection, core control and computing

unit, power system, and etc.

Fig. 1. An overview of the unmanned surface vehicle

In order to ensure its autonomy, many devices are

equipped on the new USV, such as the controller, IMU,

LiDAR, GPS. An Intel I7 quad-core processor with

8G memory is employed as the core computing unit.

The high-performance processor enables to reduce

the impact of communication delays and insufficient

computing power on the overall performance. The

USV also uses a series of high-precision sensors to

gather positioning information. Among them, an IMU

(Xsens) device is installed parallel to the surface,

and its direction is consistent with the forward. The

IMU provides high-frequency triaxial acceleration

and triaxial angular velocity.And the GPS device

provides complete location information. For long-

range detection and better positioning, A 3D LiDAR

(RoboSense, RSlidar) is installed on the upper end of

the hull. What’s more, the USV contains a novel

perception and obstacle avoidance module that is

specifically designed by us, named three-dimensional

perception module (PMTD). Within this module, a

3D LiDAR (Livox Horizon) and a standard monocular

camera are installed. The 2D image data by the

monocular camera is fused with the 3D point cloud

data by the LiDAR, which is an essential source of

sensor information for the close-sensing module.
According to different propulsion methods, the USV

can be divided into tail push type and double push type.

In our USV, a semi-fixed single propeller outboard

engine is adopted. The propeller is fixed in the vertical

direction relative to the boat. Here, the common way

to generate various sizes and directions of propulsion

are two-folds. First is through modulating the received

speed signal into the corresponding PWM. Second is

to receive the angle signal by the linkage connected

with the steering mechanism and the vector rudder to

drive the propeller in the horizontal direction to the

corresponding angle. Compared with standard single-

propeller-single-rudder and single-propeller-double-

rudder model, that fix the propeller and transform the

stern flow direction by controlling the orientation of

the stern rudder, the dynamic model of the system is

closer to the Ackermann trolley model on the ground.

III. PERCEPTION AND AUTONOMY SYSTEM

The system flow diagram of USV is shown in Fig.

2. In general, an autonomous navigation task from

upper-level human interface is issued to the computing

unit. During the execution of the whole mission, the

positioning module determines the USV’s pose in

real-time. And the perception module recognizes the

targets and inputs the 3D information of the obstacle

into the path planning module. Based on the acquired

pose, speed, and the obstacle information, the path

planning module calculate a safe and reliable obstacle

avoidance trajectory.

Fig. 2. Illustration of the USV system framework
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A. 2D-3D fused object perception

The 3D point cloud data obtained by LiDAR

contains distance and intensity information. In contrast,

the 2D image data obtained by camera is able to

extract color and texture information. In summary,

LiDAR has good robustness in 3D information but is

difficult to identify objects in the transformation of

adjacent frames accurately, and the camera can make

up for this shortcoming.

Many works have confirmed that the sparse laser

point cloud has well effect on marking the target in

the case of time-synchronized images [12]. Camera

and radar are complementary on target recognition in

different aspects. Therefore, in this part, the 3D laser

point cloud is merged with the 2D image data to be

applied in target recognition and obstacle detection.

LiDAR’s perception is divided into obstacle detec-

tion and target recognition. The obstacle detection with

low-level perception usually extracts the length, width,

and other specification information of the object,

which meets the definition requirements of obstacles.

The high-level perception, based on obstacle detection,

fuses image recognition results to define the target

point cloud data in 3D space.

Considering the large amount of point cloud data

and the noise, it is necessary to pre-process the point

cloud data. The detection module adopts the voxel

grid filtering method to down-sample the original

data, which can smooth the point cloud density, and

reduce the scale of data. What’s more, due to the large

viewing angle of LiDAR, it is easy to collect obstacle

point cloud data with low correlation. Therefore, the

ROI of the original laser point cloud is determined

by the area scanned through the 2D image. In ground

vehicles, considering the influence of the ground point

cloud by clustering method, they generally eliminate

ground segmentation.However, in consideration of the

characteristic that the laser can penetrate the water,

the operation of ground segmentation can be ignored

and directly eliminate the outliers from the data by

range filtering.

According to the determined ROI area and the

preprocessed point cloud data, the data points are

divided into clusters by the Euclidean Clustering

method. Each cluster represents a single obstacle. Then

the bounding box method of the smallest bounding box

is employed to fit each cluster. From each bounding

box, the physical information of the obstacle is

easily to be obtained. It is also possible to estimate

the movement state by correlating the obstacle data

of multiple consecutive frames and calculate the

movement information such as the speed and direction

of the corresponding obstacle.

Based on LiDAR obstacle detection, the camera’s

image data is merged to have a better target recogni-

tion effect.For image recognition, the YOLOv4 net-

work is adopted as the detection model. YOLOv4 [3]

is a well-known convolutional neural network (CNN)

designed for object detection. Compared with other

detectors, it has better speed (FPS) and accuracy

(mAP). Under the framework of previous YOLO

versions, YOLOv4 combines other suitable detection

structures. For example, the head part of YOLOv3

is retained, but the backbone network is modified to

CSPDarknet53, and spatial pyramid pooling (SPP) is

adopted to expand the receptive field, and the path

aggregation module is employed. These strategies opti-

mize the overall detection model from data processing,

backbone network, network training, activation func-

tion, loss function, and other aspects, balancing speed

and accuracy requirements.

Finally, target recognition is performed on the 2D

image collected by the camera through YOLOv4.

And the laser point cloud provided by the LiDAR

is projected onto a 2D plane. The target data points

of the image recognition are correlated to obtain the

3D data corresponding to the target object.

B. Precise positioning and path planning

1) Precise positioning: The positioning module

adopts the LiDAR 3D data above the hull in static

and dynamic conditions through Normal Distributions

Transformation (NDT) [9] matching algorithm.

The advantage of the algorithm is that the matching

effect is not related to the initial value of the input

algorithm. Even if the difference between the hypo-

thetical value and the actual value is significant, NDT

can correct the error shortly, accurately.Firstly, the

algorithm divides the spatial range of the point cloud

data in the reference frame into cell grids or voxels of

fixed size. The PDF of each cell can be regarded as

an approximate representation of the surface.In other

words, it can be interpreted as the generation of surface

points in a cell. The eigenvectors and eigenvalues of

the covariance matrix can be employed to represent

the surface information of cells, such as orientation,

flatness.{
�μ = 1

m ∑m
k=1�yk

Σ = 1
m−1 ∑m

k=1 (�yk −�μ)(�yk −�μ)T ,
(1)

where �yyyk=1,...,m denotes the positions of all reference

scan points included in one cell.
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When using NDT to register the current scanning

data points, the main purpose is to find the pose of

the current scanning frame relative to the reference

frame. The fundamental implementation is through

maximizing the possibility of each scanning point on

the reference scanning plane. For example, given a set

of current lidar scanning data points X = {�x1, . . . ,�xn},

a pose parameter to be optimized �p, and a transform

function T (�p,�x) to transform the point cloud data to

the reference coordinate system (usually the previous

frame). Calculate the normal probability distribution

function of the current point falls in the cell of the

reference frame as follows:

p(�x) =
1

(2π)D/2
√|Σ| exp

(
−(�x−�μ)TΣ−1(�x−�μ)

2

)
,

(2)

where �μμμ and ΣΣΣ denote the mean vector and covariance

matrix of the reference scan surface points within the

presumptive cell where �x lies.

The objective function of obtaining the optimal

pose parameter �ppp of all points is defined as

s(�p) =
n

∑
k=1

p(T (�p,�xk)) , (3)

where the optimal pose parameter �ppp needs to be

calculated iteratively until the convergence condition

is reached.

The initial position of USV is obtained based on

the pre-obtained water area map and NDT algorithm.

What’s more, when a USV performs point-to-point

obstacle avoidance planning according to the set task,

the rotation and translation vectors between frames

are registered using the NDT algorithm. Based on the

initial calculation, the accurate position of USV can

be acquired iteratively in real-time.

2) Path planning: As a typical heuristic search

algorithm, A* is widely used in many problems such

as path planning and graph traversal because of its fast

search speed. A* is mainly used to find the optimal

solution from the initial state S to the termination

state G in the state space. The algorithm’s input is

the initial state and the termination state, while the

output is the action sequence number of the target

in each state transition. Due to the guidance of the

heuristic function, the A* algorithm will transfer to

the state at a low cost. Therefore, compared with other

search algorithms, the A* algorithm usually has better

performance in search efficiency.

In the state space of path planning, for a state N,

g(N), h(N), and f(N) need to be provided to the A*

algorithm. In detail, g(N) is expressed as the optimal

cost from the initial state S to the current state N.

h(N) is expressed as the estimated cost from state N

to termination state N. f(N) = g(N) + h(N), which

represents the estimated cost from the starting state

S to the end state G through the current state N. A*

uses the list OPEN to store all the current states to be

detected and sort them in ascending order according

to the f value of the states. Each time, the state at

the top of open is extracted for extension, and the

extented states are added to OPEN. The extracted

state is placed in the list CLOSE for marking. The

algorithm terminates When the state extracted from

OPEN is the target state.

IV. EXPERIMENT AND RESULTS

A. Sensor external parameter calibration

Although multiple sensors are in the same system

in the multi-sensor fusion problem, they work in their

coordinate systems. In the final fusion positioning

result, only the coordinate system of one sensor

can be selected as the reference coordinate system.

What’s more, due to hardware triggers, initial delays,

clock synchronization errors, etc., the time stamp of

each sensor is not synchronized [11]. Considering

the influence of various errors aforementioned, it is

significant for the positioning system to perform high-

precision space-time calibration of multiple sensors.

The joint calibration of lidar and camera is a spatial

calibration between multi-sensor fusion. Its primary

purpose is to obtain the pose transformation matrix.

A checkerboard method is adopted to calculate

the external calibration between radar and camera.

First extract the corner points of the camera image,

and then select the region of interest (ROI) within

a specific range of the checkerboard point cloud.

The plane from the ROI area should be extracted to

obtain the corners of the point cloud. According to the

lidar corner points, camera corner points, and camera

internal parameters, the precise pose transformation

matrix between the radar and the camera can be

obtained through the algorithm.This method requires

relatively high requirements for the calibration board.

In particular, it requires that the reflection intensity

of the laser in the white and black areas of the

checkerboard is significantly different. At the same

time, the distance between the radar and the camera

needs to be close.

Through the obtained external parameters between

the radar and the camera, the 3D laser point cloud is

projected to the 2D image and color the point cloud
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corresponding to camera data. If the external param-

eters are accurate enough, the object will show an

apparent edge contour in the colored three-dimensional

point cloud, as shown in Fig.3.

Fig. 3. Result of external parameter calibration.

In addition, our core arithmetic processing module

supports external hardware time synchronization, and

the synchronization accuracy is better than 1μs.

B. Real-world experiment

Fig. 4. The actual water scene of experimental test.

Fig. 5 shows the ability of our perception system

to recognize hull targets. The result of framing the

target object in the two-dimensional image obtained

from the camera is shown in the Fig. 5(a). What’s

more, the Fig. 5(b) shows that according to the fusion

of the camera and lidar, the three-dimensional data

points corresponding to the target object are entirely

extracted, and the object’s external contour can be

extracted seen well.

The experimental results of applying the data of

surrounding target objects obtained by the sensing

system to generate a practical obstacle avoidance path

are shown in Fig. 6.

A small sport kayak is defined as a dynamic obstacle

for testing obstacle avoidance performance in our

obstacle avoidance planning experiment. The Fig. 6(a)

presents that the upper layer generates a point-to-point

autonomous navigation task based on the accurate

(a) (b)

Fig. 5. (a) is the recognition result of the hull target in the
two-dimensional image. (b) is the three-dimensional data point
of the hull extracted from the laser point cloud according to the
target recognition result.

(a) (b)

(c) (d)

Fig. 6. (a) is the initial trajectory generated according to the
target point. (b) is the target obstacle detected. (c) is to generate
a new obstacle avoidance trajectory. (d) is to execute the new
trajectory to reach the target point.

position of the unmanned ship. If the perception

system does not detect obstacles within the sensing

range, the system directly generates a smooth optimal

path. In reality, the planning module sends control

instructions to the underlying power module to drive

the unmanned ship to follow the planned trajectory.

The process of regenerating the obstacle avoidance

trajectory is shown in Fig. 6(b) - Fig. 6(d). When an

obstacle enters the sensing range, the USV system

frames the target in the two-dimensional image of the

camera. It then extracts the data points corresponding

to the kayak from the three-dimensional laser point

cloud data. The obstacle avoidance planning system

regenerates a new safe obstacle avoidance trajectory

based on the obstacles detected in real-time.
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(a)

(b)

Fig. 7. (a) is the case of executing according to a predetermined
straight line. (b) is the case of executing in accordance with
the predetermined turning trajectory. Among them, the red line
represents the preset trajectory, while the purple line represents
the trajectory executed by the actual unmanned ship.

In addition, due to the limitations of the hull’s

dynamics, it is difficult for the power system to control

the hull to move laterally directly. The experimental

results also show that when the hull is moving in a

straight line, there is a particular gap between the

actual motion trajectory and the planned trajectory

due to the interference of the water flow and the

insufficient control of the lateral motion(Fig. 7).

However, it can also be seen from the results that

our planning module has good real-time performance

and can control the hull to return to the set trajectory

in time. Our experiments prove that the proposed

unmanned surface vehicle system can efficiently detect

obstacles and recognize target objects. Furthermore,

when static or dynamic obstacles appear around the

unmanned ship, which causes a risk of collision, our

obstacle avoidance planning module can also generate

a new safe trajectory in real-time.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel USV equipped

with high-performance 2D-3D fused perception and

obstacle avoidance module. The new module is named

Three-Dimensional Perception Module (PMTD). The

perception system on USV faces challenges such as

water vapor blocking the sensor’s view, and inevitable

ship shaking. PMTD can handle these challenges in

USV’s autonomy, so that USV can perceive, detect

and avoid static and dynamic obstacles autonomously

in the real-world water areas.
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