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Abstract— To build commercial robots, skid-steering mechan-
ical design is of increased popularity due to its manufacturing
simplicity and unique mechanism. However, these also cause sig-
nificant challenges on software and algorithm design, especially
for the pose estimation (i.e., determining the robot’s rotation
and position) of skid-steering robots, since they change their
orientation with an inevitable skid. To tackle this problem,
we propose a probabilistic sliding-window estimator dedicated
to skid-steering robots, using measurements from a monocular
camera, the wheel encoders, and optionally an inertial measure-
ment unit (IMU). Specifically, we explicitly model the kinematics
of skid-steering robots by both track instantaneous centers of
rotation (ICRs) and correction factors, which are capable of
compensating for the complexity of track-to-terrain interaction,
the imperfectness of mechanical design, terrain conditions and
smoothness, etc. To prevent performance reduction in robots’
long-term missions, the time- and location- varying kinematic
parameters are estimated online along with pose estimation states
in a tightly-coupled manner. More importantly, we conduct in-
depth observability analysis for different sensors and design
configurations in this paper, which provides us with theoretical
tools in making the correct choice when building real commercial
robots. In our experiments, we validate the proposed method
by both simulation tests and real-world experiments, which
demonstrate that our method outperforms competing methods
by wide margins.

Note to Practitioners—This paper was motivated by the prob-
lem of long-term pose estimation of the commonly commercial-
used skid-steering robots with only low-cost sensors. Skid-steering
robots change their orientation with a skid, which poses a
significant challenge for pose estimation when using the wheel
encoders. We propose to online estimate the robot’s kinematics,
which succeeds in compensating for the complexity of track-
to-terrain interaction, due to the slippage, the imperfectness
of mechanical design, terrain conditions and smoothness. It is
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critical to estimate the kinematics and poses jointly to prevent
performance reduction in robots’ long-term missions. We further
theoretically analyze whether the kinematics parameters can be
estimated under different sensor configurations, and find out the
special degrade motions that make the parameters unobservable.

Index Terms— Kinematics, pose estimation, visual odometry,
skid-steering robots, observability.

I. INTRODUCTION

IN RECENT years, the robotic community has witnessed
a growing ‘go-to-market’ trend, by not only building

autonomous robots for scientific laboratory usage but also
making commercial robots to create new business model
and facilitate people’s daily lives. To date, a large amount
of commercial outdoor robots, under either daily business
usage or active trial operations and tests, are customized skid-
steering robots [3], [4], [5]. Instead of having an explicit
mechanism of steering control, skid-steering robots rely on
adjusting the speed of the left and right tracks to turn around.
The simplicity of the mechanical design and the property of
being able to turn around with zero-radius make skid-steering
robots widely used in both the scientific research community
as well as the commercial robotic industry. However, the
mechanical simplicity of skid-steering robots has significantly
challenged the software and algorithm design in robotic arti-
ficial intelligence, especially in autonomous localization [6],
[7], [8], [9], [10], [11], [12], [13].

The localization system provides motion estimates, which
is a key component for enabling any autonomous robot.
To localize skid-steering robots, there is a large body of
relevant literature [6], [7], [8], [9], [10], [11], [12], [13]. Early
work by Anousaki and Kyriakopoulos [6] showed that the
standard differential-drive two-wheel vehicle model could not
be used to accurately model the motion of a skid-steering robot
due to track and wheel slippage. To address this problem,
Martínez et al. [7] proposed an approach to approximate the
kinematics of skid-steering robots based on instantaneous cen-
ters of rotation (ICRs). Although some other kinematic models
of skid-steering robots are also proposed [11], [12], [14], [15],
ICR based kinematics is still popular due to its simplicity
and feasibility [9], [10], [13], especially for real-time robotic
applications. In [9], IMU readings and wheel encoder measure-
ments are fused in an EKF-based motion-estimation system
for skid-steered robots. The ICR-based kinematics is utilized
to compute virtual velocity measurements for robot motion
estimation. However, the easily changed ICR parameters are
not estimated in the estimator, which may lead to performance
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reduction. In [10], ICR parameters and navigation states are
estimated online in an EKF-based estimator for 3-DoF motion
estimation of skid-steering robots. Wheel odometer measure-
ments and GPS measurements are fused in the system. It is
also revealed that ICR-based kinematics is only valid in low
dynamics, and will have a degraded performance when the
vehicle is operated at a high speed. The work [13] leveraged
ICR-based kinematics and fused the readings from wheel
encoders and a GPS-compass integrated sensor to estimate the
ICR parameters and 3-DoF poses of the robot.

In contrast to the above existing works, we estimate the
kinematics (formulated by ICRs and correction factors), and
full 6-DoF poses (3-DoF rotations and 3-DoF translations) of
the skid-steering robots jointly in a sliding-window bundle
adjustment (BA) based estimator. Extracted visual features
from camera and wheel encoder readings, optional IMU
readings, are fused to optimize the estimated states in a
tightly-coupled way and track the states of the skid-steering
robot during its long-term mission. In skid-steering robots, the
track-to-terrain interaction is exceptionally complicated, and
the conversion between wheel encoder readings and robot’s
motion depends on mechanical design, wheel inflation condi-
tions, load and center of mass, terrain conditions, slippage, etc.
In the long-term mission of the skid-steering robots, such as
delivery, the kinematic parameters can be inevitably changed.
Thus we estimate the kinematic parameters online to guar-
antee accurate pose estimation of the robots in complicated
environments without performance reduction.

For a complicated estimator, it is critical to conduct observ-
ability analysis [1], [10], [16], [17], [18], [19] to study the
identifiability of estimated states. Pentzer et al. [10] inves-
tigated the conditions that ICR parameters will be updated
in a GPS-aided localization system, by demonstrating that
the ICR parameters can be only updated when the robot is
turning. However, this is just a glimpse of the observabil-
ity property. The nature of the GPS measurements and the
applicability of that algorithm are fundamentally different from
our visual-based systems. This paper is evolved from our
previous conference paper [1], which performed observability
analysis of localizing steering skid robot by using a monoc-
ular camera, wheel encoders, and an IMU, and showed that
the skid-steering parameters are generally observable. In this
work, we extensively extend [1] and fully explore the observ-
ability properties of the visual-based kinematics and pose
estimation system, by explicitly identifying the identifiable and
non-identifiable parameters with and without using the IMU.
Besides, we further investigate the suitability of kinematics
estimation with joint online sensor extrinsic calibration, which
is commonly required in state estimation systems with sensor
fusion. The results are with significant differences from the
properties of other visual localization systems [19], [20], [21].
This emphasizes the importance of the observability analysis
in this paper.

In summary, we focus on pose and kinematics estimation
of steering-skid robots to enable their long-term mission in
complicated environment, by using measurements from a
monocular camera, wheel encoders, and optionally an IMU.
The main contributions are as follows:

• A visual-based estimator dedicated to skid-steering
robots, which jointly estimates the ICR-based kinematic
parameters of the robotic platform and 6-DoF poses in a
tight-coupled manner. The formulation, error state propa-
gation, and initialization of the kinematic parameters are
presented in detail.

• Detailed observability analysis of the estimator under
different sensor configurations, and the key results are
as follows: (i) by using a monocular camera and wheel
encoders, only the three ICR kinematic parameters are
observable; (ii) by introducing the additional IMU mea-
surements, both the three ICR kinematic parameters and
the two correction factors are observable under general
motion; and (iii) the 3-DoF extrinsic translation between
the camera and odometer are unobservable with the
online estimate of kinematic parameters, which prevents
performing online sensor-to-sensor extrinsic calibration.

• Extensive experiments including both simulation tests and
real-world experiments were conducted for evaluations.
Ablation study is also investigated to standout the feasi-
bility of the proposed method. In general, the proposed
method i) shows high accuracy and great robustness
under different environmental and mechanical conditions
to enable the long-term mission of the robots and (ii)
outperforms the competing methods that do and do not
estimate the kinematics.

The rest of the paper is organized as follows. We intro-
duce the kinematics model of skid-steering robots in Sec. II.
Subsequently, the framework of the tightly-coupled sliding-
window estimator is introduced in Sec. III, and we illustrate
the kinematics estimation in detail. The observability analysis
of the estimator under different configurations is performed in
Sec. IV. Experimental results are presented in Sec. V. Finally,
the paper is concluded in Sec. VI.

II. ICR-BASED KINEMATICS OF SKID-STEERING ROBOTS

A. Notations

In this paper, we consider a robotic platform navigating
with respect to a global reference frame, {G}. The platform is
equipped with a camera, an IMU, and wheel odometers, whose
frames are denoted by {C}, {I}, {O} respectively. To present
transformation, we use ApB and A

BR to denote position and
rotation of frame {B} with respect to {A}, and A

Bq is the
corresponding unit quaternion of A

BR. In addition, I denotes
the identity matrix, and 0 denotes the zero matrix. We use x̂
and δx to represent the current estimated value and error state
for variable x. Additionally, we reserve the symbol z̆ to denote
the inferred measurement value of z, which is widely used in
observability analysis. For the rotation matrix G

OR, we define
the attitude error angle vector δθ as follows [23]:

G
OR = G

OR̂(I + �δθ�) (1)

We use �v� to denote the skew-symmetric matrix of a 3d
vector v:

�v� =
⎡
⎣ 0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤
⎦, v =

⎡
⎣v1

v2

v3

⎤
⎦, (2)
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Fig. 1. Skid-steering robotic platform used in our tests, as well as the corresponding kinematic model [1]. (a) Our testing robot, built on the Clearpath
Jackal Platform [2]. The equipped low-cost sensors (i.e., a monocular camera, an imu, and wheel encoders) are leveraged in the proposed system, while the
others (i.e., LiDAR and RTK-GPS) are not required in our system. (b) The odometer measurements and the instantaneous center of rotation (ICR, denoted by
[ICRv , ICRl , ICRr ]) of a skid-steering robot. Ov represents the robot velocity in odometer frame, and Oωz is the angular velocity along the yaw direction.

B. ICR-Based Kinematics

In order to design a general algorithm to localize
skid-steering robots under different conditions, the correspond-
ing kinematic models must be presented in a parametric
format. In this work, we employ a model similar to the ones
in [7] and [10], which contains five kinematic parameters:
three ICR parameters and two correction factors, as shown
in Fig. 1. To describe the details, we denote ICRv = (Xv , Yv )
the ICR position of the robot frame, and ICRl = (Xl, Yl)
and ICRr = (Xr , Yr ) the ones of the left and right wheels,
respectively. The relation between the readings of wheel
encoder measurements and the ICR parameters can be derived
as follows:

Yl = −ol − Ovx

Oωz
, Yr = −or − Ovx

Oωz

Yv =
Ovx

Oωz
, Xv = Xl = Xr = −

Ovy

Oωz
(3)

where ol and or are linear velocities of left and right wheels,
Ovx and Ovy are robot’s linear velocity along x and y axes
represented in frame O respectively, and Oωz denotes the
rotational rate about yaw also in frame O. Those variables are
also visualized in Fig. 1, and we use ξ IC R = [Xv , Yl , Yr ]� to
represents the set of ICR parameters. Moreover, we have used
two scale factors, ξα = [αl, αr ]�, to compensate for effects
which might cause changes in scales of wheel encoder read-
ings. Representative situations include tire inflation, changes
of road roughness, varying load of the robot, etc. With the
ICR parameters and correction factors being defined, the
skid-steering kinematic model can be written as:

⎡
⎣

Ovx
Ovy
Oωz

⎤
⎦=g(ξ , ol, or )= 1

�Y

⎡
⎣−Yr Yl

Xv −Xv

−1 1

⎤
⎦
[
αl 0
0 αr

][
ol

or

]
(4)

with

ξ = [
ξ�IC R ξ�α

] = [
Xv Yl Yr αl αr

]�
, �Y = Yl − Yr (5)

where ξ is the entire set of kinematic parameters.
Interestingly, as a special configuration when

ξ = [
0, 0.5 b,−0.5 b, 1, 1

]T
(6)

with b being the distance between left and right wheels, Eq. (4)
can be simplified as:

Ovx = ol + or

2
, Oωz = or − ol

b
, Ovy = 0 (7)

This is exactly the kinematic model for a wheeled robot
moving without slippage (i.e., an ideal differential drive robot
kinematics), and used by most existing work for localizing
wheeled robots [24], [25], [26]. However, in the case of skid-
steering robots, if Eq. (7) is employed directly in a localizer,
the pose estimation accuracy will be significantly reduced due
to the incorrect conversion between wheel encoder readings
and robot’s motion estimates (also see experimental results
in Sec. V).

III. VISUAL-INERTIAL KINEMATICS

AND POSE ESTIMATION

In this paper, we utilize a sliding-window bundle adjust-
ment (BA) based estimator for the kinematics and pose
estimation of skid-steering robots using a monocular camera,
wheel encoders, and optionally an IMU. For presentation
simplicity, in this section, we describe our estimator by
explicitly considering using the IMU. When the IMU is not
included in the sensor system, our presented estimator can be
straightforwardly modified by simply deleting the IMU related
components. The architecture of our sliding-window estimator
follows the pose estimation method for ground robots [27],
where visual constraints, IMU constraints, motion manifold
(the profile of ground surface) constraints, ideal differential
drive model induced odometer constraints are formulated
and iteratively optimized. Notably, kinematics estimation is
not touched in [27], while it is the focus of this work.
We also note that, compared to [27] and the other papers that
focus on estimator architecture novelty, this work introduces
methods to systematically handle skid-steering effects via
online estimation. Our goal is to consistently and accurately
estimate the motion of a moving robot as well as necessary
observability-guided kinematic parameters of the robots.

A. Estimator Formulation

1) State Vector: To start with, we define the state vector of
our estimator as:

x = [
χ�O, Gv�Ik

, b�ak
, b�ωk

, m�k , ξ�k
]�

(8)
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where

χO=
[G
Ok−s

q�,Gp�Ok−s
, . . . ,G

Ok−1
q�,Gp�Ok−1

,G
Ok

q�,Gp�Ok

]�
(9)

denotes the sliding-window poses of odometer frame at
times {k − s, . . . , k} when keyframe images are captured.
GvIk , bak , bωk are the IMU related states, including the IMU
velocity in global frame, accelerometer bias, and gyroscope
bias. If IMU is not available in the system, GvIk , bak , bωk will
excluded from the state vector. In addition, mk denotes the
parameters for modeling the local motion manifold of the
skid-steering robots across current sliding window. The motion
manifold is parameterized by a quadratic polynomial, and mk

is the 6-dimensional vectors to formulate the polynomial. This
has been shown in [28] and [27] to improve the estimation
performance for ground robots, and we also adopt this design
in our work. Finally, ξ k , as shown in Eq. (5), represents the
skid-steering intrinsic parameter vector, which is explicitly
included in the state vector and thus estimated online.

2) Bundle Adjustment Optimization: Our optimization
process follows the design of [27]. Specifically, the sliding-
window bundle adjustment in our estimation algorithm seeks
to iteratively minimize a cost function corresponding to a
combination of sensor measurement constraints, kinematics
constraints, and marginalized constraints.

C = CP + CV + CI + CO + CM (10)

In what follows, we describe each of the cost terms. Firstly,
the marginalized term CP is critical to consistently keep the
algorithm computational complexity bounded, by probabilisti-
cally removing the old states in the sliding window [29]. The
camera term CV , IMU term CI , and motion manifold term
CM used in this work are similar to that of existing litera-
ture [18], [27], [30], respectively, but with dedicated design
for ground robots. In general, the camera cost term models
the geometrical reprojection error of point features in the
keyframes (see Sec. III-B), the IMU term computes the error
of IMU states between two consecutive keyframes, and the
manifold cost term characterizes the motion smoothness across
the whole sliding window. Finally, CO denotes the kinematic
constraints induced by wheel odometer measurements. This
term is a function of robot pose, measurement input, as well as
skid-steering intrinsic kinematic parameters, and is discussed
in detail in Sec. III-C. Due to limited space, we omit the details
of CP , CI , and CM in this paper, and readers are encouraged
to refer to our supplementary material.

B. Visual Constraints

In the sliding-window BA with visual constraints, the poses
of only visual keyframes are optimized for computational
saving. We use a simple heuristic for keyframe selection: the
odometer prediction has a translation or rotation over a certain
threshold (in all the experiments, 0.2 meter and 3 degrees).
Since the movement form of the ground robot is simple, and it
can be well predicted by the odometer in a short period of time.
Unlike existing methods [31], [32], which extract features and
analyze the distribution of the features for keyframe selection,
the non-keyframe will be dropped immediately without any

extra operations in our framework. Among keyframes selected
into the sliding-window, corner feature points are extracted in
a fast way [33] and tacked with FREAK [34] descriptors.

The successfully tracked features across multiple keyframes
will be initialized in the 3D space by triangulation. By denot-
ing zi, j the visual measurement of a 3D feature Gp f j observed
by the Ci th camera keyframe, the visual reprojection error [35]
in normalized image coordinate is given by:

CV (G
Oi

R, GpOi ) =
∣∣∣∣zi, j − π(G

Ci
R, GpCi ,

Gp f j )
∣∣∣∣2

�V
,

G
Ci

R = G
Oi

RO
CR, GpCi = GpOi + G

Oi
ROpC (11)

In the above expressions, π(·) denotes the perspective function
of an intrinsically calibrated camera, and �V represents the
inverse of noise covariance in the observation zi, j . O

CR and OpC

are the extrinsic transformation between camera and odometer.
Furthermore, we choose not to incorporate visual features into
the state vector due to the limited computational resources.
Thus Gp f j and the pose of oldest keyframe over the sliding
window will be marginalized immediately after the iterative
minimization.

C. ICR-Based Kinematic Constraints

This section provides details on formulating ICR-based
kinematic constraints CO . Specifically, by assuming the sup-
porting manifold of the robot is locally planar between tk and
tk+1, the local linear and angular velocities, O(t)v and O(t)ω,
are a function of the wheel encoders’ measurements of the left
and right wheels olm(t) and orm(t) as well as the skid-steering
kinematic parameters ξ [see eq. (4)]:[

O(t)v
O(t)ω

]
= � g(ξ(t), ol(t), or (t))

= � g(ξ(t), olm(t)− nl(t), orm(t)− nr (t)) (12)

where � = [
e1 e2 0 0 0 e3

]T
is the selection matrix

with ei being a 3 × 1 unit vector with the i th element of 1,
nl(t) and nr (t) are the odometry noise modeled as zero-mean
white Gaussian. With slight abuse of notation, we define
no =

[
nl nr

]�
.

By using O(t)v and O(t)ω, the wheel odometry based kine-
matic equations are given by:

GṗO(t) = G
O(t)R · O(t)v (13a)

G
O(t)Ṙ = G

O(t)R · �O(t)ω� (13b)

ξ̇ (t) = nξ (t) (13c)

where we model the noise of the ICR kinematic parameter ξ

by using a random walk process, and nξ is characterized by
zero-mean white Gaussian noise. The motivation of using nξ is
to capture time-varying characteristics of ξ , caused by changes
in road conditions, tire pressures, center of mass. It is impor-
tant to point out that, unlike sensor extrinsic calibration in
which parameters can be modeled as constant parameters, e.g.,
C ṗI = 0 in [36], ξ must be modeled as a time-varying variable.

To propagate pose estimates in a stochastic estimator,
we describe the process starting from the estimates x̂Ok−1 =[

Gp̂T
Ok−1

, G
Ok−1

q̂T , ξ̂
T
k−1

]T
. Once the instantaneous local veloci-

ties of the robot (see Eq. (12)) are available, we integrate the
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differential equations in Eq. (13) over the time interval t ∈
(tk−1, tk) by all the intermediate odometer measurements Om ,
and obtain the predicted robot pose and kinematic parameters
at the newest keyframe time tk . This process can be character-
ized by x̂Ok = f

(
x̂Ok−1 ,Om

)
. Therefore, the odometer-induced

kinematic constraint can be generically written in the following
form:

CO(xOk , xOk−1) =
∣∣∣∣xOk � f (xOk−1 ,Om)

∣∣∣∣2
�O

(14)

where �O represents the inverse covariance (information)
obtained via propagation process, and “�” denotes the minus
operation on manifold [37]. To formulate Eq. (14) in the
stochastic estimator, error state characteristics also need to
be computed since linearization of the propagation func-
tion f consists of Jacobian matrices with respect to error
states. We start with the continuous-time error state model,
by linearizing Eq. (13):

˙δGpO � G
OR̂(I + �δθ�)(Ov̂ + Jvξ δξ + Jvono

)−G
OR̂Ov̂

� −G
OR̂�Ov̂�δθ + G

OR̂Jvξ δξ + G
OR̂Jvono (15)

δ̇θ � −�Oω̂�δθ + Jωξ δξ + Jωono (16)

δ̇ξ � nξ (17)

We here point out that Eq. (16) can be obtained similar to
Eq. (156) of [23]. In above equations, Jvξ , Jωξ , Jvo, Jωo are
the linearized Jacobian matrices, originated from:

Ov = Ov̂ + Jvξ δξ + Jvono (18)
Oω = Oω̂ + Jωξ δξ + Jωono (19)

and

Jvξ = α̂lol − α̂r or

�Ŷ 2

⎡
⎣ 0 Ŷr −Ŷl 0 0

�Ŷ −X̂v X̂v 0 0
0 0 0 0 0

⎤
⎦

+ 1

�Ŷ

⎡
⎣0 0 0 −Ŷr ol Ŷlor

0 0 0 X̂vol −X̂vor

0 0 0 0 0

⎤
⎦ (20)

Jvo = − 1

�Ŷ

⎡
⎣−α̂l Ŷr α̂r Ŷl

X̂v α̂l −X̂v α̂r

0 0

⎤
⎦ (21)

Jωξ = 1

�Ŷ 2

[ 0 0 0 0 0
0 0 0 0 0
0 −α̂r or+α̂l ol α̂r or−α̂l ol −�Ŷ ol �Ŷ or

]
(22)

Jωo = − 1

�Ŷ

⎡
⎣ 0 0

0 0
−α̂l α̂r

⎤
⎦ (23)

Once continuous-time error-state equations are given, the
discrete-time state transition matrices needed when minimiz-
ing Eq. (14), can be straightforwardly calculated by numerical
integration. In general, Eq. (14) encapsulates all information
related to the skid-steering effect and enables online estimation
of the skid-steering parameters. After the constraint in Eq. (14)
is minimized, ξ k−1 will be marginalized immediately, ensuring
low computational complexity of the system.

D. Initialization of Kinematic Parameters

To allow the estimation of skid-steering kinematic parame-
ters online, an initial estimate of the parameter vector ξ is
required. Specifically, we use a simply while effective method
by setting:

ξ initial =
[
0, 0.5 b†,−0.5 b†, 1, 1

]T
(24)

We emphasize that Eq. (24) is similar but different from
Eq. (6). The parameter b represents wheel distance in Eq. (6),
which can be correctly used for robot without slippage.
However, skid-steering robots are designed to have slippery
behaviors, and thus b† should not be simply the wheel distance.
To compute b†, we rotate the skid-steering robots and use the
fact that rotational velocity reported by the IMU and odometry
should be identical, which leads to the follow equation:

b† = 1

N

N∑
i=1

||olm(ti)− orm(ti )||
||ωm(ti)|| (25)

where ωm(ti) is gyroscope measurement, and N is the number
of measurements. Although this is not of high precision and
the road condition of computing b† is different from that of the
testing time, this simple initialization method in combination
of the proposed online calibration algorithm is able to yield
accurate localization results (see our experimental results).

IV. OBSERVABILITY ANALYSIS

A critical prerequisite condition for a well-formulated
estimator is to only include locally observable (or identifi-
able1) [38] states in the online optimization stage. In the
skid-steering robot localization system, a subset of estimation
parameters inevitably become unobservable under center cir-
cumstances, which will be analytically characterized in this
section and avoided in a real-world deployment.

Specifically, in this section, we first conduct our analysis
by assuming the extrinsic parameters between sensors are
perfectly known, and analyze the observability properties of
the skid-steering parameters in different sensor system setup.
Specifically, we consider three cases: (i) monocular camera
and odometer with the 3 ICR parameters and 2 correction
factors; (ii) monocular camera and odometer with 3 ICR
parameter only; (iii) monocular camera, odometer and an IMU
with 3 ICR parameters and 2 correction factors. Subsequently,
we perform the analysis under the case that extrinsic parame-
ters between sensors are unknown. Since estimating extrinsic
parameters online is a common estimator design choice in
robotics community [39], [40], [41], we also investigate the
possibility of doing that for skid-steering robots.

A. Methodology Overview

To investigate the observability properties, the analysis can
be either conducted in the original nonlinear continuous-
time system [18] or the corresponding linearized discrete-time
system [42], [43]. As shown in [18] and [17], the dimension

1Since the derivative of ξ is modelled by zero-mean Gaussian, we here use
observability and identifiability interchangeably.
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of the nullspace of the observability matrix might subject to
changes due to linearization and dicrestization, and thus we
conduct our analysis in the nonlinear continuous-time space
in this work.

To conduct the observability analysis, we are inspired
by [19], in which information provided by each sensor is
investigated and subsequently combined together for deriving
the final results. By doing this, ‘abstract’ measurements instead
of the ‘raw’ measurements are used for analysis, which sig-
nificantly simplifies our derivation and is helpful for intuitive
understanding. Specifically, the observability analysis consists
of three main steps. Firstly, we investigate the information
provided by each sensor, and derive inferred ‘abstract’ mea-
surements from the raw measurements. Secondly, we use kine-
matic and measurement constraints to derive equations that
indistinguishable trajectories must follow. Finally, the observ-
ability matrix is constructed by computing the derivatives of
the previous derived equations with respect to the states of
interests. The observability of the states can be determined
by examining the rank and nullspace of the observability
matrix [44].

B. Inferred Measurement Model

We first analyze the information provided by a monocular
camera. It is well-known that a monocular camera is able
to provide information on rotation and up-to-scale position
with respect to the initial camera frame [19], [35] under
general motion. Equivalently, the information characterized by
a monocular camera can be given by: (i) camera’s angular
velocity and (ii) its up-to-scale linear velocity:

ω̆C(t) = C(t)ω + nω(t) (26a)

v̆C(t) = s−1 · C
GR · GvC(t) + nv (t) (26b)

where nω(t) and nv (t) are the measurement noises,
C(t)ω denotes true local angular velocity expressed in camera
frame, and GvC(t) is the linear velocity of camera with respect
to global frame, and finally s is an unknown scale factor.
Additionally, ω̆C(t) and v̆C(t) denote the inferred rotational
and linear velocity measurements. Moreover, to make our
later derivation simpler, we also introduce the rotated inferred
measurements as follows:

ω̆(t) � O
CR · ω̆C(t), v̆(t) � O

CR · v̆C(t) (27)

It is important to point out that in the cases when extrinsic
parameter calibration between sensors is not considered in
the online estimation stage, ω̆(t) and v̆(t) can be uniquely
computed from the camera measurement and also treated as
the inferred measurement.

C. Observability of ξ With Monocular Camera and Odometer

We first investigate the case when a system is equipped
with a monocular camera and odometers, and their extrinsic
parameters are known in advance. To perform observability
analysis, we derive system equations that indistinguishable tra-
jectories must satisfy. To start with, we note that the following
geometric relationships hold for any camera-odometer system:

Oω = O
CR · Cω (28)

which allows us to derive the following equations:
GpO = G

CR ·C pO + GpC (29a)
GvO = GṗO = G

CR�Cω�CpO + GvC (29b)
O
GRGvO = O

CR�Cω�CpO + O
CRC

GRGvC (29c)
Ov = −�Oω�OpC + O

CRC
GRGvC (29d)

Substituting Eq. (27) to Eq. (29d), we obtain the following
equation:

Ov = −�ω̆�OpC + s · v̆ (30)

where OpC is known and Ov is velocity expressed in the
odometer frame. We also note that, during the observability
analysis, the noise terms are ignored, following the standard
procedure of performing the observability analysis.

On the other hand, as mentioned in Sec. II, odometer
provides observations for the speed of left and right wheels,
i.e., ol and or respectively. By linking ol , or , ω̆(t), v̆(t), and
kinematic parameter vector ξ together, specifically substituting
Eq. (30) into Eq. (4), we obtain:⎡
⎣

[
ω̆OyC

−ω̆OxC

]
+s

[
v̆x

v̆y

]

ω̆

⎤
⎦= 1

�Y

⎡
⎣−Yr Yl

Xv −Xv

−1 1

⎤
⎦[

αl 0
0 αr

][
ol

or

]

=

⎡
⎢⎢⎣

ω̆Yl

−ω̆Xv

1
�Y

[−1 1
][αl 0

0 αr

][
ol

or

]
⎤
⎥⎥⎦+

⎡
⎣αl ol

0
0

⎤
⎦

(31)

where OxC, O yC are the first and second element of OpC, and
v̆x , v̆y are the first and second element of v̆. For brevity, we use
ω̆ to denote the third element of ω̆. By defining βr = �Y−1αr ,
and βl = �Y−1αl , we can write⎡

⎣
[

ω̆O yC

−ω̆OxC

]
+ s

[
v̆x

v̆y

]

ω̆

⎤
⎦ =

⎡
⎣ ω̆Yl

−ω̆Xv

−βlol + βr or

⎤
⎦+

⎡
⎣βl�Y ol

0
0

⎤
⎦
(32)

Note that, this equation only contains 1) sensor measurements,
and 2) a combination of vision scale factor and skid-steering
kinematics:

ε = [
Xv Yl Yr αl αr s

]�
which allows us to analyze whether indistinguishable sets
of ε exist subject to the provided measurement constraint
equations.

The identifiability of ε can be described as follows:
Lemma 1: By using measurements from a monocular cam-

era and wheel odometers, ε is not locally identifiable.
Proof: ε is locally identifiable if and only if ε̄ is locally

identifiable:
ε̄ = [

Yl �Y Xv βl βr s
]�

By expanding Eq. (32), we can write the following constraints:
cx(ε̄, t) = ω̆(t)O yC + sv̆x (t)− ω̆(t)Yl − βl�Y ol(t) = 0

(33a)

cy(ε̄, t) = −ω̆(t)OxC + sv̆y(t)+ ω̆(t)Xv = 0 (33b)

cω(ε̄, t) = ω̆(t)+ βlol(t)− βr or (t) = 0 (33c)
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A necessary and sufficient condition of ε̄ to be locally identi-
fiable is following observability matrix has full column rank,
over a set of time instants S = {t0, t1, . . . , ts},:

M = [
D(t0)� D(t1)� . . . D(ts)�

]�
(34)

where

D(t)=
[

∂cx (ε̄,t)
∂ ε̄

∂cy(ε̄,t)
∂ ε̄

∂cω(ε̄,t)
∂ ε̄

]�

=
[ −ω̆(t) −βl ol (t) 0 −�Y ol (t) 0 v̆x (t)

0 0 ω̆(t) 0 0 v̆y(t)
0 0 0 ol (t) −or (t) 0

]
(35)

Substituting Eq. (35) back into Eq. (34) leads to:

M =

⎡
⎢⎢⎢⎢⎣

−ω̆(t0) −βl ol (t0) 0 −�Y ol (t0) 0 v̆x (t0)
0 0 ω̆(t0) 0 0 v̆y(t0)
0 0 0 ol (t0) −or (t0) 0
...

...
...

...
...

...−ω̆(ts ) −βl ol(ts ) 0 −�Y ol (ts ) 0 v̆x (ts)
0 0 ω̆(ts) 0 0 v̆y (ts)
0 0 0 ol (ts ) −or (ts) 0

⎤
⎥⎥⎥⎥⎦ (36)

By defining M(:, i) the i th block columns of M, the following
equation holds:
(−OyC+Yl) ·M(:, 1)+�Y ·M(:, 2)

+(Xv − OxC) ·M(:, 3)+s ·M(:, 6) = 0

The above equation demonstrates that M is not of full column
rank, indicating that ε is not identifiable.

To further investigate the indistinguishable states that cause
the unobservable situations, we note that for a vector ε̄1 =
[Yl,�Y, X, βl , βr , s]� that satisfies Eq. (33a), another vector

ε̄2 = [(1+ λ/s)Yl − (λ/s)O yC, (1+ λ/s)�Y,

(1+ λ/s)X − (λ/s)OxC, βl, βr , s + λ]�
for any λ ∈ R is always valid for the constraints Eq. (33a).
Thus ε̄1 and ε̄2 are indistinguishable, and ε̄ is not locally
identifiable. This completes the proof. �

D. Observability of ξ IC R With Monocular Camera and
Odometer

Since the full kinematic parameters ξ = [ξ T
IC R , ξα

T ]T with
monocular camera and odometer are not locally identifiable,
we look into the case of that only the 3 ICR parameters, i.e.,
ξ IC R , are estimated without the correction factors. Similar to
Eq. (31), the following equation holds:⎡

⎣
[

ω̆OyC

−ω̆OxC

]
+ s

[
v̆x

v̆y

]

ω̆

⎤
⎦ =

⎡
⎣ ω̆Yl

−ω̆Xv
1

�Y (or − ol)

⎤
⎦+

⎡
⎣ol

0
0

⎤
⎦ (37)

The above expression is a function of the odometer and
inferred visual measurements ω̆, v̆x , v̆y, ol, or , as well as the
kinematic intrinsic parameters ξ IC R and visual scale factor s:

γ = [
ξ T

IC R s
]T = [

Xv Yl Yr s
]�

The local identifiability of γ can be stated as follows:
Lemma 2: By using the monocular and odometer measure-

ments, and the 3 ICR parameter vector ξ IC R to model the
kinematics, γ is locally identifiable except for the following
degenerate cases: (i) the odometer linear velocity ol(t) keeps
zero; (ii) the angular velocity ω̆(t) keeps zero; (iii) or (t),

ol(t), and ω̆(t) are all constants; (iv) the linear velocities of
two wheels ol(t), or (t) keeps identical to each other; (v) the
angular velocity ω̆(t) is consistently proportional to ol(t).

Proof: We first note that the local identifiability of γ is
equivalent to that of γ̄ ,

γ̄ = [
Yl �Y Xv s

]T

By expanding 37 and considering all the measurements at
different time t , we can derive following system constraints:

cx(γ̄ , t) = ω̆(t)O yC + sv̆x(t)− ω̆Yl − ol(t) = 0 (38a)

cy(γ̄ , t) = −ω̆(t)OxC + sv̆y(t)+ ω̆(t)Xv = 0 (38b)

cω(γ̄ , t) = ω̆(t)+ ol(t)− or (t)

�Y
= 0 (38c)

Similar to the case of using full kinematic parameters ξ in
Section. IV-C, we derive the following observability matrix
for γ̄ (using Eq. (34) and. 35):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ω̆(t0) 0 0 v̆x(t0)
0 0 ω̆(t0) v̆y(t0)
0 or (t0)−ol (t0)

(�Y )2 0 0
...

...
...

...
−ω̆(ts) 0 0 v̆x(ts)

0 0 ω̆(ts) v̆y(ts)
0 or (ts )−ol (ts )

(�Y )2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

To simplify the structure of the observability matrix, we apply
the following linear operations without changing the observ-
ability properties:

M(:, 2)←(�Y )2M(:, 2)

M(:, 4)←sM(:, 4)+(Yl−OyC)M(:, 1)+(Xv−OxC)M(:, 3)

where (·)← (·) represents the operator to replace the left side
by the right side. As a result, Eq. (39) can be simplified as:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ω̆(t0) 0 0 ol(t0)
0 0 ω̆(t0) 0
0 or (t0)− ol(t0) 0 0
...

...
...

...
−ω̆(ts) 0 0 ol(ts)

0 0 ω̆(ts) 0
0 or (ts)− ol(ts) 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

To investigate the observability of the matrix in Eq. (40), we
inspect the existence of the non-zero vector k such that M k =
0, k = [

k1 k2 k3 k4
]� �= 0. If such a vector k exists, all of the

following conditions must be satisfied:
−ω̆(t)k1 + ol(t)k4 = 0, (or (t)− ol(t))k2 = 0, ω̆(t)k3 = 0

To allow the above equations to be true, one of the following
conditions is required:

• ol(t) keeps constantly zero, k = [
0 0 0 ρ

]�
,

• ω̆(t) keeps constantly zero, k = [
0 0 ρ 0

]�
,

• or (t), ol(t), and ω̆(t) are all constants, k = [
0 ρ 0 0

]�
,

• ol(t) keeps identical to or (t), k = [
0 ρ 0 0

]�
,

• ω̆(t) keeps proportional to ol(t), k = [
ρol/ω̆ 0 0 ρ

]�
.
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where ρ can be any non-zero value that is used to generate
valid non-zero vector k such that M k = 0. We note that, all
above cases are special conditions. When a robot moves under
general motion, none of those conditions can be satisfied.
Therefore, in a camera and odometers only skid-steering robot
localization system, ξ IC R is observable unless entering the
specified special conditions listed above. �

E. Observability of ξ With a Monocular Camera, an IMU,
and Odometer

So far, we have shown that when a robotic system is
equipped with a monocular camera and wheel odometer,
estimating ξ is not feasible, and the alternative solution is to
include ξ IC R in the online stage only. However, it is not an
ideal solution to calibrate ξα offline and fixed in the online
stage since it is subject to the changes in road conditions and
tire conditions, etc.

To tackle this problem, we investigate the observability
of ξ when an IMU and camera are fused with odometer
measurements. Once IMU and camera are used, similar to
the previous analysis, we start by introducing the ‘inferred
measurement’. Instead of focusing on visual measurement
only, we provide ‘inferred’ measurement by considering the
visual-inertial system together. As analyzed in rich existing
literature, visual-inertial estimation provides: camera’s local
(i) angular velocity and (ii) linear velocity, similar to vision
only case (Eq. (27)) without having the unknown scale fac-
tor [17], [19], [21]. Similarly to Eq. (33), to simplify the
analysis, we prove identifiability of ξ̄ instead of ξ , since
properties of ξ̄ and ξ are interchangeable:

ξ̄ = [
Yl �Y Xv βl βr

]�
Lemma 3: By using measurements from a monocular cam-

era, an IMU, and wheel odometer, ξ̄ is locally identifiable,
except for following degenerate cases: (i) velocity of one of
the wheels, ol(t) or or(t), keeps zero; (ii) ω̆(t) keeps zero;
(iii) or (t), ol(t), and ω̆(t) are all constants; (iv) ol(t) is always
proportional to or (t);(v) ω̆(t) is always proportional to ol(t).

Proof: Similarly to Eq. (33a), by removing the scale
factor, the corresponding system constraints can be derived
as:

cx(ξ̄ , t) = ω̆(t)O yC + v̆x (t)− ω̆(t)Yl − βl�Y ol(t) = 0

(41a)

cy(ξ̄ , t) = −ω̆(t)OxC + v̆y(t)+ ω̆(t)Xv = 0 (41b)

cω(ξ̄ , t) = ω̆(t)+ βl ol(t)− βr or (t) = 0 (41c)

Therefore, the observability matrix for ξ̄ can be computed by:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ω̆(t0) −βlol(t0) 0 −�Y ol(t0) 0
0 0 ω̆(t0) 0 0
0 0 0 ol(t0) −or(t0)
...

...
...

...
...

−ω̆(ts) −βlol(ts) 0 −�Y ol(ts) 0
0 0 ω̆(ts) 0 0
0 0 0 ol(ts) −or (ts)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(42)

After the following linear operations:
M(:, 2)←−M(:, 2)/βl

M(:, 4)←M(:, 4)+�Y M(:, 2)

Eq. (42) can be simplified as:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ω̆(t0) ol(t0) 0 0 0
0 0 ω̆(t0) 0 0
0 0 0 ol(t0) −or (t0)
...

...
...

...
...

−ω̆(ts) ol(ts) 0 0 0
0 0 ω̆(ts) 0 0
0 0 0 ol(ts) −or (ts)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(43)

Similarly, we investigate the existence of the non-zero vector
k such that Mk = 0. If such a vector k = [

k1 k2 k3 k4 k5
]

exists, all of the following must be satisfied:
−ω̆(t)k1 + ol(t)k2=0, ω̆(t)k3=0, or (t)k4 − ol(t)k5=0

which requires one of the following conditions to be true:
• ol(t) is constantly zero, k = [

0 ρ1 0 ρ2 0
]�

, or or (t) is

constantly zero, k = [
0 0 0 0 ρ

]�
• ω̆(t) is constantly zero, k = [

ρ1 0 ρ2 0 0
]�

,

• or (t), ol(t), and ω̆(t) are all constants, k = [
0 0 ρ 0 0

]�
,

• ol(t) keeps proportional to or (t), k = [
0 0 0 ρ 0

]�
,

• ω̆(t) keeps proportional to ol(t), k = [
ρol/ω̆ ρ 0 0 0

]�
.

where ρ, ρ1, ρ2 can be any non-zero value that is used to
generate valid non-zero vector k such that M k = 0. All
the above cases are special conditions. Therefore, in a skid-
steering robot localization system equipped with a camera,
an IMU, and odometers, ξ is observable unless entering the
specified special conditions listed above. This completes the
proof. �

F. Observability of ξ With a Monocular Camera, an IMU,
an Odometer and With Online Extrinsics Calibration

It is essential to know the extrinsic transformations between
different sensors in a multi-sensor fusion system. Since
IMU-camera extrinsic parameters are widely investigated in
the existing literature, and practically the IMU-camera system
is frequently manufactured as an integrated sensor suite,
we here focus on camera-odometer extrinsic parameters.
We first define the parameter state when camera-odometer
extrinsics are included:

η=[
Xv Yl Yr αl αr

OxC
O yC

OzC
O
Cδθ�

]�
where OpC =

[
OxC

OyC
OzC

]�
and O

Cδθ ∈ R
3 are the

translational and rotational part of the extrinsic transformation
between odometer and camera. O

Cδθ is error state (or Lie
algebra increment) of the 3D rotation matrix O

CR.
Since extrinsic translation and rotation components might

be subject to different observability properties, we also define
state parameters that contain each of them separately:

η p=
[
Xv Yl Yr αl αr

OxC
OyC

OzC
]�
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and

ηθ =
[
Xv Yl Yr αl αr

O
Cδθ�

]�
To summarize, the objective of this section is to demonstrate
the observability properties of η, η p, and ηθ .

Lemma 4: By using measurements from a monocular
camera, IMU and wheel odometers, η p and η are not iden-
tifiable. Specifically, the vertical direction of translation in
the extrinsics, OzC is always unidentifiable for any type of
ground robot, and OxC and OyC become unidentifiable if the
skid-steering kinematic parameters are estimated online.

Lemma 5: By using measurements from a monocular cam-
era, IMU and wheel odometers, ηθ is identifiable in general
motion, which allows an estimation algorithm to perform
online calibration on extrinsic rotational parameters.

Proof: First of all, η is locally identifiable if and only if
η̄ is locally identifiable:

η̄ = [
Yl �Y Xv βl βr

OxC
O yC

OzC
O
Cδθ�

]�
By substituting v̆(t) � O

CR · v̆C(t) in Eq. (27), we are able to
derive constraints similar to Eq. (41), as

cx(η̄, t)= ω̆(t)O yC+e1
�O

CRv̆C(t) −ω̆Yl−βl�Y ol(t)=0

(44a)

cy(η̄, t)=−ω̆(t)OxC + e2
�O

CRv̆C(t) + ω̆(t)Xv=0 (44b)

cω(ζ̄ , t)= ω̆(t)+ βlol(t)− βr or (t)=0 (44c)

Considering the constraints in a set of time instants S =
{t0, t1, . . . , ts}, we compute the following observability matri-
ces for the systems with calibrating η̄ p and η̄θ , given by
Eq. (45), as shown at the bottom of the next page, and
Eq. (46a), as shown at the bottom of the next page, respec-
tively. Eq. (46a) can be converted to Eq. (46b), as shown at
the bottom of the next page, by linear operations:

M(:, 4)←M(:, 4)−�Y/βlM(:, 2)

M(:, 2)←−M(:, 2)/βl

Similar to previous proofs, to look into the properties of
M in Eq. (45), we investigate non-zero vector k such that
M k = 0. We can easily find the following non-zero solutions:

k1 =
[
ρ 0 0 0 0 0 ρ 0

]�
k2 =

[
0 0 ρ 0 0 ρ 0 0

]�
k3 =

[
0 0 0 0 0 0 0 ρ

]�
where ρ can be any non-zero value. We can find that k1, k2 are
related with the kinematic parameters, while k3 always holds,
which results from no constraints on OzC for ground robots
and it has no matter with the kinematic parameters. Through
the found null spaces, we can draw the following conclusions:
(i) Yl and OyC are indistinguishable; (ii) Xv and OxC are indis-
tinguishable; (iii) the vertical direction of extrinsic parameters
OzC is always unidentifiable for skid-steering robot moving
on ground, no matter whether the kinematic parameters are
calibrated online.

However, M in Eq. (46b) is under quite different properties.
Similarly, we investigate the non-zero k that satisfies M k = 0,
which requires the all of the following to be true:
−ω̆(t)k1 + ol(t)k2 − e1

�O
CR�v̆C(t0)� ·

[
k6 k7 k8

]�=0

ω̆(t)k3 − e2
�O

CR�v̆C(t0)� ·
[
k6 k7 k8

]�=0

or (t)k4 − ol(t)k5=0

However, since ω̆(t), v̆C(t), ol(t), or (t) are time variant under
general motion, we can not find such a non-zero vector k.
We can draw the conclusion: (iv) the rotation between camera
and odometer are identifiable under general motion. �

Based on the derived observability properties, it is important
to point out the following algorithm design issues: (i) Unlike
online calibration algorithms in other literature [19], [20], [21],
extrinsic parameters between camera and odometer are not
observable and cannot be calibrated online. (ii) The extrinsic
rotation between sensors can be observable in general motion
and thus can be included in the state vector of a state
estimation algorithm for online calibration. Since extrinsic
rotation usually does not undergo severe changes, and its
calibration also suffers from degenerate motions, we do not
recommend calibrating it online.

V. EXPERIMENTAL RESULTS

In this section, we provide experimental results that sup-
port our claims in both algorithm design and theoretical
analysis. Specifically, we conducted real-world experiments
and simulation tests to demonstrate: (i) the advantages and
necessities of online estimating kinematic parameters in visual
(inertial) localization systems for skid-steering robots, (ii) the
observability and convergence properties of the skid-steering
kinematic parameters under different settings, (iii) the robust-
ness of the proposed kinematics and pose estimation method
against the changes of mass center, tire inflation condition,
terrains, etc., to enable the long-term mission completeness of
the robots without performance reduction. In our experiments,
we used the adapted skid-steering robots based on the commer-
cially available Clearpath Jackal robot [2] (see Fig. 1), with
both ‘kinematics and pose estimation’ sensors and ‘ground-
truth sensors’ equipped. For ‘kinematics and pose estimation’
sensors, we used a 10Hz monocular global shutter camera at
a resolution of 640× 400, a 200Hz Bosch BMI160 IMU, and
100Hz wheel encoders .2 The ‘ground truth’ sensor mainly
relies on RTK-GPS with centimeter-level precision. All sen-
sors used in our experiment are synchronized by hardware and
calibrated offline via [22]. We note that the offline calibration
procedure is an important prerequisite in our experiments since
the extrinsic translation between the odometer and camera has
shown to be constantly unobservable. All the experiments are
conducted on an Intel Core i7-8700 @ 3.20GHz CPU for
comparisons. To fully examine the proposed method, we only
evaluate the poses from the odometry system without loop
closures and prior maps to standout the performance of our

2We point out that, we used customized wheel encoder hardware instead
of the on-board one on Clearpath robot, to allow accurate hardware synchro-
nization between sensors.
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Fig. 2. Boxplot of the relative trajectory error (RPE) statistics over all the
sequences where RTK-GPS measurements are available. This plot best seen
in color.

proposed kinematic and pose estimation method. The sliding-
window size of the estimator is 8 in all the evaluations
presented in this paper.

A. Real-World Experiment

In the first set of experiments, we focus on validating the
effectiveness of the proposed skid-steering model as well as
the localization algorithm. Specifically, we investigated the
localization accuracy by estimating skid-steering kinematic
parameters ξ (Eq. (4)) online and compared that to the
competing methods. To demonstrate the generality of our
method, we conducted experiments under various environ-
mental conditions. The environments involved in our robotic
data collection include (a) lawn, (b) cement brick, (c) wooden
bridge, (d) muddy road, (e) asphalt road, (f) ceramic tiles,

(g) carpet, and (h) wooden floor. The representative figures in
8 types of terrains are also shown in the experiments of [1].

We note that since GPS signal is not always available in
all tests (e.g., indoor tests), we use both final drift and root-
mean-squared error (RMSE) of absolute translational error
(ATE) [45] as our metrics. It is also important to point
out that, in the research community, it is preferred to use
publicly-available datasets to conduct experiments to facili-
tate comparison between different researchers. However, most
localization datasets publicly available either utilize passenger
cars (KITTI [46], Kaist Complex Urban [47], Oxford Robot-
car [48]) or lack of one or multiple synchronized low cost
sensors (NCLT [49], and Canadian 3DMap [50]). To this end,
we also plan to release a comprehensive dataset specifically
with low-cost sensors, as our future work.

1) Pose Estimation Accuracy: We first conducted an exper-
iment to show the benefits gained by modeling and estimat-
ing skid-steering parameters online. In this experiment, three
setups are compared, i.e., two provably observable methods
and one baseline method. Specifically, those methods are 1)
VIO (visual-inertial odometry) W/ ξ : using measurements
from a monocular camera, an IMU, and odometer via the
proposed estimator by estimating the full 5 skid-steering kine-
matic parameters ξ online; 2) VO (visual odometry) W/ ICR:
using monocular camera and odometer measurements (without
an IMU), and performing localization by estimating the 3 ICR
parameters ξ IC R online; 3) VIO W/O ξ : using measurements
from monocular camera, an IMU and odometer, and utilizing
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TABLE I

RMSE OF ATE (M) ON THE SEQUENCES WITH RTK-GPS MEASUREMENTS

Fig. 3. While given bad initial values, the kinematic parameters ξ are able to converge to the reasonable values in the visual-inertial navigation system. The
online estimated kinematic parameters (red) and the associated ±3σ envelopes (blue) are shown on sequences “ SEQ8-CP01, SEQ18-CP01, SEQ19-CP01”
from left to right.

Fig. 4. While given bad initial values, the ICR parameters ξ I C R are able to converge to the reasonable values in the kinematics-constrained VO system. The
online estimated ξ I C R parameters (red) and the associated ±3σ envelopes (blue) are shown on sequences “ SEQ8-CP01, SEQ18-CP01, SEQ19-CP01” from
left to right.

differential drive kinematics in Eq. (7) for localization [27]
without explicitly modeling ξ . Notably, the configuration VIO
W/O ξ is exactly our baseline method [27] for ground robots.
In [27], similar to the optimized cost function in Eq. (10),
the constraints from prior term CP , camera term CV , IMU
term CI , and motion manifold term CM are taken into account,
while the odometer constraint CO is simply induced from ideal
differential drive model (see Eq. (7)) instead of leveraging the
ICR-based kinematics constraint (see Section. III-C) proposed
in this work.

We show the final drift errors on 23 representative sequences
in the Table.II of the supplementary material, which cover all
eight types of terrains (a)-(g). Notably, some sequences also
cover multiple types of terrains. In the sequences where GPS
signals were available across the entire data sequence, we also
evaluated the root mean square errors (RMSE) [38] of absolute

translational error (ATE) [45]. To compute that, we interpo-
lated the estimated poses to get the ones corresponding to
the timestamp of the GPS measurements. In addition to the
aforementioned configurations, VIO W/ ξ , VO W/ ICR, and
VIO W/O ξ , we also compare to the state-of-the-art wheel
odometer aided VIO methtod VINS-on-Wheels [25], the state-
of-the-art VIO method VINS-Mono [31], and also the vision-
free methods, including Wheel Odo. W/ ξ and Inertial
Aided Wheel Odo.. In the method, Wheel Odo. W/ ξ , only
the wheel odometer measurements are used by propagating
poses forward based on the ICR kinematics with the full
5 kinematic parameters ξ (see Sec. III-C). The kinematic
parameters are kept fixed at the given initial values, and will
not be updated due to the lack of constraints from the other
sensor modalities. The fixed values can not reflect the real-time
robot kinematic status, and can lead to significant errors in
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TABLE II

MEAN OF RPE (M) FOR DIFFERENT SEGMENT LENGTH ON THE
SEQUENCES WITH RTK-GPS MEASUREMENTS

pose estimation. As for the method, Inertial Aided Wheel
Odo., both the measurements from IMU and wheel odometers
are fused. Besides the forward propagation based on the full
ICR-based kinetic model with wheel odometers measurements,
IMU measurements are also propagated forward to formulate
the relative pose constraints between two virtual keyframes.
Here we selected virtual keyframes once the wheel odometer
pose prediction has a translation over 0.2 meters or rotation
over 3 degrees. The IMU velocity and biases, as well as the
kinematic parameters, are optimized in this method.

The RMSE errors of compared methods are shown in
Table. I, where we highlight the best results in bold, while the
bad results (RMSE of ATE is over 12m) by underlines. The
results clearly demonstrate that when skid-steering kinematic
parameter ξ is estimated online, the localization accuracy
can be significantly improved. This validates our claim that,
in order to use odometer measurements of skid-steering robots,
the complicated mechanism must be explicitly modelled to
avoid accuracy loss. We also note that, the method of using
an IMU and estimating the full 5 kinematic parameters, VIO
W/ ξ , performs best among those methods, by modeling the
time-varying scale factors. In fact, the method of estimating
only 3 ICR parameters with visual and odometer sensors works
well for a portion of the dataset while fails in others (e.g.,
the datasets under (b,f) categories). This is due to the fact
that those datasets involve terrain conditions changes, and the
scale factor also changes. If those factors are not model, the
performance will drop. Moreover, we note that, under those
conditions (e.g., (b,f)), the best performing method still works
not as good as the performance in other data sequences. This
is due to the fact that we used ‘random walk’ process to
model the ‘environmental condition’ changes, which is not the
‘best’ assumption when there are rapid road surface changes.
We will also leave the terrain detection as future work. The
pure VIO method without wheel odometers, VINS-Mono [31]
has a poor performance because of the degeneration motion
of ground robots. The state-of-the-art odometer aided VIO
method, VINS-on-Wheels [25], shows relatively good pose
estimation results, while it is inferior to the proposed method,
due to the planar ground assumption and the ideal differential
drive model assumption, which does not address the slippage
issue. The vision-free methods, Wheel Odo. W/ ξ and Inertial
Aided Wheel Odo., shows large pose estimation error on most
of the sequences, which stands out the substantial help from
visual measurements. Representative Trajectory estimates on
representative sequences are also shown in the supplementary
material. In order to provide insight into how the error of each

algorithm grows with the trajectory length, we also calculate
the calculated relative pose error (RPE) averaged over all the
sequences when GPS measurements are available. The RPE
results are shown in Table. II and Fig. 2, which also support
our algorithm claims.

To further examine the advantages of online estimating the
full kinematic parameters ξ in the kinematics-constrained VIO
systems, we conduct ablation study and compare the three vari-
ants of the proposed method: 1) estimating 3 parameters ξ IC R

only; 2) estimating the full ξ with 5 parameters; 3) used fixed
ξ with a relatively good initial guess. Besides, in the ablation
study, the skid-steering robot is tested under the following
practically commonly-seen mechanism configurations during
its life-long service: (i) normal; (ii) carrying a package with the
weight around 3 kg; (iii) under low tire pressure; (iv) carrying
a 3-kg package and with low tire pressure. The experimental
results can be found in our supplementary material, which
demonstrates the advantage of estimating the full kinematic
parameters ξ and the effectiveness of the proposed methods
under the aforementioned mechanism configurations.

2) Convergence of Kinematic Parameters: In this section,
we show experimental results to demonstrate the convergence
properties of ξ and ξ IC R , in systems that we theoretically
claim observable. Unlike the experiments in the previous
section, which utilized the method described in Sec. III-D for
kinematic parameter initialization, we manually added extra
errors to the kinematic parameter for the tests in this section,
to better demonstrate the observability properties. Specifically,
for the kinematics-constrained VIO system, we added the
following extra error terms to initial kinematic parameters

δXv=0.08, δYl=0.14, δYr=−0.1, δαl=0.2, δαr =0.2

For the kinematics-constrained VO system, we only add
error terms to ξ IC R . To show details in parameter conver-
gence properties, We carried out experiments on representative
indoor and outdoor sequences, “SEQ8-CP01, SEQ18-CP01,
SEQ19-CP01”. In Fig. 3, the estimates of the full kinematic
parameters ξ in VIO are shown, along with the corresponding
±3σ uncertainty envelopes ( where σ is the square root of the
corresponding diagonal component of the estimated covariance
matrix). The convergence of ξ IC R in VO are also shown in
Fig. 4. The results demonstrate that the kinematic parameters ξ

in the VIO quickly converge to stable values, and remains slow
change rates for the rest of the trajectory. Similar behaviours
can also be observed for ξ IC R when only a monocular camera
and odometer sensors are used. The results exactly meet our
theoretical expectations that ξ in VIO and ξ IC R in VO are
both locally identifiable under general motion. We also note
that, since it is not feasible for obtaining high-precision ground
truth for ξ , the correctness of those values cannot be ‘directly’
verified. Instead, they can be evaluated either based on the
overall estimation results shown in the previous section or
simulation results in Sec. V-B where ground truth ξ is known.

3) Time Efficiency: The proposed ICR-kinematic based
method is computationally effective to run in real time,
thus is applicable in various robotic applications. In this
section, we showcase the running time of the proposed
method on a typical sequence “SEQ21-CP01” with a traversed
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TABLE III

MEAN AND (STANDARD DEVIATION) OF THE RUNNING
TIME FOR THE MAIN PROCESSING STAGES

distance of 629.16 meters, and there are about 2400 cycles
of sliding-window optimization occurring in our estimators.
As noted previously, the run time is also evaluated on a
desktop with Intel Core i7-8700 @ 3.20GHz CPU. The
implementation of our method is in C++ and adequately
optimized for high efficiency. We disclose the average run-
ning time and its standard deviation of four main processing
stages: feature detection, feature tracking, BA optimization,
and marginalization. The ICR-based kinematic constraints are
formulated and leveraged in BA optimization, as well as the
other constraints. The results are shown in Table III, including
the three configurations VIO W/ ξ , VO W/ ICR, and VIO
W/O ξ . Comparing the runtime of VIO W/ ξ to the one of
VIO W/O ξ , it is obvious to find that introducing the ICR-
based kinematic constraints into VIO has a negligible burden
on the computation. Considering the significant improvement
in the pose estimation accuracy by incorporating kinematic
constraints (see experiments in Sec. V-A1), it is quite worth-
while to estimate the kinematic parameters and poses jointly
by the proposed method.

B. Simulation Experiments

We also perform Monte-Carlo simulations to investigate
our proposed method specifically for parameter calibration
precision, since this cannot be verified in real-world tests. The
synthetic trajectory is generated by simulating a real-world tra-
jectory with a length of 205.4 m, using the method introduced
in [51]. To generate noisy sensory measurements, we have
used zero-mean Gaussian vector for all sensors with the
following standard deviation (std) values. Pixel std for visual
measurements is 0.6 pixels, odometer stds for the left and
right wheels are both 0.0245 m/s, gyroscope and accelerometer
measurement stds are 9 · 10−4 rad/s and 1 · 10−2 m/s2, and
finally the stds representing the random walk behavior of
gyroscope and accelerometer biases are 1 · 10−2 rad/s2 and
1 · 10−2 m/s3 respectively. Additionally, since skid-steering
kinematic parameters can not be known in advance, we ini-
tialize ξ in our simulation tests by adding an error vector to
the ground truth values. The noise vector is sampled from
zero-mean Gaussian distribution with std 8 · 10−2 for all
elements in ξ .

To collect algorithm statistics, we conducted 15 Monte-
Carlo tests and compute parameter estimation results for ξ .
Specifically, we computed the mean and std of calibration

Fig. 5. In simulation experiments, estimated Trajectories aligned with the
ground truth trajectory.

errors for all elements in ξ , averaged from the Monte-
Carlo tests. The estimation error for each element in ξ

are: −0.0211 ± 0.0095, 0.0102 ± 0.0030, − 0.0081 ±
0.0026, 0.0212 ± 0.0109, 0.0216 ± 0.0108. Those results
indicate that, the skid-steering parameters can be accurately
calibrated by significantly reducing uncertainty values. It is
also interesting to look into a representative run, in which
the initial estimate of ξ is subject to the following error
vector δξ = [

0.15 0.15 −0.15 0.1 0.1
]�

. In this case, the
calibration errors averaged over the second half of the tra-
jectory are: −0.0276 ± 0.0067, 0.0199 ± 0.0118, 0.0054 ±
0.0026, 0.0192± 0.0157, 0.0189± 0.0157.

Since simulation tests provide absolute ground truth, it is
also interesting to investigate the accuracy gain by estimating
ξ online. Fig. 5 demonstrates the estimated trajectory when
ξ is estimated online, or ξ is fixed during estimation as
well as the ground truth. This clearly demonstrates that,
by the online estimation process, the localization accuracy can
be significantly improved. The averaged RMSE of rotation
and translation for those two competing methods in this
Monte-Carls tests are 0.042 ± 0.023rad, 2.051 ± 0.830 m
and 0.154± 0.0635 rad, 4.617± 2.563 m, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel kinematics and pose
estimation method specialized for skid-steering robots, where
multi-modal measurements are fused in a tightly-coupled
sliding-window BA. In particular, in order to compensate
for the complicated track-to-terrain interactions, the imper-
fectness of mechanical design, mass center changes, tire
inflation changes, and terrain conditions, we explicitly model
the kinematics of skid-steering robots by using both track
ICRs and correction factors, which are online estimated
to prevent performance reduction in the long-term mis-
sion of skid-steering robots. To guide the estimator design,
we conduct detailed observability analysis for the pro-
posed algorithm under different setup conditions. Specifi-
cally, we show that the kinematic parameter vector ξ is
observable under general motion when measurements from an
IMU are added and odometer-to-camera extrinsic parameters
are calibrated offline. In other situations, degenerate cases
might be entered and reduced precision might be incurred.
Extensive real-world experiments including ablation study and
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simulation tests are also provided, which demonstrate that
the proposed method is able to compute skid-steering kine-
matic parameters online and yield accurate pose estimation
results.

There are also limitations to the proposed method. Notably,
ICR-based kinematic model is only valid when a vehicle
is operated in low dynamics. Although low dynamics are
common for skid-steering robots, the feasibility at high speed
is also essential. Moreover, abrupt changes of the traversed ter-
rain or robot mechanism status will cause significant changes
in the kinematic parameters. In that case, estimators will have
some latency to converge. In the future, it is worthwhile
investigating a more general kinematic model for mobile
robots through data-driven deep-learning methods. A general
kinematic model is supposed to function well regardless of the
moving speed, interacted terrains, and robot mechanism status.
It is also interesting to actively detect the abrupt changes in
terrains and robot status. State estimation can converge quickly
by enlarging the uncertainty of kinematic parameters when
abrupt changes are detected.
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