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Abstract—The time series self-supervised contrastive
learning framework has succeeded significantly in in-
dustrial fault detection scenarios. It typically consists
of pretraining on abundant unlabeled data and fine-
tuning on limited annotated data. However, the two-phase
framework faces three challenges: Sampling bias, task-
agnostic representation issue, and angular-centricity issue.
These challenges hinder further development in industrial
applications. This article introduces a debiased contrastive
learning with supervision guidance (DCLSG) framework
and applies it to industrial fault detection tasks. First,
DCLSG employs channel augmentation to integrate tempo-
ral and frequency domain information. Pseudolabels based
on momentum clustering operation are assigned to ex-
tracted representations, thereby mitigating the sampling
bias raised by the selection of positive pairs. Second, the
generated supervisory signal guides the pretraining phase,
tackling the task-agnostic representation issue. Third, the
angular-centricity issue is addressed using the proposed
Gaussian distance metric measuring the radial distribution
of representations. The experiments conducted on three
industrial datasets (ISDB, CWRU, and practical datasets)
validate the superior performance of the DCLSG compared
to other fault detection methods.

Index Terms—Data augmentation, debiased contrastive
learning, fault detection, representation extraction, similar-
ity metric, weak supervision guidance.
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I. INTRODUCTION

PROGNOSTICS and health management (PHM) methods
aim to monitor the operating status of machinery, diagnose

faults, and schedule maintenance to address anomalies using
available information [1]. Deep neural networks are widely used
in PHM due to their powerful feature extraction capabilities.
However, reliable deep neural network models often require
substantial annotated data, which can be constrained by factors
like domain expertise, increasing labor costs, and data privacy
concerns. To address this challenge, promising contrastive learn-
ing has emerged, consisting of a pretraining and fine-tuning
phase [2].

Current research of fault detection based on contrastive learn-
ing focuses on developing intricate similarity architectures [2]
and mining multigranularity representations [3], [4], [5]. Zhang
et al. [6] simultaneously extracts signal temporal and frequency
domain representations and allows the two representations to be
matched in high dimensional space. Zhang et al. [1] translated
the relative relationships between analog signals into images,
and extracted image features for detecting valve stiction. These
research have fully exploited the potential of contrastive learn-
ing and achieved good results in industrial fault detection [7].
However, this two-phase contrastive learning framework suffers
three critical issues: 1) the task-agnostic representation issue; 2)
sampling bias; and 3) angular-centricity issue.

In a two-phase contrastive learning framework, the feature
extractor refines high-quality representations from unlabeled
data during pretraining. In the subsequent fine-tuning phase,
a smaller network, in conjunction with a small-scale labeled
dataset (the annotated fine-tuning dataset), is employed to ad-
dress downstream tasks. This two-phase framework effectively
harnesses labeled data and consistently demonstrates strong
performance across a range of downstream tasks [6]. However,
a significant challenge, the task-agnostic representation issue,
arises due to the separated pretraining and fine-tuning phases.
This issue signifies that the relationship between the extracted
representations and downstream task requirements is not explic-
itly considered, potentially resulting in suboptimal performance
and reduced model generalization in practical applications. One
viable approach to address the task-agnostic representation is-
sue is flexibly employing the annotated fine-tuning dataset to
generate a supervisory signal during pretraining, guiding the
alignment of representations with the specific objectives of
downstream tasks.
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Fig. 1. Model architecture.

Sampling bias is a prominent issue arising from the lack
of prior knowledge in selecting positive and negative samples.
Typically, only augmented views from the same samples are
considered positive, while the rest are regarded as negative. This
practice may inadvertently introduce false negative examples
during model training, leading to suboptimal representations.
Moreover, sampling bias effectively treats each sample as an
independent class, causing the representations to be uniformly
distributed across the hypersphere [8]. However, this uniform
distribution does not match the demands of classification or
anomaly detection tasks, where distinct clustered representa-
tions in hidden states are desirable. Debiased contrastive learn-
ing [9] and contrastive learning with hard negative samples [10]
introduce a hyperparameter τ+ into the InfoNCE loss to mitigate
sampling bias. Nonetheless, τ+ is strongly influenced by the
distribution of the dataset and can resemble supervised learning.
A practical approach to mitigate sampling bias involves explor-
ing the relation among features and assigning pseudolabels to
address this challenge.

Cosine similarity is a widely used metric in contrastive learn-
ing [6], [11] measuring the relative angle between represen-
tations. It has shown good performance but has a significant
limitation. In a polar coordinate system, a specific coordinate is
defined by both angle and distance of points. Both independent
elements are essential to describe the relative positions of points
accurately. However, the cosine similarity metric only considers
the relative angle (directional distribution) among features and
neglects their distances (radial distribution), which leads to what
is known as the angular-centricity issue. This means that cosine
similarity is incomplete for capturing the complete information
based on the polar coordinate system description. To overcome
this limitation, developing a new similarity metric that appro-
priately accounts for both angular and radial distributions is
crucial.

To address the above problems, we proposed a debiased
contrastive learning with supervision guidance framework
(DCLSG), illustrated in Fig. 1. Channel augmentation is pro-
posed to fuse temporal and frequency information to enhance
data mining ability. We make use of an annotated fine-tuning
dataset to proliferate a supervisory signal, ensuring that the
extracted representations align with the demands of downstream
tasks. Compared to traditional two-phase contrastive learning,
DCLSG enhances the utilization efficiency of labeled fine-
tuning dataset without additional ones. Bidirectional weight
updating scheme (BWUS) is proposed to transmit a supervisory
signal while maintaining training stability. To combat sampling
bias, we introduce momentum clustering, assigning pseudola-
bels to features, and assisting in determining true positive pairs.
In the case of the angular-centricity issue, we develop a novel
distance similarity metric known as the Gaussian distance metric
(GDM) to control the radial distribution of features. GDM and
cosine similarity are independent indicators that jointly describe
the relative distance between features. The primary contributions
of this article are as follows.

1) A channel augmentation is proposed to incorporate tem-
poral and frequency information, endowing the model to
extract features from both local and global perspectives.

2) A novel debiased contrastive learning framework for fault
detection named DCLSG is proposed to alleviate task-
agnostic issue. DCLSG utilizes the annotated fine-tuning
dataset to align the representations with downstream
tasks’ objectives. BWUS transmits supervisory signal and
maintains the stability of the pretraining process.

3) To mitigate sampling bias, momentum clustering is em-
ployed to assign pseudolabels to extracted representa-
tions, aiding in identifying positive pairs.

4) GDM is proposed to characterize the radial distribution of
representations in the polar coordinate system, mitigating
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the limitations of cosine similarity. GDM and cosine
similarity are independent metrics that jointly depict the
relative location among features, alleviating the angular-
centricity issue.

The rest of this article is organized as follows. Section II
provides the problem definition and an overview of the overall
framework. Sections III–V introduce the details of our frame-
work. The experiments are described in Section VI. Finally,
Section VII concludes this article.

II. OVERALL FRAMEWORK

A. Problem Definition

Given two datasets: Annotated subdataset X an ∈ RM×L×C

and unannotated subdataset X un ∈ RN×L×C . Samples in
X an contain the data and label, defined as X an = {X1,X2,
. . . ,XM}, where Xm = (xm, ym). In contrast, samples in X un

only contain the data, i.e., X un = {X1,X2, . . . ,XN}, where
Xn = (xn). In most cases, M � N and we define sampling
factor p = M

N . Our goal is to build a robust feature extraction
framework based on X an and X un, capable of transforming
the raw time series samples into representations suitable for
downstream tasks.

B. Feature Extraction Framework

The architecture of the proposed framework is depicted in
Fig. 1. It begins with the original datasetX , which is initially par-
titioned into annotated data X an with limited p and unannotated
data X un. X an also acts as fine-tuning dataset. Subsequently,
these datasets are then transformed into augmented samples X̂ an

and X̂ un through the proposed sample and channel augmentation
techniques.

The proposed DCLSG framework contains two primary mod-
ules: 1) supervisory signal generator (SSG); and 2) unsupervised
feature extractor (UFE). The UFE is the core component of
DCLSG framework and is tailored to extract the representation
F from the unannotated dataset X un using a self-supervised
contrastive learning approach. To address the challenge caused
by the lack of prior knowledge and defective distance measure-
ment between features, we introduce two critical modules: 1) the
momentum clustering method; and 2) a novel similarity metric
termed the GDM. The momentum clustering method assigns
pseudolabels to features during model training, enhancing the
exploration of intraclass representations within the same cate-
gory. In addition, the GDM quantifies the relative radial spatial
distribution between features, thereby rectifying information
discrepancies caused by the cosine similarity. Finally, we craft
a new debiased InfoNCE loss combined with the generated
pseudolabels and the GDM.

To eliminate the task-agnostic representation issue, we incor-
porate the supervisory signal into UFE after each training epoch.
We train the interactive block under the supervised paradigm
driven by X an and treat the parameters of the interactive block
as available supervisory signal. Furthermore, we introduce a
new information transmission strategy called the BWUS. In
contrast to conventional exponential moving average method,

Algorithm 1: Pretraining Phase of Proposed DCLSG
Framework.
Require: The annotated sub-dataset X an , the unanotated

sub-dataset X un , data augmentation operation T (·),
feature extractor fUFE (·), interactive block fSSG(·),
and label prediction block p(·), momentum clustering
operation mc(·), weighting factors α and β.

Ensure: Feature extractor fUFE (·)
1: for epc in epoch do
2: for batch X an

B , ground truth Ygt
B in X an do

3: Get data augmentation as (1)-(5): X̂ an
B = T (X an

B );
4: Get predicted labels: Yprd

B = p(fSSG(X̂ an
B ));

5: Substitute Yprd
B and Ygt

B into Cross-Entropy loss to
calculate LSSG ;

6: Update fSSG(·) and p(·) to minimize LSSG ;
7: end for
8: for batch X un

B in X un do
9: Get data augmentation as (1)-(5): X̂ un

B = T (X un
B );

10: Get feature batch: FB = fUFE (X̂ un
B );

11: Get pseudo-labels via Alg. 2: Cpsd
B = mc(FB);

12: Substitute FB and Cpsd
B into (15) or (16) to

calculate debiased InfoNCE loss L1 or L2;
13: Update fUFE (·) to minimize L1 or L2;
14: end for
15: Substitute fSSG(·), fUFE (·), α, and β into (17) and

(18) to operate BWUS between fSSG(·) and
fUFE (·);

16: end for
17: return Feature extractor fUFE (·)

which only supports unidirectional information transfer, BWUS
allows for bidirectional information transfer between the feature
extractor and the interaction block. BWUS not only ensures
training stability during the information transfer process, but also
guarantees that both SSG and UFE share the same optimization
objectives, thereby avoiding a mismatch between the pretraining
and fine-tuning phases.

The pseudocode for the pretraining phase of the proposed
DCLSG framework is illustrated in Algorithm 1.

III. DATA AUGMENTATION

In this article, we introduce two kinds of augmentation meth-
ods: 1) sample augmentation; and 2) channel augmentation.
Sample augmentation generates various views of the original
samples through weak and strong augmentations, encouraging
the model to extract invariant features. Channel augmentation
incorporates the information from both temporal and frequency
domains, endowing the model with multifaceted feature extrac-
tion capabilities.

A. Sample Augmentation

We generate weak augmented viewsxw and strong augmented
views xs from the original sample x through jittering and per-
mutation, as shown in Fig. 2(a). Strong augmentation involves
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Fig. 2. Data augmentation. (a) Sample augmentation. (b) Channel
augmentation.

disrupting the chronological order of time series, which can sig-
nificantly impact the original characteristics. In contrast, weak
augmentation introduces subtle variations to the time series
without significantly altering their overall shape. Combining
weak and strong sample augmentation allows the model to
explore intrinsic information in the original data.

In DCLSG, we create two data subsets, X an and X un, by
removing the labels from X and sampling p percent of the
annotated data, respectively. These subsets are then transformed
into Ẋ an, Ẋ un

w , and Ẋ un
s via sample augmentation

Ẋ an = C(X an, Tw(X an), Ts(X an)) (1)

Ẋ un
w = Tw(X un) (2)

Ẋ un
s = Ts(X un) (3)

where Ẋ an ∈ R3B∗p×L×C is the full augmented data of X an,
while Ẋ un

w ∈ RB×L×C and Ẋ un
s ∈ RB×L×C are the weakly and

strongly augmented views of X un, respectively. B stands for
the batch size, and L and C denote the length and channel
number of a sample, respectively. C(·) denotes a concatenation
operation, andTw(·) andTs(·) represent weak and strong sample
augmentation operations, respectively.

B. Channel Augmentation

In signal analysis, temporal and frequency domains offer
distinct perspectives for describing signals while preserving the
same semantics. The temporal domain primarily captures the
local and dynamic characteristics, highlighting rapid changes
between adjacent points. In contrast, the frequency domain
focuses on the orthogonal pattern decomposition of macrotime
series, enabling the extraction of global and stable modes.

To seamlessly integrate information from the temporal and
frequency domains, we propose a channel augmentation tech-
nique that empowers the model to extract features from local
and global perspectives. In frequency information with complex
form, the real part represents the cosine component, while the
imaginary part denotes the sine component of the time series
at a specific frequency component. We separate these real and
imaginary components as new channels and combine them with
the original time series data to create channel-augmented data,
as depicted in Fig. 2(b). This operation expands the dataset

dimension from RB×L×C to RB×L×3C through the following
process:

R+ Ij = FFT (Ẋ ) (4)

X̂ = C(Ẋ ,R, I) (5)

where R and I represent the real and imaginary parts of the
frequency, respectively, and FFT (·) denotes the fast Fourier
transform operator. After the sample and channel augmentation
operation, we obtain X̂ an ∈ R3B∗p×L×3C , X̂ un

w ∈ RB×L×3C , and
X̂ un

s ∈ RB×L×3C . X̂ un is represented as [X̂ un
w ; X̂ un

s ].

IV. DEBIASED INFONCE LOSS

A. Traditional InfoNCE Loss

The InfoNCE loss is a fundamental component that enhances
the similarity of positive pairs, allowing them to capture common
and invariant information [3]. At the same time, it encourages
the features from randomly sampled negative pairs to become
more distinct. The classical InfoNCE loss function is defined in
(6)

LInfoNCE = E

[
− log

esim(f,f+)/τ

esim(f,f+)/τ +
∑

n∈N(i) e
sim(f,f−

n)/τ

]
(6)

where f is the extracted features, f+ and f− are positive
and negative features of f , respectively. sim(·, ·) denotes the
similarity metric, τ is the temperature coefficient, N(i) is the
set of negative features of f , and n is the index of N(i).

In the absence of prior knowledge, establishing positive and
negative pairs can be a challenging task. The current approach
defines two views augmented from the same sample as a pos-
itive pair, and treats view from different samples as negative.
However, this strategy overlooks the meaningful relation among
samples and treats each sample as an independent class. Conse-
quently, the features of samples from the same class end up being
uniformly distributed within the hidden state. Unfortunately, a
uniform distribution of features is suboptimal for classification
or fault detection tasks.

In contrastive learning, cosine value is a widely used metric
to gauge the similarity between features, defined as follows:

cos(f1, f2) =
fT

1 f2

‖f1‖2‖f2‖2
(7)

where f1 and f2 are features, and ‖ · ‖2 represents the �2 norm.
As depicted in Fig. 3, there exists a clear mathematical

relationship between the angle θ1 and the distance d′1 of the
projection point F ′

1 and F ′

cos(f ′
1, f

′) = cos θ1 = 1 − ‖d′1‖2
2

2
. (8)

However, the cosine similarity neglects the distance of the
featuresf ,f1, andf2, projecting them into a unit polar coordinate
system to generate f ′, f ′

1, and f ′
2, which is a lossy projection

method.
In a polar coordinate system, angle and distance are essential

for pinpointing a location. Similarly, to describe the relative
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Fig. 3. Feature distribution in hidden state. f1 and f2 are the positive
and negative feature for feature f , O is the origin of hidden state. f ′, f ′

1,
and f ′

2 are the projection points of f , f1, and f2 in unit hypersphere [8].
θ and d are the angle and distance between features.

positions among multiple points, considering the relative angles
and distances between features is of paramount importance.
Angles represent the directional distribution among features, and
distances describe the radial distribution. In summary, it is nec-
essary to construct a new metric to measure radial distribution.

B. Momentum Clustering

Traditional InfoNCE loss considers each sample an indepen-
dent class and neglects the shared characteristics among samples
with the same ground truth. The projections of extracted features
on the unit hypersphere are uniform distribution, which do not
match the demand of time series classification.

Building upon the principles of supervised contrastive learn-
ing [4], which integrates ground truth labels into the InfoNCE
loss for learning shared characteristics among samples of the
same class, we extend traditional InfoNCE loss. In cases where
prior knowledge is lacking, we assign pseudolabels to each
sample by feature clustering operation. This approach allows
us to leverage pseudolabels to facilitate learning common char-
acteristics through an improved InfoNCE.

Momentum clustering plays a crucial role in generating pseu-
dolabels by considering the distances between features and
clustering centroids. This approach leverages the clustering
centroids from the previous epoch as the initial values. It involves
calculating the distances among feature and clustering centroids,
assigning labels to features based on distances, and subsequently
applying momentum-based updating to establish new centroids
as the initial values for the next epoch. This momentum-based
updating of cluster centroids, as depicted in (9), is instrumental
in maintaining the stability of the training process. The concrete
algorithm of momentum clustering is shown in Algorithm 2.

To measure the spatial distance between feature and centroid,
the �2 norm is utilized, as expressed in (10).

ctr_next = ctr_prev ∗ η + ctr_curr ∗ (1 − η), (9)

distance(fi, cj) = ‖fi − cj‖2 (10)

Algorithm 2: Pseudolabel Generation through Momentum
Clustering.

Require: Feature set F = {f1, f2, . . . , fm}, number of
clusters K, updating momentum factor η, clustering
centriods ctr_curr

Ensure: Cluster assignment lb_pred and updated clustering
centroids ctr_next

1: if ctr_curr == {φ} then
2: Randomly initialize K cluster centroids: ctr_curr ;
3: end if
4: Define temporary variables: ctr_prev = {φ},

lb_new = {0}, lb_old = {φ};
5: while lb_new == lb_old do
6: Save old labels: lb_old = lb_new ;
7: for i in range(1,m) do
8: Calculate the index of nearest centroid for feature

fi via (10):
k∗i = argmink distance(fi, ctr_currk);

9: Assign the pseudo-label to fi: lb_new i = k∗i ;
10: end for

Momentum update clustering centroids via (9):
11: ctr_prev = ctr_curr ;
12: for k in range(0,K) do
13: ctr_currk = 1

|Fk |
∑

fi∈Fk
fi

where Fk is the set of features in class k, |Fk|
denotes the number of features in |Fk|;

14: ctr_currk =
ctr_prevk ∗ η + ctr_currk ∗ (1 − η);

15: end for
16: end while
17: Save results: lb_pred = lb_new ,

ctr_next = ctr_curr ;
18: return Cluster assignment lb_pred and clustering

centroids ctr_next

where ctr_next , ctr_prev , and ctr_curr donate the clustering
centroids in the next, previous, and current training batch, re-
spectively. Meanwhile, fi and cj represent the ith feature and
jth centroid. η is the updating momentum factor.

C. Gaussian Distance Metric (GDM)

Cosine value is a broadly employed metric for quantifying the
similarity between features. However, the cosine similarity only
considers the directional relationship of features while ignoring
their radial distribution, shown in Fig. 3. To describe the radial
distribution of features, we propose GDM to measure relative
location in radial. The GDM quantifies the ratio between the
distances of features and shares a similar convexity property
with the cosine function, making it well-suited for gradient
optimization.

When evaluating the GDM for fj with respect to fi, we
introduce the residual distance ratio λi,j , as expressed in (11), to
facilitate a more meaningful comparison of the radial positions
of fi and fj . Subsequently, we apply a Gaussian function to map
the range of λi,j from −1 to +∞ into the range of GDM (fi, fj)
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from 0 to 1. This mapping helps to align the order and range
of GDM (fi, fj) with cos(fi, fj), simplifying the process of
balancing their respective weights.

λi,j =
‖fj‖2 − ‖fi‖2

‖fi‖2
, (11)

GDM (fi, fj) = GDM (λi,j) = exp

(
−

λ2
i,j

2σ2

)
. (12)

Furthermore, based on the derivation process in (13), it can be
observed that the ratio of the first derivatives of GDM (fi, fj)
and cos(fi, fj) within the neighborhood of the optimization
endpoint remains close to 1/σ2 in which σ is the factor to adjust
the smoothness of GDM. This illustrates that the two functions
exhibit similar convexity in the vicinity of the optimization
focus, further streamlining the utilization of a single optimizer
for collaborative optimization.

lim
fj→fi

GDM ′(fi, fj)

cos′(fi, fj)
= lim

λi,j→0
θi,j→0

GDM ′(λi,j)

cos′ θi,j

= lim
λi,j→0
θi,j→0

− exp(− λ2
i,j

2σ2 )
λi,j

σ2

− sin θi,j
= lim

εi,j→0

− exp(− ε2
i,j

2σ2 )
εi,j
σ2

− sin εi,j
=

1
σ2

(13)

where fj → fi can be separated as two independent processes
λi,j → 0 and θi,j → 0 from the perspective of polar coordinate
system. εi,j is used to replace the λi,j and θi,j to represent their
simultaneous approximation to zero.

Once we have obtained a suitable metric for quantifying the
radial distribution, we introduce two strategies of adapted debi-
ased InfoNCE to fuse cosine and GDM similarity as (14)–(16)

sim(fi, fj) = γ ∗ cos(fi, fj) + (1 − γ) ∗GDM (fi, fj),

(14)

L1 =
1
|I|
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
esim(fi,f

+
p )/τ∑

n∈N(i) e
sim(fi,f

−
n)/τ

,

(15)

L2 =
1
|I|
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

[
γ∗log ecos(fi,f

+
p )∑

n∈N(i) e
cos(fi,f

−
n)

+ (1 − γ) ∗ log eGDM (fi,f
+
p )∑

n∈N(i) e
GDM (fi,f

−
n)

]
(16)

where I is the set of features, P (i) is the set of positive features
for fi. | · | denotes the number of elements. γ is the weight factor
between cosine and GDM similarity.
L1 and L2 employ distinct optimization strategies for cosine

and GDM similarity. Specifically, L1, as expressed in (14)–
(15), combines cosine and GDM into a novel similarity metric
sim(fi, fj) and directly optimizes this integrated metric. In
contrast, L2, as outlined in (16), adopts a separate optimization

strategy for cosine and GDM, subsequently fusing their con-
tributions based on the weight factor γ. The choice of L1 and
L2 should be based on the relative difficulty of optimizing the
two similarities, cosine and GDM. If the optimization paths of
cosine and GDM are similar from the beginning to the end of
the process, then L1 can better balance the two by combining
them into a single metric. Conversely, if the optimization paths
of cosine and GDM differ significantly,L2 is needed to optimize
cosine and GDM independently and then merge their results. The
relative optimization difficulty of cosine and GDM depends on
various dataset characteristics.

V. BIDIRECTIONAL WEIGHT UPDATING SCHEME

In a traditional contrastive learning framework, a small
amount of labeled data is utilized during the fine-tuning phase to
map extracted features to specific downstream tasks. Given the
condition above, we flexibly utilize the annotated fine-tuning
dataset to create supervisory signal in the pretraining phase
without additional labeled data. This signal serves as guidance
for the feature extractor, ensuring it is trained following the
requirements of the downstream task.

We propose a novel framework, illustrated in Fig. 1, to gen-
erate and transfer effective supervisory signal. This framework
consists of two main components: 1) SSG; and 2) UFE, both of
which are trained parallel and independently. SSG comprises
an interactive block and a label prediction block, which are
driven by augmented annotated X an, i.e., fine-tuning dataset.
SSG engages in supervised learning directly connected to down-
stream tasks to create the required supervisory signal. UFE
conducts adapted debiased cluster-wise contrastive learning to
extract robust representations. The interactive block and feature
extractor share the same architecture, facilitating seamless in-
formation exchange. After being individually trained, BWUS
processes bidirectional information transfer between these
components.

After the individual training of the SSG and UFE, BWUS
facilitates bidirectional information transfer between these com-
ponents. BWUS treats the weights of the interactive block and
feature extractor as supervisory signal and stable information,
respectively. Subsequently, both the interactive block and feature
extractor undergo weight updates simultaneously after each
training epoch, as illustrated in (17)–(18). During BWUS, su-
pervisory signal is transmitted to feature extractor to align the
extracted features with the objectives of downstream tasks. Si-
multaneously, stable information is transmitted in reverse to the
interactive block to prevent overfitting and mitigate parameter
dispersion between the SSG and UFE.

P̂gen
i = α ∗ Pgen

i + (1 − α) ∗ Pext
i , i = 1, 2, 3, . . ., n (17)

P̂ext
i = β ∗ Pext

i + (1 − β) ∗ Pgen
i , i = 1, 2, 3, . . ., n (18)

where Pgen
i and Pext

i are the ith corresponding parameters in
the interactive block and feature extractor, respectively. P̂gen

i

and P̂ext
i are the updated parameters. α and β are the weighting

factors, n denotes the number of parameters.
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Fig. 4. Real hardware experiment system.

VI. EXPERIMENTS AND RESULTS

A. Dataset Description

Two widely used time series datasets are employed to demon-
strate the performance of the DCLSG framework. The details of
the datasets are as follows.

1) ISDB dataset: The international stiction data base (ISDB),
as described by [12], is widely recognized as a benchmark
for validating new methods related to the control loop
performance assessment. These datasets comprise control
loops obtained from diverse process industries, including
chemical plants, pulp and paper mills, buildings, mining,
and power plants. In our article, we approach the fault
detection task as a classification problem, where the goal
is to determine whether a given control loop exhibits
stiction.

2) CWRU dataset: This dataset, obtained from the Case
Western Reserve University (CWRU) bearing data cen-
ter, comprises vibration signals collected from various
sensors, including drive-end accelerometer data, fan-end
accelerometer data, and base accelerometer data with a
12 kHz sampling rate. CWRU dataset was conducted on
different fault diameters bearing (specifically 7, 14, and
21 miles), and each fault diameter was associated with
three fault types, including inner race defect, outer race
defect, and ball defect. In this article, we test the CWRU
dataset with ten classes.

3) Practical dataset: This dataset contains the control loop
signals collected from hardware experimental system
and actual industrial environment. In Fig. 4, the hard-
ware experimental system includes a liquid level control
loop (LIC201) and two flow control loops (FIC201 and
FIC202), simulating a coupled heat exchange process in
chemical engineering. In the process flow diagram, cold
water from vessel V103 is transferred to heat exchanger

E202 and vessel V202. Heater E201, E202, and vessel
V201 form a heating loop. E202 raise the temperature
of cold water by 10◦ before transferring the hot water
to V202. In vessel V202, hot and cold water are mixed
in vessel V202 to achieve temperature control. Finally,
water in V202 reflows to V103. LIC201 controls the
water level of V202, FIC201 controls the flow of reflow
water from V202 to V103, and FIC202 controls the cold
water flow from V103 to V202. The three other control
loops, PIC23002, FIC3107, and F6304, are collected from
practical industrial environments, in which PIC23002 is
a pressure control loop, and it is affected by unknown
external disturbances, FIC3107 is a flow control loop and
its state is normal, and F6304 is flow control loop.

B. Experiment Settings

For the CWRU dataset, our experiment involved constructing
a dataset consisting of one normal baseline condition and nine
randomly selected fault conditions. Under each condition, We
randomly sampled 450 time series samples. Each sample had
a length of 512 and a dimension of 2. To simulate real-world
scenarios where obtaining extensive data may be challenging, we
limited the number of samples in our train subdatasets. Specif-
ically, we randomly selected 50 samples from each class for
the train subdataset X , resulting in 500 samples. The remaining
400 samples from each class were assigned to the test subdataset,
resulting in 4000 samples.

For the ISDB dataset, we selected a total of 85 control loops
with available data. We randomly sampled 60 time series sam-
ples from each control loop, each of which had a length of 800
and a dimension of 2. As a result, our final dataset consisted of
a total of 5100 samples. To facilitate meaningful comparisons
with other stiction detection methods, we selected 26 control
loops corresponding to 1560 samples as the test subdataset. The
remaining 59 control loops (3540 samples) were assigned as the
training subdataset X .

For the practical dataset, we randomly sampled 21 subseries
from each control loop signal. Each time series has a length
of 512 and a dimension of 2. The practical dataset includes
various working conditions such as normal, external distribu-
tion, and stiction. However, our experiments focus solely on
detecting the stiction state of control loops, i.e., there are only
no-stiction (Nonstic) and stiction (Stic) labels. We utilize the
practical dataset to compare and validate the generalization and
robustness of models in real industrial deployment. Specifically,
the models are trained in ISDB dataset due to its diverse data
source and then used to predict the states of samples from the
practical dataset. Finally, we determine the state of each control
loops through the voting results of the 21 subseries.

In our experimental setup, we employed random sampling to
create two subsets from the training subdatasetX . The annotated
subsetX an consists of a randomly selectedp portion fromX with
labels to serve as the foundation of generating the supervisory
signal. The second subset, denoted as X un, encompasses the
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entire X but with label masked. X un is utilized to extract
effective features for downstream tasks.

Two-layers temporal convolutional network (TCN) [13] with
kernel size 4 and hidden dimension 128 is employed as the
specific structure of interactive block and feature extractor. label
prediction block and fault classifier are two-layer multilayer per-
ceptrons with hidden dimension 128. The number of momentum
clustering centroids is equal to the class number of the dataset.
The hyperparameters settings are as follows: η = 0.8, σ = 1.0,
α = 0.2, β = 0.4, and γ = 0.2.

C. Evaluation Metrics

We adopt average accuracy (Acc) as our primary metric to
evaluate the model performance; weighted recall (w−Recall)
and weighted F1 score (w−F1) are also employed as auxiliary
assessments.

Acc =
TP + TN

TP + TN + FP + FN
, (19)

Preci =
TPi

TPi + FPi
, Recalli =

TPi

TPi + FNi
, (20)

w−Recall =

C∑
i=1

wi ·Recalli =

C∑
i=1

ni

N
·Recalli, (21)

w−F1 =

C∑
i=1

wi · F1i =
C∑
i=1

ni

N
· 2 × Preci ×Recalli

Preci +Recalli

(22)

where TP and TN represent the numbers of true positive and
true negative,FP andFN indicate the numbers of false positive
and false negative, respectively. Subscript i denotes the attribute
of class ci, C and N are the number of classes and samples,
respectively. wi and ni signify the proportion factor and number
of samples with ground truth ci.

Acc measures the percentage of correctly classified instances
out of the total instances, providing a straightforward evalua-
tion metric. However, its suitability diminishes in imbalanced
datasets, where one class significantly outweighs the others.
For a more comprehensive assessment of model performance,
we introduce w−Recall and w−F1 metrics tailored to address
imbalanced datasets.
w−Recall evaluates the capacity of the model to identify all

positive instances while accounting for the varying number of
instances in each class. On the other hand,w−F1 is the harmonic
mean of precision and recall and also adapts the imbalanced
dataset. These metrics offer a nuanced perspective on model
performance, particularly in scenarios with imbalanced class
distributions, providing a more insightful evaluation.

D. Detection and Comparison Results

This study first presents the detection results of the ISDB
dataset, evaluating the model’s performance revolves around
determining loop stiction using the Acc metric. The state of the
entire control loop is determined through a voting mechanism

TABLE I
COMPARISON RESULTS FOR THE ISDB AND CWRU

based on the classification results of each sample within the
same loop. The numbers enclosed in brackets denote the count
of untested loops out of 26 loops. The comparative results are
presented in Table I alongside thirteen other fault detection
algorithms. The evaluation encompassed 26 control loops, con-
sistent with previous methods. In Table I, DCLSG attains Acc
of 0.8461 (22/26 loops) in the ISDB dataset, showcasing the
best performance. Compared with traditional methods based
on statistical methods, such as curve fitting, peak slope, and
relay-based methods, DCLSG demonstrates good suitability
for a wide range of industrial loop data. Furthermore, com-
parison with other methods, such as the BSD-CNN method,
D-value ANN method, and MTCNN, all of which employ deep
learning techniques, reveals that our method achieves a higher
Acc. Our approach matches the previous best model MTFCC’s
performance, yielding a total detection Acc of 0.8461 (22/26
loops), representing the highest among the considered methods.
Meanwhile, MTFCC is an image processing algorithm that uses
two channels to create one relative position diagram and extract
features from it. However, with more than two channels, the
number of relative position diagrams increases exponentially,
limiting the deployment of the MTFCC algorithm. In contrast,
DCLSG directly utilizes time series data to extract relevant
features for fault detection tasks, making it more suitable for
industrial deployment.

For the CWRU dataset, we conducted a comparative analysis
against the existing twelve fault detection methods. The results
are showcased in the right part of Table I. IMSN, MSN, and
LeNet-5 were initially designed for classification tasks and can
thus be directly applied to fault detection tasks. From the results,
it can be seen that our method, DCLSG, achieves the highest
detection Acc of 0.996. This outperformance, especially under
the condition of utilizing the same annotated data, is substantial
compared to other fault detection methods. Compared to the
last state-of-the-art methods (sdiAE, PGCNN, UDWGAN, and
MobileNet), DCLSG also achieves better performance.

It is worth noting that MobileNet, despite being a lightweight
network, has 4.2 million parameters, whereas the core part of
DCLSG for deployment (feature extractor and fault classifier)
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TABLE II
DEPLOYMENT RESULTS ON THE PRACTICAL DATASET

has only 0.4 million parameters. The larger number of pa-
rameters in MobileNet occupies more computing resources. It
is essential to emphasize that our ultimate goal is not solely
to achieve 100% detection Acc but rather to demonstrate the
effectiveness of our method, particularly when labeled samples
are scarce. Our experimental results underscore the advantages
of our approach under such conditions.

To evaluate the applicability of DCLSG in actual industrial
deployment, we directly applied the model trained on the ISDB
dataset to detect stiction state of control loops in the practical
dataset without fine-tuning. The detection results are presented
in Table II, where the underlined entries indicate false detection
results. Compared with statistic-based methods (SVM, Ran-
dom Forest, and XgBoost) and deep learning-based methods
(LeNet-5, MTCNN, and MTFCC), DCLSG correctly detects the
stiction state of all loops. The statistic-based, including SVM,
Rand Forest, and XgBoost, have a solid theoretical founda-
tion, resulting in wide applications in industry. Meanwhile, the
deep learning-based methods, including LeNet-5, MTCNN, and
MTFCC, are the newest valve detection algorithms and have
performed well in valve stiction detection tasks. The compara-
tive results verify the feasibility and robustness of the proposed
DCLSG framework in real industrial deployment.

DCLSG has demonstrated outstanding performance across
two industrial scenarios, valve stiction and bearing failure, as
well as in practical industrial deployment. These diverse appli-
cations highlight the framework’s robustness and versatility in
addressing various types of industrial faults.

E. Ablation Study

The proposed DCLSG framework consists of four main
modules: channel augmentation (CA), supervisory signal (SS),
pseudolabel (PL), and GDM. In this subsection, we aim to
demonstrate the effectiveness of each module through ablation
experiments conducted on both the CWRU and ISDB datasets.
Table III presents experiments conducted under different mod-
ules based on the Basic contrastive learning method (Basic),
discussing their specific contributions to the framework. The
selection of loss functions L1 and L2 is dataset-specific, and
the rationale behind this choice is based on the actual effect.The
metrics in bold represent the highest values, while the underlined

metrics denote the second-highest values in Table III. To com-
prehensively describe the performance of DCLSG on the ISDB
dataset, we deviate from the experiments in Section VI-D. In-
stead, we collect the results for each sample without aggregating
the results for loops through voting.

1) Contribution of CA: This study initially validates the ef-
fectiveness of the proposed CA using the CWRU and ISDB
datasets. The experiments were conducted with the Basic con-
trastive learning model as a baseline, and the results can be found
in Table III under the Basic and Basic+CA columns. The findings
suggest that Basic+CA significantly enhances the performance
of the Basic model, with an averageAcc,w−Recall, andw−F1
improvement of 0.049, 0.028, 0.038 in CWRU and 0.041, 0.031,
0.045 in ISDB. Furthermore, this improvement remains stable
regardless of the value of p. Based on these detection results,
CA proves to be an effective technique, seamlessly integrating
temporal and frequency information and empowering the model
to extract features from both local and global perspectives.

2) Contribution of SS: This study further validates the ef-
fectiveness of the SS. Experiments were conducted using the
Basic contrastive learning model with CA (Basic+CA) as a
baseline, and the results are presented in Table III under the
Basic+CA and Basic+CA+SS columns. On the CWRU dataset,
SS notably enhances the time series classification capabilities,
boosting max Acc, w−Recall, and w−F1 from 0.495, 0.492,
0.429 to 0.997, 0.997, 0.997. The improvements in the ISDB
dataset are also notable. In summary, the SS effectively ad-
dresses the task-agnostic representation issue and strengthens
the connection between the pretraining and fine-tuning phases
without increasing the reliance on annotated data compared to
Basic contrastive learning methods.

3) Contribution of PL: This study validates the effectiveness
of PL. Experiments were conducted using Basic+CA+SS as a
baseline, and the results are presented in Table III under the
Basic+CA+SS and Basic+CA+SS+PL columns. For the CWRU
dataset, PL notably enhances the Acc, w−Recall, and w−F1
values by approximately 0.150 when p ≤ 0.6. However, the
metrics are slightly lower than Basic+CA+SS by about 0.020
when p > 0.6. PL significantly improves performance when
there is a lack of SS. When p is larger, the SS dominates the
performance improvement, and PL, as an additional contrastive,
increases the instability of the model, potentially generating false
PL that may influence the model. The efficacy of DCLSG on
the ISDB dataset mirrors its behavior on the CWRU dataset. In
summary, although PL may increase the instability of the model
due to its inherent inaccuracies, it can significantly enhance the
performance of the model under the influence of low SS.

4) Contribution of GDM: This study conclusively validates
the effectiveness of GDM. Independent effect experiments (Ba-
sic+CA+SS & Basic+CA+SS+GDM) and joint effect experi-
ments (Basic+CA+SS+PL & Basic+CA+SS+PL+GDM) in Ta-
ble III were conducted to investigate the influence of GDM from
different perspectives. In independent effect experiments, GDM
primarily plays a role under low supervision signals (p ≤ 0.6)
in both datasets. In the joint effect experiment, the synergy of
PL and GDM takes full advantage of both.
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TABLE III
DETECTION RESULTS OF DIFFERENT MODULE EFFECTIVENESS

VII. CONCLUSION

This article introduced a novel debiased contrastive learning
with supervision guidance framework in the context of indus-
trial fault detection tasks. The main focus is addressing three
biases inherent in two-phase contrastive learning: Task-agnostic
represenation issue, sampling bias, and angular-centricity issue.
The supervisory signal was introduced to tackle task-agnostic
representation issue by utilizing the BWUS for information in-
teraction. Pseudolabels were assigned to representations through
momentum clustering to mitigate sampling bias, and GDM
was proposed to measure the radial distribution between repre-
sentations comprehensively. Moreover, a channel augmentation
technique was proposed, fusing temporal and frequency infor-
mation and empowering DCLSG to mine representations from
both local and global perspectives. Experimental results on the
ISDB, CWRU, and practical datasets validated the effectiveness
of these four innovations in enhancing the performance of the
proposed framework.

Although GDM has demonstrated success, it is not a norm.
It results in asymmetry where GDM (fi, fj) �= GDM (fj , fi)
though having same optimization target (fi = fj). The dis-
advantage of nonnorm may lead to an unstable optimization

process and affect the convergence of DCLSG. Future re-
search will focus on finding a suitable function that unifies
GDM (fi, fj) and GDM (fj , fi).
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