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Abstract— Unmanned surface vehicles (USVs) are
important intelligent equipment that can accomplish
various tasks on open area marine. During operation,
environmental perception and obstacle avoidance is of
vital significance to its autonomy. In this paper, we
propose a novel USV equipped with fused perception
and obstacle avoidance module that contains robust
perception, localization and effective obstacle avoidance
strategy. The new module is named Three-Dimensional
Perception Module (PMTD), which utilizes camera and
LiDAR to integrate multi-dimensional environmental
information. It is able to detect, identify and track
target objects in the process of autonomous travel.
The localization precision achieves a centimeter-level
with GPS and IMU devices. Meanwhile, the obstacle
avoidance strategy allows the USV to efficiently keep
away from static and dynamic floating objects in
water areas. Through real-world experiments, we show
that with the help of the proposed module, the USV
can complete stable and autonomous operation and
obstacles avoidance path planning even without any
manual intervention. This indicates the strong ability
of the module in autonomous driving for USVs.

I. INTRODUCTION

In conditions of complex water area and uncer-
tain climate, artificial exploration or searching is
commonly inefficient and even dangerous. As such,
unmanned surface vehicles (USVs) are attracting
much more attention in recent years [1], [8] due
to the increasing demands on open-area marine for
different tasks, such as environmental monitoring,
good transportation, military reconnaissance, and efc.
It faces more challenges than ground vehicles mainly
because of the influence by water tides as well as
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high similarity of surrounding environment in water
areas. Robust environmental perception and obstacle
modules are required to ensure stable operation for
USVs in real-world scenes.

With the development of various sensor, data
transmission, and image processing technologies, there
has been a continuous improvement in localization
accuracy, especially for unmanned ground vehicles. In
the ground-based unmanned systems, the target objects
are usually described by a collection of 3D points, and
then camera and LiDAR are used to detect and track
small objects like pedestrians and vehicles [10]. For
example, Chen et al. [4] propose a vehicle detection,
tracking and classification system based on road edge
objects. Zhang et al. [15] combine the data of stereo
camera and LiDAR for vehicle detection. For this
method, Random Hypersurface Model (RHM) [2] is
employed to extract object shape parameters based on
visual detection.

By far, there has been very few methods for
environmental perception and obstacle avoidance in
the field of USVs. Zhan et al. [14] propose an
online learning method to detect in unknown water
areas through Convolutional Neural Networks (CNNs).
Wang et al. [13] further propose a multi-sensor-based
urban waterway autonomous system to show the
joint performance of localization, perception, planning
and control. It is able to detect static and dynamic
obstacles, but suffers from the detection accuracy with
only one single laser.

Based on noisy stereo camera data, a real-time
algorithm for detecting and tracking dynamic objects
is proposed in [5]. The SSD [7] network with Mo-
bileNet [6] backbone is employed to perform object
detection in the image. However, the accuracy and
speed of above method is limited and not enough for
real applications. In this paper, we replace it with
YOLOV4 [3] for better performance.

This article proposes a complete perception and
obstacle avoidance system for unmanned surface
vehicles. Based on the fusion of laser and camera, we
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raise a real-time method that identifies target, with the
capacity of decimeter-level positioning and detection
of obstacles within close range. The 3D perception
module can effectively identify boats, vessels, buoys,
and other objects, ensuring that unmanned ships
generate reasonable obstacle avoidance strategies
during autonomous navigation. The main contributions
are listed as follows.

e« We propose a novel USV that has better au-
tonomous perception and obstacle avoidance
capabilities in water environments.

o We design a 2D-3D fused perception module
(PMTD) based on camera and laser, showing
high accuracy in positioning, obstacle detection
and target recognition.

e We have conducted real-world experiments to
verify the effectiveness of the whole system.

II. HARDWARE OVERVIEW

As a common practice, the proposed unmanned
surface vehicle contains a set of modules, including
the V-shaped hull structure, positioning and communi-
cation, obstacle detection, core control and computing
unit, power system, and efc.

An overview of the unmanned surface vehicle

Fig. 1.

In order to ensure its autonomy, many devices are
equipped on the new USYV, such as the controller, IMU,
LiDAR, GPS. An Intel 17 quad-core processor with
8G memory is employed as the core computing unit.

(RoboSense, RSlidar) is installed on the upper end of
the hull. What’s more, the USV contains a novel
perception and obstacle avoidance module that is
specifically designed by us, named three-dimensional
perception module (PMTD). Within this module, a
3D LiDAR (Livox Horizon) and a standard monocular
camera are installed. The 2D image data by the
monocular camera is fused with the 3D point cloud
data by the LiDAR, which is an essential source of
sensor information for the close-sensing module.
According to different propulsion methods, the USV
can be divided into tail push type and double push type.
In our USV, a semi-fixed single propeller outboard
engine is adopted. The propeller is fixed in the vertical
direction relative to the boat. Here, the common way
to generate various sizes and directions of propulsion
are two-folds. First is through modulating the received
speed signal into the corresponding PWM. Second is
to receive the angle signal by the linkage connected
with the steering mechanism and the vector rudder to
drive the propeller in the horizontal direction to the
corresponding angle. Compared with standard single-
propeller-single-rudder and single-propeller-double-
rudder model, that fix the propeller and transform the
stern flow direction by controlling the orientation of
the stern rudder, the dynamic model of the system is
closer to the Ackermann trolley model on the ground.

III. PERCEPTION AND AUTONOMY SYSTEM

The system flow diagram of USV is shown in Fig.
2. In general, an autonomous navigation task from
upper-level human interface is issued to the computing
unit. During the execution of the whole mission, the
positioning module determines the USV’s pose in
real-time. And the perception module recognizes the
targets and inputs the 3D information of the obstacle
into the path planning module. Based on the acquired
pose, speed, and the obstacle information, the path
planning module calculate a safe and reliable obstacle
avoidance trajectory.
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A. 2D-3D fused object perception

The 3D point cloud data obtained by LiDAR
contains distance and intensity information. In contrast,
the 2D image data obtained by camera is able to
extract color and texture information. In summary,
LiDAR has good robustness in 3D information but is
difficult to identify objects in the transformation of
adjacent frames accurately, and the camera can make
up for this shortcoming.

Many works have confirmed that the sparse laser
point cloud has well effect on marking the target in
the case of time-synchronized images [12]. Camera
and radar are complementary on target recognition in
different aspects. Therefore, in this part, the 3D laser
point cloud is merged with the 2D image data to be
applied in target recognition and obstacle detection.

LiDAR’s perception is divided into obstacle detec-
tion and target recognition. The obstacle detection with
low-level perception usually extracts the length, width,
and other specification information of the object,
which meets the definition requirements of obstacles.
The high-level perception, based on obstacle detection,
fuses image recognition results to define the target
point cloud data in 3D space.

Considering the large amount of point cloud data
and the noise, it is necessary to pre-process the point
cloud data. The detection module adopts the voxel
grid filtering method to down-sample the original
data, which can smooth the point cloud density, and
reduce the scale of data. What’s more, due to the large
viewing angle of LiDAR, it is easy to collect obstacle
point cloud data with low correlation. Therefore, the
ROI of the original laser point cloud is determined
by the area scanned through the 2D image. In ground
vehicles, considering the influence of the ground point
cloud by clustering method, they generally eliminate
ground segmentation.However, in consideration of the
characteristic that the laser can penetrate the water,
the operation of ground segmentation can be ignored
and directly eliminate the outliers from the data by
range filtering.

According to the determined ROI area and the
preprocessed point cloud data, the data points are
divided into clusters by the Euclidean Clustering
method. Each cluster represents a single obstacle. Then
the bounding box method of the smallest bounding box
is employed to fit each cluster. From each bounding
box, the physical information of the obstacle is
easily to be obtained. It is also possible to estimate
the movement state by correlating the obstacle data
of multiple consecutive frames and calculate the

movement information such as the speed and direction
of the corresponding obstacle.

Based on LiDAR obstacle detection, the camera’s
image data is merged to have a better target recogni-
tion effect.For image recognition, the YOLOv4 net-
work is adopted as the detection model. YOLOv4 [3]
is a well-known convolutional neural network (CNN)
designed for object detection. Compared with other
detectors, it has better speed (FPS) and accuracy
(mAP). Under the framework of previous YOLO
versions, YOLOv4 combines other suitable detection
structures. For example, the head part of YOLOv3
is retained, but the backbone network is modified to
CSPDarknet53, and spatial pyramid pooling (SPP) is
adopted to expand the receptive field, and the path
aggregation module is employed. These strategies opti-
mize the overall detection model from data processing,
backbone network, network training, activation func-
tion, loss function, and other aspects, balancing speed
and accuracy requirements.

Finally, target recognition is performed on the 2D
image collected by the camera through YOLOv4.
And the laser point cloud provided by the LiDAR
is projected onto a 2D plane. The target data points
of the image recognition are correlated to obtain the
3D data corresponding to the target object.

B. Precise positioning and path planning

1) Precise positioning: The positioning module
adopts the LiDAR 3D data above the hull in static
and dynamic conditions through Normal Distributions
Transformation (NDT) [9] matching algorithm.

The advantage of the algorithm is that the matching
effect is not related to the initial value of the input
algorithm. Even if the difference between the hypo-
thetical value and the actual value is significant, NDT
can correct the error shortly, accurately.Firstly, the
algorithm divides the spatial range of the point cloud
data in the reference frame into cell grids or voxels of
fixed size. The PDF of each cell can be regarded as
an approximate representation of the surface.In other
words, it can be interpreted as the generation of surface
points in a cell. The eigenvectors and eigenvalues of
the covariance matrix can be employed to represent
the surface information of cells, such as orientation,
flatness.
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where y;_; , denotes the positions of all reference
scan points included in one cell.
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When using NDT to register the current scanning
data points, the main purpose is to find the pose of
the current scanning frame relative to the reference
frame. The fundamental implementation is through
maximizing the possibility of each scanning point on
the reference scanning plane. For example, given a set
of current lidar scanning data points X = {X;,...,X,},
a pose parameter to be optimized p, and a transform
function T'(p,X) to transform the point cloud data to
the reference coordinate system (usually the previous
frame). Calculate the normal probability distribution
function of the current point falls in the cell of the
reference frame as follows:

p()

o EREER)
"@nwﬂv@wep< 2 >’
2)

where pi and X denote the mean vector and covariance
matrix of the reference scan surface points within the
presumptive cell where X lies.

The objective function of obtaining the optimal
pose parameter p of all points is defined as

=Y. p(T(.5), 3
k=1

where the optimal pose parameter p needs to be
calculated iteratively until the convergence condition
is reached.

The initial position of USV is obtained based on

the pre-obtained water area map and NDT algorithm.

What’s more, when a USV performs point-to-point
obstacle avoidance planning according to the set task,
the rotation and translation vectors between frames
are registered using the NDT algorithm. Based on the
initial calculation, the accurate position of USV can
be acquired iteratively in real-time.

2) Path planning: As a typical heuristic search
algorithm, A* is widely used in many problems such
as path planning and graph traversal because of its fast
search speed. A* is mainly used to find the optimal
solution from the initial state S to the termination
state G in the state space. The algorithm’s input is
the initial state and the termination state, while the
output is the action sequence number of the target
in each state transition. Due to the guidance of the
heuristic function, the A* algorithm will transfer to
the state at a low cost. Therefore, compared with other
search algorithms, the A* algorithm usually has better
performance in search efficiency.

In the state space of path planning, for a state N,
g(N), h(N), and f(N) need to be provided to the A*
algorithm. In detail, g(N) is expressed as the optimal

cost from the initial state S to the current state N.
h(N) is expressed as the estimated cost from state N
to termination state N. f(N) = g(N) + h(N), which
represents the estimated cost from the starting state
S to the end state G through the current state N. A*
uses the list OPEN to store all the current states to be
detected and sort them in ascending order according
to the f value of the states. Each time, the state at
the top of open is extracted for extension, and the
extented states are added to OPEN. The extracted
state is placed in the list CLOSE for marking. The
algorithm terminates When the state extracted from
OPEN is the target state.

IV. EXPERIMENT AND RESULTS

A. Sensor external parameter calibration

Although multiple sensors are in the same system
in the multi-sensor fusion problem, they work in their
coordinate systems. In the final fusion positioning
result, only the coordinate system of one sensor
can be selected as the reference coordinate system.
What’s more, due to hardware triggers, initial delays,
clock synchronization errors, efc., the time stamp of
each sensor is not synchronized [11]. Considering
the influence of various errors aforementioned, it is
significant for the positioning system to perform high-
precision space-time calibration of multiple sensors.

The joint calibration of lidar and camera is a spatial
calibration between multi-sensor fusion. Its primary
purpose is to obtain the pose transformation matrix.

A checkerboard method is adopted to calculate
the external calibration between radar and camera.
First extract the corner points of the camera image,
and then select the region of interest (ROI) within
a specific range of the checkerboard point cloud.
The plane from the ROI area should be extracted to
obtain the corners of the point cloud. According to the
lidar corner points, camera corner points, and camera
internal parameters, the precise pose transformation
matrix between the radar and the camera can be
obtained through the algorithm.This method requires
relatively high requirements for the calibration board.
In particular, it requires that the reflection intensity
of the laser in the white and black areas of the
checkerboard is significantly different. At the same
time, the distance between the radar and the camera
needs to be close.

Through the obtained external parameters between
the radar and the camera, the 3D laser point cloud is
projected to the 2D image and color the point cloud
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corresponding to camera data. If the external param-
eters are accurate enough, the object will show an
apparent edge contour in the colored three-dimensional
point cloud, as shown in Fig.3.

Fig. 3. Result of external parameter calibration.

In addition, our core arithmetic processing module
supports external hardware time synchronization, and
the synchronization accuracy is better than 1pus.

B. Real-world experiment

Fig. 4. The actual water scene of experimental test.

Fig. 5 shows the ability of our perception system
to recognize hull targets. The result of framing the
target object in the two-dimensional image obtained
from the camera is shown in the Fig. 5(a). What’s
more, the Fig. 5(b) shows that according to the fusion
of the camera and lidar, the three-dimensional data
points corresponding to the target object are entirely
extracted, and the object’s external contour can be
extracted seen well.

The experimental results of applying the data of
surrounding target objects obtained by the sensing
system to generate a practical obstacle avoidance path
are shown in Fig. 6.

A small sport kayak is defined as a dynamic obstacle
for testing obstacle avoidance performance in our
obstacle avoidance planning experiment. The Fig. 6(a)
presents that the upper layer generates a point-to-point
autonomous navigation task based on the accurate

(b)

Fig. 5. (a) is the recognition result of the hull target in the
two-dimensional image. (b) is the three-dimensional data point
of the hull extracted from the laser point cloud according to the
target recognition result.

(©) (d)

Fig. 6. (a) is the initial trajectory generated according to the
target point. (b) is the target obstacle detected. (c) is to generate
a new obstacle avoidance trajectory. (d) is to execute the new
trajectory to reach the target point.

position of the unmanned ship. If the perception
system does not detect obstacles within the sensing
range, the system directly generates a smooth optimal
path. In reality, the planning module sends control
instructions to the underlying power module to drive
the unmanned ship to follow the planned trajectory.
The process of regenerating the obstacle avoidance
trajectory is shown in Fig. 6(b) - Fig. 6(d). When an
obstacle enters the sensing range, the USV system
frames the target in the two-dimensional image of the
camera. It then extracts the data points corresponding
to the kayak from the three-dimensional laser point
cloud data. The obstacle avoidance planning system
regenerates a new safe obstacle avoidance trajectory
based on the obstacles detected in real-time.
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Fig. 7. (a) is the case of executing according to a predetermined
straight line. (b) is the case of executing in accordance with
the predetermined turning trajectory. Among them, the red line
represents the preset trajectory, while the purple line represents
the trajectory executed by the actual unmanned ship.

In addition, due to the limitations of the hull’s
dynamics, it is difficult for the power system to control
the hull to move laterally directly. The experimental
results also show that when the hull is moving in a
straight line, there is a particular gap between the
actual motion trajectory and the planned trajectory
due to the interference of the water flow and the

insufficient control of the lateral motion(Fig. 7).

However, it can also be seen from the results that
our planning module has good real-time performance
and can control the hull to return to the set trajectory
in time. Our experiments prove that the proposed
unmanned surface vehicle system can efficiently detect
obstacles and recognize target objects. Furthermore,
when static or dynamic obstacles appear around the
unmanned ship, which causes a risk of collision, our
obstacle avoidance planning module can also generate
a new safe trajectory in real-time.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel USV equipped
with high-performance 2D-3D fused perception and
obstacle avoidance module. The new module is named
Three-Dimensional Perception Module (PMTD). The
perception system on USV faces challenges such as
water vapor blocking the sensor’s view, and inevitable
ship shaking. PMTD can handle these challenges in
USV’s autonomy, so that USV can perceive, detect

and avoid static and dynamic obstacles autonomously
in the real-world water areas.
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